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DUE TODAYAssgn#5
Assignment # 5 Steady State Numerical Models: Create two steady state MODFLOW simulations of 
groundwater flow in your system.  One of the simulations should represent the flow system without the stress 
and the other should simulate the steady state condition with the stress. Build on your work from assignments 1 
through 3. Using the MODFLOW manuals and class examples, create a name file, then build each of the input files. 
When you have them all, execute the model, look at the output or error messages and revise the file until you have 
models that "run". Be sure to save your files because you will want to use them later in the semester. Compare your 
results to the result of your spreadsheet and analytical modeling. Be sure to save your files because you will want 
to use them later in the semester. 

Suggested Steady State Modeling Report Outline
Title 
Introduction 
objective 
problem description 

Geohydrologic Setting 
Results of analytical and spreadsheet modeling 
Numerical Model setup 
geometry 
boundary conditions 
initial conditions 
parameter value ranges 
stresses stresses 
special considerations 

Uncalibrated model results 
predictions
problems encountered, if any 

Comparison with Analytical/Spreadsheet results
Assessment of future work needed, if appropriate 
Summary/Conclusions 
References

submit the paper as hard copy and include it in your zip file of model input and output
submit the model files (input and output for both simulations) in a zip file labeled:
ASSGN5_LASTNAME.ZIP

Calibration
(Parameter Estimation, Optimization, Inversion, Regression)

adjusting parameter values, boundary conditions, 
model conceptualization, and/or model 
construction until the model simulation 

matches field observations

We calibrate because 

1. the field measurements are not accurate 
fl ti  f th  d l l  ti  d reflections of the model scale properties, and 

2. calibration provides integrated interpretation 
of the available data 

(e.g. the dependent observations tell us about the independent properties)
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Calibrated model ~ provides minimized residuals (Observed – Simulated)
without bias (N indicates the number of observations)

Global measures of error:
Mean Error:   (Sum(Obs–Sim))/N
Mean Absolute Error:   (Sum(ABS(Obs–Sim)))/N
Root Mean Squared Error:   ((Sum((Obs–Sim)2))/N)0.5
Sum-of-Squared Weighted Residuals: Sum(weight(Obs–Sim)2)Sum-of-Squared Weighted Residuals: Sum(weight(Obs Sim) )

Graphical measures of error
observed vs. simulated should form a 45o line passing through the origin
residual vs. simulated should form a uniform horizontal band around zero
ordered residuals on normal probability graph should form a straight line

Spatial and Temporal Distribution of Residuals
Map (obs-sim) in x, y, z space should exhibit a random pattern of p ( ) y p p
positive  and negative, as well as large and small, residuals

Graph of (obs-sim) vs. time OR vs. observation # should form a 
uniform horizontal band centered on zero

ALSO USE COMMON SENSE to spot errors

Optimal Parameter Values are the result of the calibration 
They should correspond with field measured values

If they differ significantly carefully consider whether: 
- such a difference is reasonable due to scale issues

- the conceptual model is in error, or 
h    i  h  fi ld d- there are errors in the field data

Have expectations, question all aspects of the situation 
when calculations do not match expectations

We will use automated calibration (here nonlinear regression),
it is a valuable tool for:

- finding the best fit to your field observations
- identifying the type and location of additional data that will be most helpful

- differentiating conceptual models
- identifying models that are most representative of the field

Unfortunately, many practicing ground-water professionals 
are still using trial-and-error but it is changing rapidly
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Our objective is to minimize the sum of squared 
weighted residuals:
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Weighting Squared Residuals because Observations are: 

1. not equally reliable (some heads may have been determined from 
survey TOC (top of casing) while other TOCs were estimated from a 
topographic map)

2. have different units (a difference of 1 foot in head may not have the 
same importance as a difference of 1cfs flow rate)same importance as a difference of 1cfs flow rate)

3. have true errors that are correlated (e.g. many h obs @ one well but 
elevation of well or position of well is in error)

We deal with these issues through weighting observations. Research 
has indicated that ignoring the correlation of error between 
observations does not significantly influence the regression, but we 
can include them if we wish.

Using 1/variance of the measurement as the weight renders the 
weighted squared residuals unitless and assigns high weights to 
more accurate observations. THEREFORE we can sum weighted 
squared residuals and regardless of the units or magnitudes, they 
are of equal importance, except for their measurement certainty.
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A reasonable weight is the inverse of the measurement variance
because more uncertain observations receive less weight and the weighted 
squared residuals are unitless and so can be summed

Observations have units (e.g. ft cfs mg/L etc)

Observations have uncertainty (e.g. measurement variance σ2 which is the 
s  f th  st nd d d i ti n )square of the standard deviation σ)

Standard deviation has same units as the observation (eg ft cfs mg/L etc)

Variance has observation units squared ft2 (cfs)2 (mg/L)2 etc

Residuals have the same units as the observation ft cfs mg/L etc

Squared residuals have units that are squared observation units
ft2 (cfs)2 (mg/L)2 etc

Weight =  1 / Variance units are the inverse of squared residuals
ft-2 (cfs)-2 (mg/L)-2 etc

Sum of Weighted Squared Residuals (∑wt*squared residual) unitless

for example:

say heads are accurate to within 1 ft of measurement

express this quantitatively as 95% confidence that head is 
within 1 ft of measurement

using a cumulative distribution of a standard normal 
distribution table we find a 95% confidence is 1.96 standard 

deviations, so

1.96 stddev = 1.0 ft

stddev = 0.51 ft

variance is the stddev squared

variance = 0.26 (ft)2

and the weight is 1/variance

weight 3.85  (ft)-2
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NOTE

heads are derived from an elevation AND depth measurement

Variances can be summed (standard deviations cannot)

example

95% fid  l ti  i  120ft / 10ft95% confidence elevation is 120ft +/- 10ft

1 stddev ~ 5.1 ft

variance ~ 26 ft2

95% confidence depth to water 25ft +/- 0.1ft

1 stddev ~ 0.051 ft

variance ~ 0.0026 ft2

Variance on the head measurement ~ 26 + 0.0026 ft2

1 stddev ~ square root of 26.0026

Weight ~ 0.0385 ft-2

in the case of ground water flow measurements, 2 measurements are required and 
their variance must be combined (actually this is usually the case with head also 
because both top of casing and depth to water are needed):

Upstream Q = 10cfs   Downstream Q = 15cfs
95% certain upstream measurement is within 1 cfs
90% certain downstream measurement is within 1.5 cfs

upstream
95% fid  i     1 96 dd   1 0 f95% confidence is    1.96stddev = 1.0 cfs
stddev = 0.51 cfs
variance is the stddev squared = 0.26 (cfs)2

downstream
90% confidence is    1.65stddev = 1.5 cfs
stddev = 0.90 cfs
variance is the stddev squared = 0.81 (cfs)2 

the groundwater flux is 15cfs - 10cfs = 5 cfs

10cfs +/-1

g
the variance is the sum of the individual variances
variance = 0.26 + 0.81 = 1.07 (cfs)2 
weight = 1/variance = 0.93 (cfs)-2

Sometimes we express uncertainty as coefficient of variation:
stddev / mean
we use the measured value as the mean
coeff var = (1.07 (cfs)2)-2 / 5 cfs = 0.21 cfs

15cfs +/-1.5
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The errors associated with observations that share 
measurements are correlated.  

Generally this does not have a big influence on the regression 
or the associated statistics.

W  n mm d t  thi  ith  f ll i ht m t ix  

h     l    h  h  h  h  

We can accommodate this with a full weight matrix. 

In the case of stream flow observations with a shared gage, 
the off-diagonal variance is: 

–(variance of the measurement at the shared gage)

The regression is not extremely sensitive to the weights, thus the 
casual approach to their definition is not a problem

The weighting can be evaluated at the end of the regression by 
considering the cev (calculated error variance) more on that later

upstream = 10 cfs midstream = 12 downstream = 15 cfs
95% certain upstream measurement is within 1 cfs
95% certain midstream measurement is within 1 cfs
90% certain downstream measurement is within 1.5 cfs

upstream
variance is the stddev squared = 0.26 (cfs)2
midstream
95% confidence is    1 96stddev = 1 0 cfs

-0.26(cfs)2

expresses the 
covariance 
between 
groundwater 
flux 1 and 2

95% confidence is    1.96stddev = 1.0 cfs
stddev = 0.51 cfs
variance is the stddev squared = 0.26 (cfs)2
downstream
variance is the stddev squared = 0.81 (cfs)2 

the groundwater flux1 is 12cfs - 10cfs = 2 cfs
the variance is the sum of the individual variances
variance = 0.52 (cfs)2 
weight = 1/variance = 1.92 (cfs)-2

10cfs +/-1

12cfs +/-1

g ( )
coefficient of variation = (1.92 (cfs)2)-2 / 2 cfs = 0.69 cfs

the groundwater flux2 is 15cfs - 12cfs = 3 cfs
the variance is the sum of the individual variances
variance = 1.07 (cfs)2 
weight = 1/variance = 0.93 (cfs)-2
coefficient of variation = (1.07 (cfs)2)-2 / 3 cfs = 0.34 cfs

15cfs +/-1.5
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Recall matrix multiplication (review from Wikipedia):

Example from Wikipedia:

A useful rule to remember when evaluating 
matrix multiplication is that the adjacent 
dimensions must match and the final matrix 
dimensions will be the # of rows of the first dimensions will be the # of rows of the first 
matrix and the number of columns of the 
second.

So for us there are N observations

1x1 results from  1xN NxN Nx1

[ ] [ ])(')(')( byybyybS T −−= ω
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Sometimes it is assumed the off diagonal terms of the 
weight matrix are zero and it is presented as follows
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but the w is an Nx1 that is the diagonal of the NxN
which is how the math is conducted and a

1x1 results from  1xN NxN Nx1

But in this case it is easy to sum the weighted squared 
residuals by hand to confirm the matrix algebra

Let’s look at some 
simple examples of 
the sum of squared 
weighted residuals
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With the sum of 
squared weighted 
residuals being one 
value, for a simple 2 
parameter estimation 
problem we can plot 
it on a graph and 
look at the surface

Here is the same 
example but now we 
add a flow observation 
and note the affect 
on the sum of squared 
weighted residuals
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Here is the sum of 
squared weighted 
residuals surface 
with the flow 
observation included. 
Note that now it is 
possible to find a 
unique solution



12

Sometimes we include prior knowledge of the parameter 
values from independent tests as observations 
(for diagonal weights):
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MODFLOW
Observation / Sensitivity / Parameter Estimation

User’s manual is a separate physical document but is 
integrated into the on-line guide for MODFLOWintegrated into the on line guide for MODFLOW

All 3 processes in MODFLOW2000
But this is being discontinued

MODFLOW2005  OB ERV TION P kMODFLOW2005 some OBSERVATION Packages
These will be enhanced
Sensitivity will be added

Parameter estimation will be replaced by UCODE

Consider how we could go about estimating parameter values for 
the following nonlinear model. We guess a recharge R, calculate h, 
determine residual, use that and the slope (sensitivity) to make a 
linear estimate of the best R, and because it is nonlinear, we 
repeat until R changes by less than a specified tolerance

hobserved
residual3

h sensitivity3h

h@
x

observed

hfirst

residual1

hsecond residual2

Fourth
Guess
R

sensitivity1

hperturbed

hthird
sensitivity3hthird

sensitivity2hperturb

RechargeFirst
Guess
R

Next
Guess
R

Third
Guess
R

changeR1 changeR2 Change<Tol
converged

perturb perturb
perturb
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To examine how we find the parameters that produce 
the minimum sum-of-squared residuals, reconsider the 

simplest form of the objective function:
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p j

take the derivative of the objective function with 
respect to the parameters and set it to zero:
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The residuals are determined as 
observed-simulated (at the current parameter values)

They form a 1D array (ND, # observations long)
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[simulated(current b values)-
simulated(perturbed b values)] /

[(current b)-(perturbed b)]
i.e.
simulated(bo)- simulated(b’)

bo- b’
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Estimating Parameter Values that
Minimize the Sum of Weighted Squared Residuals

via Nonlinear Regression using the
Modified Gauss-Newton Gradient Method

(also called Marquardt-Levenberg)

A  it ti  f m f li  i  (i  l  m l ti  lik   d  An iterative form of linear regression (i.e. solves normal equations like you do 
to fit a straight line to data, but repeatedly with updated parameter values)

To do this we minimize the objective function (i.e. we obtain the normal 
equations by assuming linearity and taking the derivative with respect to the 
parameters, then set the derivative equal to zero to find the parameter values 
that would minimize the function)

The ground water flow equations are not linear with respect to the The ground water flow equations are not linear with respect to the 
parameters, so we repeat the process using the new parameter values and 
continue until there is little change in the parameter values

This only works well for non-linear problems IF MODIFIED to include:
* scaling 
* adjusting to gradient correction 
* damping

Consider how we could go about estimating parameter values for 
the following nonlinear model. We guess a recharge R, calculate h, 
determine residual, use that and the slope (sensitivity) to make a 
linear estimate of the best R, and because it is nonlinear, we 
repeat until R changes by less than a specified tolerance

h
residual3

h@
x

hobserved

hfirst

residual1

hsecond residual2

Fourth
Guess
R

sensitivity1

hperturbed

hthird
sensitivity3hthird

sensitivity2hperturb

RechargeFirst
Guess
R

Next
Guess
R

Third
Guess
R

changeR1 changeR2
R
Change<Tol
converged

perturb perturb
perturb
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Recall to find the parameters that produce the minimum 
sum-of-squared residuals, we set the derivative of the 
objective function to zero. This produces the normal 

equations.
We’ll do this using the simplest form of the 

objective function:
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amount thedefines)d(Vector i

After some mathematical considerations that we will 
not take time for here, we calculate the change in 
the parameters that is required (assuming a linear 
model) to minimize the residuals for 1 iteration:
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Conceptually:

minimum  the toroutebetter  afor 
direction modifies t eniciffeocleft =

Some modifications are needed to put 
this to work in a practical sense:this to work in a practical sense:
SCALING 
DAMPING 
ADJUSTING to GRADIENT DIRECTION
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First, just an image of “the route” to the minimum:

d ofaccuracy  improved
for vitiesiensits and valuesparameter 

in sferencefdi largefor account   toScale
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estimatesparameter 

1 +=+ rrrr

criterionone
dbb ρ

2..

parameterany for  user)
1

<
−+

r
i

r
i

r
i

b
bbge

( ) ( ))('
1

r
T
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T
rr byyXXXd −=

−
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Gauss-Newton approach:
We solve iteratively for d:

( ) ( )rrrrr

Modified Gauss-Newton approach

scale(C)   adjust direction(m)   damp(ρ)

( ) ( ))(
1 TTTT bd

−( ) ( ))(' r
T
r

T
rr

T
r

T
r byyXCCmICXXCd −+= ωω

rrrr dbb ρ+=+1

And update b:
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REPEAT UNTIL THE DISPLACEMENT VECTOR d
is LESS THAN TOLERANCE

T i ll  1% h  i  tTypically 1% change in parameters

Once optimal parameters are found, evaluate:
PARAMETER STATISTICS
RESIDUAL STATISTICS

To assess quality of the modelTo assess quality of the model

RECALL: When the situation is nonlinear we assume linearity and 
keep trying until parameter values do not change much. We guess R, 
calculate h, determine residual, use that and the slope (sensitivity) to 
linearly estimate the "best" R, and because it is nonlinear, repeat until 
R changes by less than a specified tolerance

h
residual3

h@
x

hobserved

hfirst

residual1

hsecond residual2

Fourth
Guess
R

sensitivity1

hperturbed

hthird
sensitivity3hthird

sensitivity2hperturb

RechargeFirst
Guess
R

Next
Guess
R

Third
Guess
R

changeR1 changeR2
R
Change<Tol
converged

perturb perturb
perturb
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hhKAhKAhKAQ x 1−
−=

Δ
−=

∂
−=

groundwater flow equations are not a linear function 
of the parameters, 
even though confined groundwater flow equations are 
a linear function of space and time

x
KA

x
KA

x
KAQ

Δ∂

xhhx
KA
Q

=+
− 1

isxtorespectwithderivativexQhhx h1 −=

Expand gradient in Darcy’s Law
Rearrange for h of x

isxtoespectwithde ivativex
KA

hhx 1

xoftindependenbecauselinear
KA
Q

x
h
=

∂
∂

xh

x
KA
Qhhx

1

is Q respect towith h ofderivative1

−=
∂

−=

x
KAQ∂

h on impact nonlinear                           
 a havecan K which on dependent  is      

but  Q, oft independen ecauseb linear,

nonlinear is

Krespect to with derivative

2 x
AK

Q
K
h
=

∂
∂

p
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SUM OF WEIGHTED SQUARED RESIDUALS

CALCULATED ERROR VARIANCE

( )∑= 2)( RESIDUALsbS ω

CALCULATED ERROR VARIANCE

STANDARD ERROR

NPND
bSscev
−

==
)(2

2ss =

VARIANCE/COVARIANCE MATRIX

( ) 1−
= XXcevCOV Tω

⎤⎡

=••=

NPi
NPjj
121111

1

If 2 parameters were estimated:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

••••
••

•

=
•
•
=

NPNPNPNPNP

NP

NPi

i

,3,2,1,

2,21,2
,12,11,11

If 2 parameters were estimated:

⎥
⎦

⎤
⎢
⎣

⎡

21,2

2,11

2
1

21

VarCov
CovVar

b
b

bb
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VARIANCE (b1)

( ) ( )EVARXXbVAR T 1

1,1
)1(

−
= ω

)1(bVARDevStd = StdDevbConfid *2/1%95 −+=

VARIANCE (b2)

( ) ( )EVARXXbVAR T 1

2,2
)2(

−
= ω

)2(bVARDevStd = StdDevbConfid *2/2%95 −+=

Confidence interval on parameters

Later we use this for confidence interval on 
predictions

CORRELATION (normalized variance)

)()(
),(),(

jVARiVAR
jiCOVjiCORR

∗
=

=••= NPjj 1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

••••
••

•

=
•
•
=

=••=

NPNPNPNPNP

NP

NPi

i
NPjj

,3,2,1,

2,21,2
,12,11,11

1

⎦⎣

⎥
⎦

⎤
⎢
⎣

⎡
1

1
2
1

21

1,2

2,1

bb

bb

Cor
Cor

b
b

bb
If 2 parameters were estimated:
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Learn much more about calibrating models via
Hill and Tiedeman

DUE NEXT WEEK

SUBMIT THE OBSERVATION FILES SUBMIT THE OBSERVATION FILES 
ALONG WITH YOUR WORKING 

MODFLOW FILES FROM THIS WEEK

Include comments on the quality of fit

This submission will be considered as part of your 
assignment 6 grade


