

Prepared in cooperation with the
U.S. Environmental Protection Agency and the
International Ground Water Modeling Center, Colorado School of Mines

UCODE_2005 and Six Other Computer
Codes for Universal Sensitivity Analysis,
Calibration, and Uncertainty Evaluation

Constructed using the JUPITER API
 JUPITER: Joint Universal Parameter IdenTification and Evaluation of Reliability
 API: Application Programming Interface
Chapter 11 of
Book 6. Modeling Techniques, Section A. Ground Water

UNIVERSAL – USE WITH ANY MODEL

Techniques and Methods 6-A11
U.S. Department of the Interior
U.S. Geological Surve

-4
-3
-2
-1
0
1

-100 400 900
Weighted simulated value

W
ei

gh
te

d
re

si
du

al

2
3
4

 (s
=1

.0
)

Hydraulic head Flow

UCODE_2005 and Six Other Computer
Codes for Universal Sensitivity Analysis,
Calibration, and Uncertainty Evaluation
Constructed using the JUPITER API
 JUPITER: Joint Universal Parameter IdenTification and Evaluation of Reliability
 API: Application Programming Interface

By Eileen P. Poeter, Mary C. Hill, Edward R. Banta, Steffen Mehl,
and Steen Christensen

Prepared in cooperation with the
U.S. Environmental Protection Agency and the
International Ground Water Modeling Center, Colorado School of Mines

Techniques and Methods 6-A11

U.S. Department of the Interior
U.S. Geological Survey

 ii

U.S. DEPARTMENT OF THE INTERIOR
Gale Norton, Secretary

U.S. GEOLOGICAL SURVEY
P. Patrick Leahy, Acting Director

U.S. Geological Survey, Reston, Virginia: 2005

Revised on February 10, 2008

For product and ordering information:
World Wide Web: http://www.usgs.gov/pubprod
Telephone: 1-999-ASK-USGS

For more information on the USGS – the Federal source for science about the Earth,
its natural and living resources, natural hazards, and the environment:
World WideWeb: http://www.usgs.gov/pubprod
Telephone: 1-888-ASK-USGS

Any use of trade, firm, or product names is for descriptive purposes only and does not imply
endorsement by the U.S. Geological Survey

Although this report is in the public domain, permission must be secured from the individual
copyright owners to reproduce any copyrighted material contained within this report.

Suggested citation:
Poeter, E.P., Hill, M.C., Banta, E.R., Mehl, Steffen, and Christensen, Steen, 2005, UCODE_2005
and Six Other Computer Codes for Universal Sensitivity Analysis, Calibration, and Uncertainty
Evaluation: U.S. Geological Survey Techniques and Methods 6-A11, 283p.

 iii

http://www.usgs.gov/pubprod
http://www.usgs.gov/pubprod

PREFACE

This report describes the capabilities and use of the computer code UCODE_2005 and six
other computer codes.

UCODE_2005 and three of the other computer codes – RESIDUAL_ANALYSIS,
LINEAR_UNCERTAINTY, and MODEL_LINEARITY – replace the computer code
UCODE (Poeter and Hill, 1998). They can also be used in place of the MODFLOW-2000
Parameter-Estimation Process and part of the Observation Process, and the post-
processing codes RESAN-2000, YCINT-2000, and BEALE-2000 (Hill and others, 2000).

UCODE_2005 used with the other three codes – RESIDUAL_ANALYSIS_ADV,
MODEL_LINEARITY_ADV, and CORFAC_PLUS – provide nearly all the capabilities
of the MODFLOW-2000 UNC Process described by Christensen and Cooley (2005).

MODFLOW-2005 does not include a Parameter-Estimation Process and the Observation
Process is limited to the calculating simulated equivalents of observations. For
MODFLOW-2005, methods for sensitivity analysis, calibration, and uncertainty
evaluation can be obtained using the programs documented in this report, PEST
(Doherty, 2004), OSTRICH (Matott, 2005), or other similar programs. The programs
documented here are unique in some of their capabilities and in their being constructed
using the JUPITER API. The latter is important in part because the input and output files
are structured to encourage coordination with other programs constructed with the
JUPITER API. See Appendix A for additional information.

The six other codes are not limited to use with UCODE_2005; the required input files can
be created by any program with similar capabilities.

The documentation presented in this report includes brief listings of the methods used
and detailed descriptions of the required input files and typical use of the output files.
Detailed information on the methods, guidelines for conducting sensitivity analysis, data
needs assessment, calibration, and uncertainty evaluation of a model of a complex system
using examples mostly from ground-water modeling, and well-documented instructional
exercises are presented by Hill and Tiedeman (2007). Together, this report, Hill and
Tiedeman (2007), and Christensen and Cooley (2005) serve to document the computer
codes described in this work. A more limited discussion of most of the methods and a
previous version of the guidelines are presented in Hill (1994) and Hill (1998), which
served to partially document the earlier programs. More on the methods described by
Christensen and Cooley (2005) is presented by Cooley (2004).

This codes documented by the report are public domain, open-source software and can be
downloaded from the Internet at URL http://water.usgs.gov/software/ground_water.html/.

The performance of the codes presented in this work has been tested in a variety of
applications. Future applications, however, might reveal errors that were not detected in
the test simulations. Users are requested to notify the originating office of any errors

iii

found in the report or the computer codes. Updates might occasionally be made to both
the report and to the codes. Users can check for updates on the Internet at URL
http://water.usgs.gov/software/ground_water.html/.

 iv

Contents
Abstract ..1

Chapter 1: INTRODUCTION..3
Purpose and Scope ...4
Acknowledgements..6

Chapter 2: OVERVIEW AND PROGRAM CONTROL ..7
Introduction to UCODE_2005 Input and Output Files..7
Flowchart for UCODE_2005 Used to Estimate Parameters..8
Brief Description of the Six Other Codes..11
Parallel-Processing Capabilities ..12

Chapter 3: USER CONSIDERATIONS..13
Guidelines for Effective Model Calibration and Analysis using Nonlinear Regression13
Parameterization ..13
Starting Parameter Values ...14
Perturbation Sensitivities ...15

Calculation ...15
Accuracy ..17

Weighting Observations and Prior Information...18
Sensitivity Analysis ...21
Common Ways of Improving a Poor Model ...22
Alternative Models ..23
Residual Analysis ..23
Predictions and Their Linear Confidence and Prediction Intervals...............................24

Chapter 4: RUNNING UCODE_2005, RESIDUAL_ANALYSIS,
MODEL_LINEARITY, and LINEAR_UNCERTAINTY ..29

Running UCODE_2005...29
Controlling Execution and Output ...29
Files Associated with Running UCODE_2005..31
Calibration and Prediction Conditions...32
Typical UCODE_2005 Project Flow ...33

Running RESIDUAL_ANALYSIS ...34
Running MODEL_LINEARITY ...35
Running LINEAR_UNCERTAINTY..35
Trouble Shooting ...36

What to Do When Simulated Values are Wrong ...36
What to Do When Sensitivities Equal Zero ...37

Chapter 5: OVERVIEW OF UCODE_2005 INPUT INSTRUCTIONS...........................41
Main Input File ..41

Input blocks..41
Blocklabel ..42
Blockformat ...42
Blockbody ..44

Additional Input Files ..48

 v

Chapter 6: INPUT TO CONTROL UCODE_2005 OPERATION51
Options Input Block: Control Main Output File and Read Sensitivities (optional)52
Merge_Files Input Block (Optional)..54
UCODE_Control_Data Input Block: Define the Task and Output (optional)...............55
Reg_GN_Controls Input Block: Control Parameter Estimation (optional)...................60
Model_Command_Lines Input Block: Control Execution of the Process model
(required) ...65

Chapter 7: INPUT TO DEFINE PARAMETERS...67
Parameter_Groups Input Block (optional)...68
Parameter_Data Input Block (required)...69
Parameter_Values Input Block: Use Alternative Starting Parameter Values (optional)74
Derived_Parameters Input Block: Define Model Inputs as Functions of Parameters
(optional)..76

Chapter 8: INPUT TO DEFINE OBSERVATIONS AND PREDICTIONS79
Observations ..79

Observation_Groups Input Block (optional) ...81
Observation_Data Input Block (required except for prediction mode)83
Derived_Observations Input Block: Define Simulated Equivalents as Functions of
Model Outputs (optional)...87

Predictions ...88
Prediction_Groups Input Block (optional)...89
Prediction_Data Input Block (required only for prediction mode)............................90
Derived_Predictions Input Block: Define Predictions as Functions of Model Outputs
(optional)..92

Chapter 9: INPUT TO INCLUDE MEASUREMENTS OF PARAMETER VALUES ...93
Prior_Information_Groups Input Block (optional)..94
Linear_Prior_Information Input Block (optional) ...95

Chapter 10: INPUT TO DEFINE WEIGHT MATRICES ..99
Matrix_Files Input Block (optional) ..100

Complete Matrix ..101
Compressed Matrix..103
Array Control Records...104

Array Control Record Input Instructions ...104
Explanation of Variables in the Array Control Records......................................105
Examples of Array Control Records..106

Chapter 11: INPUT TO INTERACT WITH THE PROCESS MODEL INPUT AND
OUTPUT FILES ..107

Construct Process-Model Input Files Using Current Parameter Values......................107
Model_Input_Files Input Block (required) ..108
Template Files..109

Construction...109
Substitution Delimiter..110

Read from Process-Model Output Files...111
Model_Output_Files Input Block (required) ...111

 vi

Instruction Input File for a Standard Process-Model Output File............................113
Instruction Input File for a Non-Standard Process-Model Output File115

An Example Instruction File for a Non-Standard Input File116
Preliminaries ..116

Marker Delimiter, jif..116
Extraction Names...117

The Instruction Set...117
Extraction Type..119
Primary Marker..119
Line Advance, l#..120
Continuation, & ...122
Secondary Marker..122
Whitespace, w..123
Tab, tn ..124

Example Instruction Files ..125
Fixed Reading ..125
Semi-Fixed Reading ..125
Non-Fixed Reading..126

Making an Instruction File...129

Chapter 12: INPUT FOR PARALLEL EXECUTION..131
Using Multiple Processors to Calculate Perturbation Sensitivities131
Parallel Processing Using the Dispatcher-Runner Protocol ..133
Parallel_Control Input Block (Optional) ...136
Parallel_Runners Input Block (Optional) ..138

Chapter 13: EQUATION PROTOCOLS AND TWO ADDITIONAL INPUT FILES...141
Equation Protocols for the UCODE_2005 Main Input File ..141

Example Equations ..141
Derivatives Interface Input File ...143
fn.xyzt Input File..146

Chapter 14: UCODE_2005 OUTPUT FILES ...147
Main UCODE_2005 Output File...148
Data-Exchange Files Produced by UCODE_2005 ..148

Chapter 15: EVALUATION OF RESIDUALS, NONLINEARITY, AND
UNCERTAINTY ...157

RESIDUAL_ANALYSIS: Test Weighted Residuals and Identify Influential
Observations ..159
LINEAR_UNCERTAINTY: Calculate Linear Confidence and Prediction Intervals on
Predictions Simulated with Estimated Parameter Values..164
MODEL_LINEARITY: Test Model Linearity..168

Chapter 16: USE OF OUTPUT FROM UCODE_2005, RESIDUAL_ANALYSIS,
MODEL_LINEARITY, AND LINEAR_UNCERTAINTY ...171

Output Files from UCODE_2005 Forward Mode ...171
Output Files from the UCODE_2005 Sensitivity-Analysis Mode171
Maps from UCODE_2005 Sensitivity Analysis Mode..172

 vii

Tables of Scaled Sensitivities Produced for the UCODE_2005 Sensitivity-Analysis,
Parameter-Estimation, and Prediction Modes ...172
Output Files from the UCODE_2005 Parameter-Estimation Mode............................173
Output Files from RESIDUAL_ANALYSIS for Evaluating Model Fit and Identifying
Influential Observations...181
Output Files from UCODE_2005 Prediction Mode ..181
Output Files from LINEAR_UNCERTAINTY for Predictions184
Output Files from MODEL_LINEARITY for Testing Linearity185

Chapter 17: NONLINEAR CONFIDENCE INTERVALS AND ADVANCED
EVALUATION OF RESIDUALS AND NONLINEARITY..187

Project Flow Using the Advanced Capabilities ...188
Data-Exchange Files for Advanced Capabilities ...194
RESIDUAL_ANALYSIS_ADV: Advanced Residual Analysis196

Execution ...196
User-Prepared Input File (Optional) ..197

Options Input Block (Optional) ...197
RESIDUAL_ANALYSIS_ADV_Control_Data Input Block (Optional)............197
Mean_True_Error Input Block (Optional)...199
Matrix_Files Input Block (Optional) ...200

Output Files for RESIDUAL_ANALYSIS_ADV...200
CORFAC_PLUS: Correction Factors and Data for Analysis of Linearity..................203

Execution ...204
User-Prepared Input File (Required)..205

Options Input Block (Optional) ...205
Correction_Factor_Data Input Block (Required) ..206
Prediction_List Input Block (this block, the next block, or both are needed)207
Parameter_List Input Block (this block, the last block, or both are needed).......209
Matrix_Files Input Block (Optional) ...210

Output Files for CORFAC_PLUS ...211
The Advanced-Test-Model-Linearity Mode of UCODE_2005...................................212
MODEL_LINEARITY_ADV: Advanced Evaluation of Model Linearity213

Execution ...213
Input Files for MODEL_LINEARITY_ADV ...213
Output File for MODEL_LINEARITY_ADV ..215

The Nonlinear-Uncertainty Mode of UCODE_2005...216
Preparatory Steps ...216
Reg_GN_NonLinInt Input Block (Optional)...219
Calculating a Subset of the Interval Limits..220
Nonlinear-Uncertainty Mode Output Files ..221

Chapter 18: REFERENCES...223

Appendix A. CONNECTION WITH THE JUPITER API..227
UCODE_2005..227
The Other Six Codes..229
References..229

 viii

Appendix B: FILES PRODUCED BY USING THE FILENAME PREFIX SPECIFIED
ON COMMAND LINES ...231

Appendix C: EXAMPLE SIMULATION ...235
Calibration Conditions...235
Input Files ..240

UCODE_2005 Main Input File 03.in for Parameter-Estimation Mode...................240
Other Selected UCODE_2005 Input Files ...243

File Listed in the Observation_Data Input Block: flow.obs243
Template File Listed in the Model_Input_Files input block: tc1sen-eq.tpl.........243

Output Files..243
UCODE_2005 Main output file ex1.#03uout-parest ...243
Selected Data-Exchange Files..255

Particle-Path Predictions and Measures of Uncertainty ..257
Objective-Function Surface for the Steady-State Problem with Two Parameters.......260
References..261

Appendix D. PROGRAM DISTRIBUTION AND INSTALLATION263
Distributed Files and Directories ...263
Compiling and Linking..263
Portability...265
Memory Requirements ..265

Appendix E. Comparison with UCODE as Documented by Poeter and Hill (1998)269

Appendix F. ABBREVIATED INPUT INSTRUCTIONS FOR UCODE_2005271
Options Input Block (optional) Chapter 6 ...271
Merge_Files Input Block (Optional) Chapter 6...271
UCODE_Control_Data Input Block (optional) Chapter 6 ..271
Reg_GN_Controls Input Block (optional) Chapter 6 ..272
Reg_GN_NonLinInt Input Block (optional) Chapter 17...273
Model_Command_Lines Input Block (required) Chapter 6..274
Parameter_Groups Input Block (optional) Chapter 7 ..274
Parameter_Data Input Block (required) Chapter 7 ..274
Parameter_Values Input Block (optional) Chapter 7...275
Derived_Parameters Input Block: (optional) Chapter 7 ..275
Observations (omit for prediction mode) Chapter 8..275

Observation_Groups Input Block (optional) ...275
Observation_Data Input Block (required) ...276
Derived_Observations Input Block (optional)...276

Predictions (Omit for all modes but prediction, advanced-test-model-linearity, and
nonlinear-uncertainty) Chapter 8 ..276

Prediction_Groups Input Block (optional)...276
Prediction_Data Input Block (required for three modes)...277
Derived_Predictions Input Block (optional) ..277

Prior_Information_Groups Input Block (optional) Chapter 9277
Linear_Prior_Information Input Block (optional) Chapter 9277
Matrix_Files Input Block (optional) Chapter 10 ...278

Complete Matrix ..278

 ix

Compressed Matrix..278
Array Control Record Input Instructions ...278

Model_Input_Files Input Block (required) Chapter 11 ...278
Template Files Chapter 11...278
Model_Output_Files Input Block (required) Chapter 11 ..279
Instruction Files (required) Chapter 11..279

For a Standard Process-Model Output File..279
For a Non-Standard Process-Model Output File ...279

Parallel_Control Input Block (Optional) Chapter 12...279
Parallel_Runners Input Block (Optional) Chapter 12..280
Equation Protocols (optional) Chapter 13 ...280
Derivatives Interface Input File (optional) Chapter 13..280
fn.xyzt Input File (optional) Chapter 13 ..280

Appendix G. ABBREVIATED INPUT INSTRUCTIONS FOR OTHER CODES........281
RESIDUAL_ANALYSIS (optional) Chapter 15 ..281
RESIDUAL_ANALYSIS_ADV (optional) Chapter 17..282

Options Input Block (optional) ..282
RESIDUAL_ANALYSIS_ADV_Control_Data Input Block (optional).................282
Mean_True_Error Input Block (optional)..282
Matrix_Files Input Block (optional) ..282

CORFAC_PLUS (required) Chapter 17 ..283
Options Input Block (optional) ..283
Correction_Factor_Data Input Block (required)..283
Prediction_List Input Block (this or the next is required)283
Parameter_List Input Block (this or the last is required) ...283
Matrix_Files Input Block (optional) ..283

Figures
Figure 1: Flowchart showing major steps in the UCODE_2005 parameter-estimation

mode using perturbation sensitivities...9

Figure 2. A model input file. The values to be represented by parameters are shaded. ..109

Figure 3. A template file corresponding to the model input file of Figure 2.109

Figure 4. An example model output file in which the numbers of interest are shaded. ..115

Figure 5. A non-standard instruction file that reads the shaded numbers in Figure 4.116

Figure 6. Portion of a model output file illustrating the use of multiple primary markers,
line advance, and semi-fixed reading...121

Figure 7. Portion of a model output file and related lines in the instruction file illustrating
l1 (line 1) preceding a secondary marker...123

 x

Figure 8. Portion of a model output file and related lines in the instruction file illustrating
use of a primary marker and secondary marker on one instruction line..............123

Figure 9. Portion of a model output file and instruction file illustrating use of the white
space instruction...124

Figure 10. Portion of a model output file and instruction file illustrating use of the tab
instruction. ...124

Figure 11. Portion of an instruction line illustrating fixed reading..................................125

Figure 12. Portion of a model output file and instruction file illustrating use of fixed
reading..125

Figure 13. Portion of the model output file and instruction file illustrating use of primary
and secondary markers and non-fixed reading. ...127

Figure 14. Portion of a model output file and instruction file illustrating use of white
space for non-fixed reading. ..128

Figure 15. Portion of a model output file and instruction file illustrating use of a
secondary marker to define the end of a non-fixed reading.................................128

Figure 16. Flow charts with UCODE_2005 runs for (A) RESIDUAL_ANALYSIS, (B)
MODEL_LINEARITY, and (C) LINEAR_UNCERTAINTY............................158

Figure 17. Flowcharts with UCODE_2005 and CORFAC_PLUS runs for
(A) RESIDUAL_ANALYSIS_ADV, (B) MODEL_LINEARITY_ADV, and
(C) nonlinear intervals. ..192

Figure C- 1: (A) Physical system and (B) model grid for test case 1. Pumpage is from two
wells at the designated location. One pumps from aquifer 1, the other from aquifer
2..238

Figure C- 2. Cook’s D calculated for the observations of the transient calibration.........256

Figure C- 3. Plot of the contents of the ex1._rdadv file from the ex1a directory (see
AppendixD) created using GWCHART (Winston, 2000)...................................256

Figure C- 4. Width of 95-percent linear confidence intervals for the predicted advective
transport of a particle in the three coordinate directions at 10, 50, 100, and 175
years without and with a porosity parameter. ..258

Figure C- 5: Plan view showing predicted and true advective-transport paths and particle
locations at travel times10, 50, 100, and 175 years. Simultaneous, 95-percent
confidence intervals are shown calculated using (A) the linear methods of

 xi

LINEAR_UNCERTAINTY and (B) the nonlinear methods of the UCODE_2005
nonlinear-uncertainty mode. ..258

Figure C- 6. Objective-function surface for the steady-state problem with no pumpage
when the six parameters that apply are lumped into two parameters.260

Tables
Table 1: Guidelines for effective model calibration (from Hill and Tiedeman, 2007;

modified from Hill, 1998)..14

Table 2. Statistics for sensitivity analysis provided in UCODE_2005 and the other six
programs documented in this report. ...22

Table 3: Modes of UCODE_2005, the source of the parameter values, commonly used
model output, and input block keywords that control the mode............................30

Table 4. Blocklabels of the main input file for UCODE_2005. ..43

Table 5. Blockformat options. ...44

Table 6. For blockformat TABLE, the format of blockbody after the first line without and
with the optional keyword DATAFILES...45

Table 7. Alternatives for reading data from files...47

Table 8. Additional input files, their purpose, the label of the input block that uses the
file(s), and the chapter that provides detailed input instructions.49

Table 9. Instructions available in UCODE_2005. ...118

Table 10: The sequence of calculations performed by UCODE_2005 given nine
parameters and (A) four or (B) five computer processors of about equal speed. 132

Table 11. Signal files for parallel processing..134

Table 12. Arithmetic operators and functions available for equations.142

Table 13. Derivatives Interface file input instructions...144

Table 14. Input variables available to control UCODE_2005 output..............................147

Table 15. Brief description of data-exchange files produced by UCODE_2005.149

Table 16. Contents of data-exchange files for analysis of model fit.151

 xii

Table 17. Contents of the data-exchange file with extensions _wt and _wtpri, which
contain the weighting for observations and prior information, respectively. Each
file contains a weight matrix and the square-root of a weight matrix.152

Table 18. Contents of the sensitivity analysis data-exchange files, ordered from most to
least commonly used to construct graphs or tables..153

Table 19. Contents of parameter-analysis data-exchange files..154

Table 20. Contents of prediction analysis files produced by UCODE_2005.155

Table 21. Format of data-exchange files with basic data from the model (_dm, _dm_init
and, for predictions, _dmp). Each line is composed of a label followed by data.156

Table 22. Keywords that can occur in the optional RESIDUAL_ANALYSIS input file
fn.rs, where fn is the filename prefix defined on the command line of
UCODE_2005 and RESIDUAL_ANALYSIS. ...161

Table 23. Brief description of RESIDUAL_ANALYSIS input and output files.162

Table 24. Contents of RESIDUAL_ANALYSIS output files. ..163

Table 25. Brief description of input and output files for predictions...............................167

Table 26. Contents of LINEAR_UNCERTAINTY output files.....................................167

Table 27. Brief description of MODEL_LINEARITY input and output files.168

Table 28. Residuals and model-fit statistics printed in the main UCODE_2005 output
files for Sensitivity Analysis and Parameter Estimation modes.176

Table 29. Regression performance measures printed in the main UCODE_2005 output
file for parameter-estimation mode..178

Table 30. Parameter statistics printed in the main UCODE_2005 output file for the
Sensitivity-Analysis and Parameter-Estimation modes.179

Table 31. Using the data-exchange files created by UCODE_2005 that contain data sets
for graphical residual analysis of model fit and sensitivity analysis.180

Table 32. Use of the files created by RESIDUAL_ANALYSIS that contain data sets for
graphical residual analysis. ..182

Table 33. Summary statistics for groups of predictions (after Tonkin and others, 2003).183

Table 34. Project flow for the advanced analyses and nonlinear confidence intervals
documented in Chapter 17, as illustrated through input and output files.190

 xiii

Table 35. Contents of data-exchange files produced and used by the UCODE_2005 and
the codes discussed in Chapter 17. ..194

Table 36. Keywords of the RESIDUAL_ANALYSIS_ADV_Control_Data input block.198

Table 37. Equations from Christensen and Cooley (2005) used to calculate correction
factors for different types of intervals..204

Table 38. The model nonlinearity measures listed in the MODEL_LINEARITY_ADV
main output file. ...214

Table A- 1. JUPITER modules, conventions, and mechanisms used in UCODE_2005.228

Table A-2. JUPITER API modules, conventions, and mechanisms used in the other six
codes documented in this report. ...229

Table B- 1. Files produced by UCODE_2005, RESIDUAL_ANALYSIS,
LINEAR_UNCERTAINTY, and MODEL_LINEARITY named using the fn
prefix specified on the command line, in alphabetic order by letter in the file
extension. ...231

Table C- 1. Parameters defined for test case 1, starting and true parameter values, and the
values estimated using the data with errors added...239

Table C- 2: Parameters defined for test case 1, starting and true parameter values, and the
values estimated using the data without errors added..240

Table C- 3. Nonlinearity measures for the transient problem with 10 defined parameters.259

Table D- 1: Contents of the subdirectories distributed with MODFLOW-2000.264

Table D- 2. The batch files distributed in test-win subdirectory ex1a, in which nine
parameters are defined. ..266

Table D- 3. Batch files distributed in test-win subdirectory ex1b, in which 10 parameters
are defined, including a porosity parameter important to predictions.267

Table E- 1. UCODE_2005 compared to UCODE as described in Poeter and Hill (1998).270

 xiv

UCODE_2005 and Six Other Computer Codes
for Universal Sensitivity Analysis, Calibration,

and Uncertainty Evaluation
Constructed using the JUPITER API

By Eileen P. Poeter1, Mary C. Hill2, Edward R. Banta3, Steffen Mehl2, and Steen Christensen4

Abstract
This report documents the computer codes UCODE_2005 and six post-processors. Together the
codes can be used with existing process models to perform sensitivity analysis, data needs
assessment, calibration, prediction, and uncertainty analysis. Any process model or set of models
can be used; the only requirements are that models have numerical (ASCII or text only) input and
output files, that the numbers in these files have sufficient significant digits, that all required models
can be run from a single batch file or script, and that simulated values are continuous functions of
the parameter values. Process models can include pre-processors and post-processors as well as one
or more models related to the processes of interest (physical, chemical, and so on), making
UCODE_2005 extremely powerful. An estimated parameter can be a quantity that appears in the
input files of the process model(s), or a quantity used in an equation that produces a value that
appears in the input files. In the latter situation, the equation is user-defined.

UCODE_2005 can compare observations and simulated equivalents. The simulated equivalents can
be any simulated value written in the process-model output files or can be calculated from simulated
values with user-defined equations. The quantities can be model results, or dependent variables. For
example, for ground-water models they can be heads, flows, concentrations, and so on. Prior, or
direct, information on estimated parameters also can be considered. Statistics are calculated to
quantify the comparison of observations and simulated equivalents, including a weighted least-

1 International Ground Water Modeling Center and the Colorado School of Mines, Golden, Colorado, USA
2 U.S. Geological Survey, Boulder, Colorado, USA
3 U.S. Geological Survey, Lakewood, Colorado, USA
4 Department of Earth Sciences, University of Aarhus, Aarhus, Denmark

 1

squares objective function. In addition, data-exchange files are produced that facilitate graphical
analysis.

UCODE_2005 can be used fruitfully in model calibration through its sensitivity analysis
capabilities and its ability to estimate parameter values that result in the best possible fit to the
observations. Parameters are estimated using nonlinear regression: a weighted least-squares
objective function is minimized with respect to the parameter values using a modified Gauss-
Newton method or a double-dogleg technique. Sensitivities needed for the method can be read
from files produced by process models that can calculate sensitivities, such as MODFLOW-2000, or
can be calculated by UCODE_2005 using a more general, but less accurate, forward- or central-
difference perturbation technique. Problems resulting from inaccurate sensitivities and solutions
related to the perturbation techniques are discussed in the report. Statistics are calculated and
printed for use in (1) diagnosing inadequate data and identifying parameters that probably cannot be
estimated; (2) evaluating estimated parameter values; and (3) evaluating how well the model
represents the simulated processes.

Results from UCODE_2005 and codes RESIDUAL_ANALYSIS and
RESIDUAL_ANALYSIS_ADV can be used to evaluate how accurately the model represents the
processes it simulates. Results from LINEAR_UNCERTAINTY can be used to quantify the
uncertainty of model simulated values if the model is sufficiently linear. Results from
MODEL_LINEARITY and MODEL_LINEARITY_ADV can be used to evaluate model linearity
and, thereby, the accuracy of the LINEAR_UNCERTAINTY results.

UCODE_2005 can also be used to calculate nonlinear confidence and predictions intervals, which
quantify the uncertainty of model simulated values when the model is not linear. CORFAC_PLUS
can be used to produce factors that allow intervals to account for model intrinsic nonlinearity and
small-scale variations in system characteristics that are not explicitly accounted for in the model or
the observation weighting.

The six post-processing programs are independent of UCODE_2005 and can use the results of other
programs that produce the required data-exchange files.

UCODE_2005 and the other six codes are intended for use on any computer operating system. The
programs consist of algorithms programmed in Fortran 90/95, which efficiently performs numerical
calculations. The model runs required to obtain perturbation sensitivities can be performed using
multiple processors. The programs are constructed in a modular fashion using JUPITER API
conventions and modules. For example, the data-exchange files and input blocks are JUPITER API
conventions and many of those used by UCODE_2005 are read or written by JUPITER API
modules. UCODE-2005 includes capabilities likely to be required by many applications (programs)
constructed using the JUPITER API, and can be used as a starting point for such programs.

 2

Chapter 1: Introduction

Chapter 1: INTRODUCTION
Recent work has clearly demonstrated that inverse modeling and associated methods, though
imperfect, provide capabilities that help modelers take greater advantage of the insight available
from their models and data. Expanded use of this technology requires tools with different
capabilities than those that exist in currently available inverse models. UCODE (Poeter and Hill,
1998) has two attributes that are not jointly available in other inverse models: (1) the ability to work
with any mathematically based model or pre- or post-processor with ASCII or text-only input and
output files, and (2) the inclusion of informative statistics with which to evaluate the importance of
observations to parameters and the importance of parameters to predictions. To address the need to
enhance inverse modeling and associated methods further, the U.S Geological Survey (USGS), in
cooperation with the U.S. Environmental Protection Agency and the International Ground Water
Modeling Center of the Colorado School of Mines, expanded the functionality of UCODE to
produce the computer programs documented in this report:
UCODE_2005,
RESIDUAL_ANALYSIS,
RESIDUAL_ANALYSIS_ADV,
LINEAR_UNCERTAINTY,
MODEL_LINEARITY,
MODEL_LINEARITY_ADV, and
CORFAC_PLUS.

The programs presented in this report are designed to work with existing software packages (called
process models in this work) that use numerical (ASCII or text only) input, produce numerical
output, and can be executed in batch mode. Specifically, the programs were developed to do the
following

(1) Manipulate process-model input files and read values from process-model output files.

(2) Compare user-provided observations with equivalent simulated values derived from the process-
model output files using a number of summary statistics, including a weighted least-squares
objective function.

(3) Use optimization methods to adjust the value of user-selected input parameters in an iterative
procedure to minimize the value of the weighted least-squares objective function.

(4) Report the estimated parameter values.

(5) Calculate and print statistics used to (a) diagnose inadequate data or identify parameters that
probably cannot be estimated, (b) evaluate estimated parameter values, (c) evaluate model fit to
observations, and (d) evaluate how accurately the model represents the processes.

Process models executed by UCODE_2005 can include pre-processors and post-processors as well
as models related to the processes of interest (physical, chemical, and so on), making UCODE_2005
extremely powerful. In general, graphical user interfaces cannot be used directly with
UCODE_2005, but can be adapted with relatively little effort.

 3

Chapter 1: Introduction

The programs documented here are constructed using conventions and modules of the JUPITER
API (See Appendix A). The six other codes are not limited to use with UCODE_2005 – they can be
used with any model that produces the required data-exchange files.

Purpose and Scope

This report documents how to use UCODE_2005, a universal inverse code, and the six other codes
RESIDUAL_ANALYSIS,
RESIDUAL_ANALYSIS_ADV,
LINEAR_UNCERTAINTY,
MODEL_LINEARITY,
MODEL_LINEARITY_ADV, and
CORFAC_PLUS.

These codes can be used with process models from any discipline, so readers of this report may
come from many backgrounds. Different fields tend to have their own problems and literature
related to inverse modeling. The reader is encouraged to become familiar with the literature in their
field.

This report primarily documents the input, output, and execution of UCODE_2005 and the six other
codes. A thorough description of the methods, including equations, guidelines for their use, example
applications, and instructional exercises, are presented in other works, such as Hill and Tiedeman
(2007), Christensen and Cooley (2005), Cooley (2004), and Cooley and Naff (1990).

This report begins with an overview of how UCODE_2005 solves nonlinear regression problems.
The nonlinear regression methods used in UCODE_2005 and guidelines for their use in model
calibration are described by Hill and Tiedeman (2007); a more limited description is available in
Hill (1998). The regression theory is derived largely from Cooley and Naff (1990). Basic ideas from
those works are presented briefly in this report. UCODE_2005 can use sensitivities produced by
other programs or sensitivities it calculates using perturbation methods. Difficulties and solutions
related to sensitivities are discussed.

Chapters 4 through 13 describe, in detail, how to run UCODE_2005 and construct input files.
Chapter 14 describes the UCODE_2005 output files. UCODE_2005 produces data-exchange files
that make results readily available for use by other codes. The data-exchange files are described in
Chapter 14 and listed alphabetically with other program-produced files in Appendix B.

Input and output for the three codes RESIDUAL_ANALYSIS, LINEAR_UNCERTAINTY, and
MODEL_LINEARITY are described in Chapter 15. Analysis of model fit and evaluation of
uncertainty using linear methods is discussed in greater depth by Hill and Tiedeman (2007).

Chapter 16 discussed how to use the output files produced for checking simulated values, sensitivity
analysis, parameter estimation, residual analysis, prediction and prediction uncertainty using linear
methods, and for testing model linearity.

Chapter 17 describes the three codes RESIDUAL_ANALYSIS_ADV,
MODEL_LINEARITY_ADV, and CORFAC_PLUS. It also described how to use UCODE_2005 to
calculate nonlinear confidence intervals.

 4

Chapter 1: Introduction

Results are obtained by running UCODE_2005 and the other codes in appropriate sequences. The
sequences are described using flowcharts and tables that show what files are produced and
consumed at each step. For the six other codes documented in this work, most of the input files are
generated by a preceding step; additional optional files can be provided by the user. The only other
code that always needs a user-defined input file is CORFAC_PLUS. The files produced by the
codes documented in this report are named using a filename prefix defined on command lines and
filename extensions defined within the codes.

Appendix A describes the relation of UCODE_2005 and the other six codes to the JUPITER API.
Appendix B lists the files produced using the filename prefix defined on the command line of each
code. Appendix C includes selected input and output files from a process model, UCODE_2005,
and other codes for a simple problem. Appendix D describes the directory structure of distributed
files. Appendix E compares the capabilities of UCODE_2005 to those of UCODE (Poeter and Hill,
1998) to help UCODE users take advantage of the more recent version. Appendix F provides a
condensed set of input instructions for UCODE_2005. Appendix G provides a condensed set of
input instructions for the other codes with user-generated input files.

The expertise of the authors is in the simulation of ground-water systems, so examples in this report
come from that field. The codes, however, have nearly unlimited applicability to problems with
simulated values that are continuous functions of the parameter values.

Users of the codes presented in this work need to be familiar with the process model(s) and the
simulated processes. In addition, although this report is written at an elementary level, some
knowledge about basic statistics and the application of nonlinear regression is assumed. For
example, it is assumed that the reader is familiar with the terms “standard deviation, variance,
correlation, optimal parameter values, and residual analysis”. Readers who are unfamiliar with these
terms will understand this report better if they use a basic statistic book such as Helsel and Hirsch
(2002) as a reference as they read this report. Useful references and applications are cited in Hill
and Tiedeman (2007), including the illustrative example originally described by Poeter and Hill
(1997). Hill (1998) provides a dated reference list.

Source files for UCODE_2005 and the post-processors are available at the Internet address
http://water.usgs.gov/software/ucode.html/. The program distribution and installation are described
in appendix D.

 5

Chapter 1: Introduction

Acknowledgements

The authors would like to gratefully acknowledge Justin Babendreier of the U.S. Environmental
Protection Agency for his good advice, wisdom, vision, and support for the first author; Richard
Yager of the U.S. Geological Survey in Ithaca, New York for introducing the authors to the idea of
a universal inverse code in the early 1990’s; and John Doherty of Watermark computing and the
University of Queensland whose contributions to the JUPITER API (Banta and others, 2006)
greatly influenced UCODE_2005. Parts of Chapter 11 are modified from Dr. Doherty’s contribution
to the JUPITER API documentation.

We would also like to acknowledge Michael LeFrancois, a student at the Colorado School of Mines
in Golden, Colorado; Laura Foglia, a student at ETH in Zurich, Switzerland; and Charles Heywood
and Claire Tiedeman of the U.S. Geological Survey in Grand Junction, Colorado and Menlo Park
California, respectively, for providing ideas and testing the programs using their data sets. Claire
Tiedeman’s considerable effort deserves special note. Beta testing programs is always frustrating
and these colleagues brought many good ideas and good humor to the process.

 6

Chapter 2: Overview and Program Control

Chapter 2: OVERVIEW AND PROGRAM CONTROL
This section presents an overview of commonly used aspects of UCODE_2005,
RESIDUAL_ANALYSIS, LINEAR_UNCERTAINTY, and MODEL_LINEARITY.

Introduction to UCODE_2005 Input and Output Files

The most commonly used UCODE_2005 input files are the main input file and the
template, instruction, and derivatives-interface input files.

- The UCODE_2005 main input file is composed of data input blocks. For
convenience, the input blocks may read data from other files. Each data block serves
a specific purpose; for example, the Options and UCODE_Control_Data input blocks
provide information about what is to be calculated by UCODE_2005.

- Template files are used to construct process-model input files using current
parameter values. One or more template files are used for each UCODE_2005 run.

- Instruction files are used to extract, or read, values from process-model output files.

- The optional derivatives interface file enables UCODE_2005 to use sensitivities
produced by other programs.

Keywords are used to identify most of the data in these files. This chapter refers to a few
of the keywords to provide easy reference for users. All input blocks of the main input
file, other input files, and keywords are described completely in Chapters 5 to 13 of this
report.

The process model(s) executed by UCODE_2005 can include one process model or a
sequence of models, and pre- and post-processors. These process models and processors
need to be set up to run in batch mode.

The most commonly used UCODE_2005 output files are the main output file and data-
exchange files. Here, the data-exchange files are described briefly.

Data-exchange files are computer data files produced by a computer program primarily
for use by another program. The other program might be used by the modeler to generate
graphs; for example, GW_CHART (Winston, 2000) or Microsoft’s Excel. Alternatively,
the program may use the data in calculations; for example, UCODE_2005 generates data-
exchange files that are used by the other programs documented in this report.

Data-Exchange files contain data with little or no explanatory information. Most of the
data-exchange files documented in this report contain one header line followed by

 7

Chapter 2: Overview and Program Control

columns of data. The header line contains labels for the columns of data in the file. Some
of the columns of data contain identifying information such as an observation name or an
integer value that can be used to control the symbol used in the graph. The data-exchange
files are described in detail in Chapters 14 and 16 and listed in appendix B.

Data-exchange filenames begin with a prefix defined on the command lines, as discussed
below. To make them distinctive, data-exchange filenames end with an extension that
begins with an underscore. For example, ex1._ws is the name of a data-exchange file
produced by an example distributed with UCODE_2005. The characters following the
underscore reflect the file contents.

The data-exchange files are derived directly or in form from the JUPITER API
(Appendix A).

Flowchart for UCODE_2005 Used to Estimate Parameters

A flowchart describing UCODE_2005 operation when it is used to estimate parameters is
presented in figure 1.

Often parameters are estimated only after using starting parameter values to evaluate
model fit and perform a sensitivity analysis to identify insensitive and correlated
parameters. Execution of UCODE_2005 for these purposes proceeds through a subset of
the steps used to estimate parameters.

Flowcharts for using UCODE_2005 with the other six codes documented in this report
are presented in Chapters 15 and 17.

As shown in Figure 1, parameter-estimation begins by defining what is to be
accomplished using data from the Options and UCODE_Control_Data input blocks. In
the UCODE_Control_Data input block, keyword “Optimize” is used to indicate that
parameters are to be estimated.

Next, process-model input files are created using the starting parameter values. This is
accomplished by substituting the starting parameter values from the Parameter input
blocks into the template files listed in the Model_Input_Files input block. UCODE_2005
then performs one execution of the process model(s) based on commands provided by the
user in the Model_Command_Lines input block.

Next, for each observation, UCODE_2005 uses information from the
Model_Output_Files input block and Instruction input files to read one or more values
from the process-model output files. These values are used to calculate an equivalent
simulated value to be compared to the observations defined in the Observation input
blocks. Equivalent simulated values are called simulated values in the remainder of this
discussion. Examples of calculating simulated values from values read from the output
file(s) are described in Chapter 8. The simulated values calculated at this step of each
parameter-estimation iteration are called unperturbed simulated values because they are
calculated using the starting parameter values or, in the case of later iterations, the

 8

Chapter 2: Overview and Program Control

Calculate central-difference perturbation sensitivities [Parameter Blocks].
Use them to calculate and print statistics and generate data_exchange files.

YES

Initialize problem [Options, UCODE_Control_Data]

Create input files for the process model(s) using starting or updated parameter
values [Model_Input_Files, Template files, Parameter blocks]

Execute process model(s) [Model_Command_Lines]

Extract values from process model output files [Model_Output_Files, Instruction
files] and calculate simulated equivalents for observations [Observation blocks].

Start perturbation-sensitivity loop, parameter# = 1

pa
ra

m
et

er

 =
 p

ar
am

et
er

+

1

i i
te

ra
tio

n#
 =

 i
te

ra
tio

n#
 +

 1

Perturb this parameter and recreate the input files for the process
model(s) [Parameter blocks, Model_Input_Files, Template files]

Execute process model(s) [Model_Command_Lines]

Unperturb this parameter……….

Extract values from process model output files [Model_Output_Files,
Instruction files] and calculate forward-difference perturbation

sensitivities for this parameter [Parameter blocks]

Update parameter values using modified Gauss-Newton method

Converged or maximum number of
iterations? [Reg_GN_Controls]

YES

STOP

Last parameter? NO

Start parameter-estimation iterations, iteration# = 1

NO

START

Figure 1: Flowchart showing major steps in the UCODE_2005 parameter-estimation

mode using perturbation sensitivities. Selected input blocks of the UCODE_2005
main input file and other input files are listed in brackets; ‘Parameter blocks’
represents four input blocks used to define parameters, ‘Observation blocks’
represents three input blocks used to define observations. Iteration# is the
parameter-estimation iteration number; parameter# is the parameter number. Gray
shading is used to emphasize loops.

 9

Chapter 2: Overview and Program Control

updated parameter estimates. Each observation minus the associated unperturbed
simulated value is called a residual. The residuals are squared, weighted, and summed to
produce the sum-of-squared-weighted residuals objective function, where the weighting
is defined in the Observation input blocks. The objective function measures how well the
model fits the observations. The goal of regression is to find parameter values that
produce the smallest value of the objective function. The regression method in
UCODE_2005 uses sensitivities to find those parameter values. (Hill and Tiedeman,
2007, eq. 3-1 and 3-2; Hill, 1998, eq. 1 and 2).

Sensitivities are the derivatives of the simulated values with respect to the parameters,
and can be obtained in two ways.

(1) As shown in Figure 1, observation sensitivities can be calculated by UCODE_2005
using perturbation methods. For forward-difference perturbation, the process model(s)
are executed once for each parameter. For each execution, one parameter value is
increased slightly (perturbed) from its unperturbed value, while the other parameter
values are not perturbed. The differences between the resulting perturbed simulated
values and the unperturbed simulated values are used to calculate forward-difference
sensitivities, as described in Chapter 3. Backward-differences are calculated similarly
except that the parameter values are decreased slightly. Alternatively, the process
model(s) can be executed a second time for each parameter with the parameter values
perturbed in the opposite direction and sensitivities can be calculated using more accurate
central differences. The authors’ experience indicates that this added accuracy is rarely
needed to perform parameter-estimation iterations, though it is useful for calculating final
statistics (see below).

 (2) Observation sensitivities can be calculated by process model(s) and read by
UCODE_2005 from process-model output file(s). For example, when the Observation
and Sensitivity Processes are active in MODFLOW-2000, unscaled sensitivities needed
by UCODE_2005 can be printed to the MODFLOW-2000 output file with suffix _su
which can be read by UCODE_2005 as a Standard File (see Chapter 11). For process-
model sensitivities, the sensitivity loop Figure 1 is replaced by a single execution of the
process model(s) and a Derivatives-Interface input file is needed.

A combination of process-model and perturbation sensitivities also can be used.

Once the residuals and the sensitivities are calculated, they are used to perform one
parameter-estimation iteration. UCODE_2005 is distributed with the modified Gauss-
Newton nonlinear regression parameter-estimation method described by Hill and
Tiedeman (2007), which was modified from the method described by Hill (1998) and
Cooley and Naff (1990). UCODE_2005 also provides the following additional ways to
improve regression performance. First, dynamic omission of insensitive parameters can
be used so that insensitive parameters do not disrupt regression performance. Second,
unique criteria for each parameter can be specified that govern the maximum fractional
amount that the parameter value can change in one parameter-estimation iteration.
Smaller values may be useful for insensitive parameters. Third, a quasi-Newton or trust

 10

Chapter 2: Overview and Program Control

region modification of the Gauss-Newton method can be used to reduce the number of
parameter-estimation iterations needed and, in some cases, achieve successful regressions
(Cooley and Hill, 1992; Dennis and Schnabel, 1996; Mehl and Hill, 2003).

The last step of each parameter-estimation iteration involves comparing two types of
quantities against convergence criteria: (1) changes in the parameter values, where a
unique criterion can be specified for each parameter, and (2) the change in the sum-of-
squared-weighted residuals. If the changes are too large and the maximum number of
parameter-estimation iterations has not been reached, the next parameter-estimation
iteration is executed. If the changes are small enough, parameter estimation converges. If
convergence is achieved because the changes in the parameter values are small enough
(see 1 above), the parameter values are more likely to be the optimal parameter values –
that is, the values that produce the best possible match between the simulated and
observed values, as measured using the weighted least-squares objective function. If
convergence is achieved because the changes in the objective function are small, it is less
likely that the estimated parameters are optimal and, generally, further analysis is needed.

If parameter estimation does not converge and the maximum number of iterations has not
been reached, the updated parameter values are substituted into the template files, and the
next parameter-estimation iteration is performed.

When parameter estimation converges or the maximum number of iterations has been
reached, sensitivities are calculated using the more accurate central-difference method.
The additional accuracy is needed to achieve a sufficiently accurate parameter variance-
covariance matrix (Hill and Tiedeman, 2007, eq. 7-1; Hill, 1998, eq. 26), from which a
number of useful statistics are calculated. If parameter-estimation converged, the final
parameter values are considered to be optimized.

Brief Description of the Six Other Codes

The six other codes described in this documentation are
RESIDUAL_ANALYSIS,
RESIDUAL_ANALYSIS_ADV,
LINEAR_UNCERTAINTY,
MODEL_LINEARITY,
MODEL_LINEARITY_ADV, and
CORFAC_PLUS.

It is always useful to execute RESIDUAL_ANALYSIS when executing UCODE_2005.
The analysis of model fit and leverage statistics provided are important to evaluating
model fit to the observations. Often UCODE_2005 and RESIDUAL_ANALYSIS are
both executed from one batch file.

The additional statistical and graphical analyses provided by
RESIDUAL_ANALYSIS_ADV also is always useful, however, it can only be included
in the batch file with the UCODE_2005 run under selected circumstances.

 11

Chapter 2: Overview and Program Control

Predictions are often the ultimate focus of a modeling study. LINEAR_UNCERTAINTY
can be used to calculate linear confidence and prediction intervals that approximate the
uncertainty in predictions simulated using the process models and optimized parameter
values. The likelihood that the intervals are affected by model nonlinearity can be
evaluated using the post-processing program MODEL_LINEARITY and
MODEL_LINEARITY_ADV.

It can be useful to calculate the predictions and their scaled sensitivities and linear
confidence intervals throughout the calibration project to gain insight about how different
conceptual models affect the predictions, the parameters important to the predictions, and
the uncertainty of the predictions. In many circumstances the extra computational burden
is minimal.

UCODE_2005 can also be used to calculate nonlinear confidence and predictions
intervals, which quantify the uncertainty of model simulated values when the model is
not linear. CORFAC_PLUS can be used to produce factors that allow intervals to account
for model intrinsic nonlinearity and small-scale variations in system characteristics that
are not explicitly accounted for in the model or the observation weighting.

Parallel-Processing Capabilities

UCODE_2005 is distributed with a parallel-processing capability that can substantially
reduce execution times when calculating sensitivities or performing parameter estimation.
In the flowchart shown in figure 1, the parallelization involves the sensitivity loop when
sensitivities are calculated using perturbation methods; the process model runs are
assigned to different processors for simultaneous execution. The parallel processing
capability can take advantage of any number of processors linked using a local area
network. The user needs to be able to access the computers and execute a program on
them.

The parallel-processing capability is enabled in the executable file included in the
UCODE_2005 distribution. To use this capability, two optional input blocks are needed
in the main input file, as described Chapter 12 of this report.

 12

Chapter 3: Inverse Modeling Considerations

Chapter 3: USER CONSIDERATIONS
Calibration of models of complex systems commonly is hampered by problems of
parameter insensitivity and extreme correlation caused by data that are insufficient to
estimate the parameters defined. Regression methods are imperfect tools that nevertheless
can be very helpful in model calibration. To help modelers take advantage of these useful
methods, this chapter provides a brief discussion of some key issues related to using
sensitivity analysis and nonlinear regression methods to calibrate and analyze complex
models. Chapter 16 of this report provides additional ideas in its discussion of using the
output from UCODE_2005 and the three post-processors. More thorough discussions are
provided by Hill and Tiedeman (2007) and Hill (1998).

The first section of this chapter lists a set of guidelines that can be thought of as
organized common sense for model calibration with some new perspectives and statistics.
The guidelines are discussed in detail in Hill and Tiedeman (2007); a previous version is
in Hill (1998). The following sections discuss issues from the guidelines that are often of
concern: parameterization, starting parameter values, perturbation sensitivity calculation
and accuracy, weighting, sensitivity analysis, coping with a poorly posed model,
alternative models, and residual analysis. A final section presents definitions of some
terms related to confidence and prediction intervals.

Guidelines for Effective Model Calibration and Analysis using
Nonlinear Regression

There are many opinions about how nonlinear regression can best be applied to the
calibration of complex models, and there is not a single set of ideas that is applicable to
all situations. It is useful, however, to consider one complete set of guidelines that
incorporates many of the methods and statistics available in nonlinear regression, such as
those suggested and explained by Hill and Tiedeman (2007) and listed in table 1. This
approach has been used successfully even with exceptionally complex systems; for
example, see D’Agnese and others (1997, 1999), Eberts and George (2000), and other
reports listed in Chapter 15 of Hill and Tiedeman (2007). Table 1 is presented to
introduce and remind the reader of the guidelines. Those who wish to use these
guidelines are encouraged to read the complete discussion.

Parameterization

Parameterization is the process of identifying the aspects of the simulated system that are
to be represented by estimated parameters. Most data sets only support the estimation of
relatively few parameters. In most circumstances, it is useful to begin with simple
models. Complexity can then gradually be incorporate as warranted by the complexity of
the system, the inability of the model to match observed values, and the importance of the
complexities to the predictions of interest (Guideline 1 of Table 1).

 13

Chapter 3: Inverse Modeling Considerations

To obtain an accurate model and a tractable calibration problem, data not used directly as
observations in the regression need to be incorporated into model construction (Guideline
2 of Table 1). For example, in ground-water systems, it is important to respect and use
the known hydrogeology, and it is unacceptable to add features to the model to improve
model fit if they contradict known hydrogeologic characteristics.

During calibration it may not be possible to estimate all parameters of interest using the
available observations. In such circumstances, consider the suggestions of the section
“Common Ways of Improving a Poor Model” in this report.

Table 1: Guidelines for effective model calibration (from Hill and Tiedeman, 2007;

modified from Hill, 1998).
 Model Development
 1. Apply the principle of parsimony (start simple; build complexity slowly)
 2. Use a broad range of information to constrain the problem
 3. Maintain a well-posed, comprehensive regression problem
 4. Include many types of observations in the regression
 5. Use prior information carefully
 6. Assign weights that reflect errors
 7. Encourage convergence by improving the model and evaluating the observations
 8. Consider alternative models
Test the Model
 9. Evaluate model fit
10. Evaluate optimized parameters
Potential New Data
11. Identify new data to improve model parameter estimates and distribution
12. Identify new data to improve predictions
Prediction Accuracy and Uncertainty
13. Evaluate prediction uncertainty and accuracy using deterministic methods
14. Quantify prediction uncertainty using statistical methods

Starting Parameter Values

Nonlinear regression begins with starting parameter values. There are three aspects of
these starting values that are important.

1. In UCODE_2005, depending on the option chosen, the starting parameter values are

used to calculate residuals, scaled and composite scaled sensitivities, and parameter
correlation coefficients. These statistics are important for diagnosing potential
problems with the model and the regression and for determining ways of addressing
these problems. In most circumstances, it is useful to evaluate these statistics
regularly as the model changes during the calibration process. The statistics printed
by UCODE_2005 are discussed in Chapter 16 of this report, in Hill and Tiedeman
(2007), and in part, in Hill (1998). Hill and Tiedeman (2007) include the equations

 14

Chapter 3: Inverse Modeling Considerations

for the statistics used in this documentation and a discussion of how model
nonlinearity affects the analysis.

2. It is sometimes advantageous to change the starting parameter values. As calibration
proceeds, parameter values that produce a better model fit than the original starting
parameter values are estimated by regression. Using the estimated parameter values to
update the original starting parameter values used by UCODE_2005 in subsequent
regression runs can reduce execution time because, commonly, fewer regression
iterations are required when the starting parameter values produce a better model fit.

3. The starting parameter values can be used to test for the uniqueness of optimized
parameter values; that is, the values at which the regression converges. This is
accomplished by initiating the regression with different sets of starting values. If the
sum of squared weighted residuals achieved is similar and resulting parameter
estimates differ from each other by values that are small relative to their calculated
standard deviations, the optimization is likely to be unique. If this is not the case, the
optimal parameter values are not unique. Lack of uniqueness can be caused by a
number of factors. If caused by local minima, it may be possible to examine the
objective function value achieved by the different sets of parameter estimates and
identify a global minimum as the set of estimated parameter values that is both
reasonable and produces the smallest objective-function value. If non-uniqueness is
caused by extreme parameter correlation, the objective-function value for each
optimized set of parameters is likely to be similar and at least one pair of parameters
will have a correlation coefficient very close to 1.0 or -1.0. This is demonstrated
clearly by the simple test case presented by Poeter and Hill (1997). Difficulties with
using correlation coefficients are discussed by Hill and Østerby (2003).

Perturbation Sensitivities

UCODE_2005 uses either sensitivities calculated by the process model or sensitivities
calculated by UCODE_2005 using perturbation methods. This section describes how
UCODE_2005 calculates perturbation sensitivities, how their accuracy can be improved,
and how to address the common problem of calculated sensitivities being equal to zero
when they should not be zero.

Calculation

A sensitivity equals the derivative of one simulated value with respect to one parameter,
b. If the simulated value is the simulated equivalent to an observation, y’, the sensitivity
can be expressed as, ∂y’/∂b. If the simulated value is a prediction, the sensitivity is
generally expressed as ∂z/∂b. For simplicity, sensitivities for simulated equivalents to
observations are discussed in the rest of this section. However, the comments apply to
sensitivities for predictions as well.

Sensitivities serve two functions in inverse modeling. First, they are useful indicators of
both the importance of the observation to the estimation of the different parameters and
the importance of each parameter to the simulated values. Second, they are needed by the
modified Gauss-Newton method to determine parameter values that produce the best fit,

 15

Chapter 3: Inverse Modeling Considerations

as measured by a weighted least-squares objective function. For additional discussion
about sensitivities and their utility, see Hill and Tiedeman (2007, Chapter 4 and
Guideline 3) or Hill (1998, eq. 8-13 and Guideline 3).

In UCODE_2005, sensitivities can be calculated approximately using either a forward-,
backward-, or central-difference approximation. For forward differences, each sensitivity
(one for each observation with respect to each parameter) is calculated as:

Δy’ = y’(b + Δb) - y’(b) (1)
Δb (b + Δb) - (b)

where:
b a vector (can be thought of as a list) of the estimated parameter values;

y’(b) the value of the simulated value, y’, calculated using the parameter values in b;

Δb a vector in which all values are zero except for the one that corresponds to the

parameter for which sensitivities are being calculated;

y’(b + Δb) the value of y’ calculated using the parameter values in (b + Δb);

Δy’ the change in the simulated value caused by the parameter value change, Δb;

Δb the nonzero value in Δb, which is called the perturbation for this parameter;

The derivative is said to be “evaluated for the parameter values in b”. For nonlinear
problems, this is important because the sensitivities can be different for different values
in b.

The size of the perturbation, Δb, is calculated as a user-specified factor (PerturbAmt)
times the unperturbed parameter value. To calculate backward instead of forward
differences, specify a negative factor. If the unperturbed-parameter value equals zero
during the regression, the perturbation is calculated using the starting parameter value. If
the starting parameter value equals zero, a value of 1.0 is used to calculate Δb, so that Δb
= PerturbAmt in that circumstance. Calculating the sensitivities for each parameter using
either forward or backward differences requires that the process model be run once for
the unperturbed parameters and an additional time for each parameter being adjusted. The
flowchart of figure 1 includes the steps by which forward-difference sensitivities are
calculated.

Central-difference sensitivities are more accurate than forward-difference sensitivities,
but require two runs of the process model(s): in one the perturbed parameter is increased,
in one it is decreased. Execution time is thus increased by about a factor of two. The
central-difference sensitivities are calculated as:

Δ2 y’ = y’(b + Δb) - y’(b - Δb) (2)
Δ2 b (b + Δb) - (b - Δb)

 16

Chapter 3: Inverse Modeling Considerations

where Δ2 is used to denote the central-difference. Again, the derivative is said to be
“evaluated for the parameter values in b”. The added accuracy of the central-difference
approximation is needed when the variance-covariance matrix is calculated. It rarely is
needed for the regression if the suggestions described in the following section are
followed, but UCODE_2005 allows use of central-difference sensitivities in the
regression if selected by the user.

Accuracy

The accuracy of the perturbation sensitivities calculated by UCODE_2005 depends on
the precision of the extracted simulated values, the magnitude of the simulated values,
and the number of digits used for the substituted parameter values.

For example, consider the problem in Appendix C, which uses the process model
MODFLOW-2000 (Harbaugh and others, 2000) with the preconditioned conjugate-
gradient (PCG2) solver (Hill, 1990) with HCLOSE=1x10-5 and RCLOSE=1x10-5. For
this problem, with hydraulic heads typically in the 100’s, heads from this partially
double-precision model are expected to be accurate to about seven significant digits (four
to the right of the decimal point). The _os file produced by MODFLOW2000 provides
seven significant digits for all simulated equivalents to observations, which reflects the
likely accuracy of the simulated heads. It is probably more digits than are warranted for
the simulated drawdowns and streamflow gains, which are calculated by subtracting
heads and flows. However, the additional digits do not tend to deteriorate the accuracy of
the perturbation sensitivities.

The parameter values substituted into the template files have fifteen or 16 significant
digits, depending on the value. It is important to have sufficient digits, and this certainly
is enough. Sensitivities calculated by UCODE_2005 using forward differences with
PerturbAmt = 0.01, or one percent of the parameter value, and central differences with
PerturbAmt=0.01 and 0.001 were compared with the more accurate sensitivity-equation
sensitivities calculated by the Sensitivity Process of MODFLOW-2000 (Hill and others,
2000) using the PCG2 solver with HCLOSE = RCLOSE = 1x10-5. For this situation, the
forward sensitivities were accurate to about three digits to the right of the decimal point.
The central difference sensitivities with PerturbAmt=0.01 were a bit better, and those
with PerturbAmt=0.001 were worse. Such differences often do not affect estimated
parameter values. This is demonstrated by several of the problems considered by Yager
(2004). Problems for which there was a difference tended to be very nonlinear and in
such cases perturbation sensitivities sometimes produced better results. Inaccurate
sensitivities can produce enough error in calculated parameter correlation coefficients
(Hill and Østerby, 2003) to make these statistics unreliable indicators of extreme
parameter correlation.

The accuracy of the perturbation sensitivities sometimes can be improved by careful
consideration of the number of significant figures used for both the simulated values and
the parameter substitution. The simulated values and parameter values of equations 1 and
2 need sufficient precision to maintain a reasonable number of significant digits after the

 17

Chapter 3: Inverse Modeling Considerations

subtraction. Use of more digits than are precise given the process model, however, may
not improve accuracy. Given the use of single and double precision variables in the
process model and the accuracy of the computer, the additional figures may be
meaningless, in which case accuracy of the perturbation sensitivities would not be
improved.

Opportunities sometimes exist to improve the accuracy of the simulation. In ground-
water flow problems, for example, one such situation occurs when the simulated
hydraulic heads are in the 100's or 1000's. Often a simple change in datum results in
simulated values being consistently in the 10's, which allows more of the available
significant figures to be used to improve the accuracy of the solution. For example, the
accuracy of the problem in Appendix C could be improved by raising the datum by
100m. To accomplish this, 100 m would need to be subtracted from the hydraulic-head
observations, the river elevation, and the elevation of the layers. That example also might
benefit from using more significant digits for the substituted parameter values. In
transport simulations, similar improvements may be attainable by scaling, log-
transforming, or using special weighting schemes for the concentrations (For example,
see Barth and Hill, 2005a,b). Often, precision is improved by log-transforming
parameters used to calculate hydraulic-conductivity and storage properties.

For nonlinear parameters, the accuracy of the sensitivities also depends on the size of the
parameter perturbations. Determining the appropriate size can be problematic.
Theoretically, the perturbation sensitivities approach the exact sensitivities as the
perturbation size decreases. However, perturbations that are too small can result in
negligible differences in the simulated values or differences that are obscured by round-
off error. A perturbation that is too large, however, can yield inaccurate sensitivities for
nonlinear parameters because it does not capture the slope of the function at a specific set
of parameter values. The user needs to be aware of the potential difficulties and may
need to experiment with different perturbation sizes.

Even in nonlinear problems, the sensitivities for some parameters can be linear. That is,
the same sensitivity is calculated for all perturbation amounts large enough to produce
sufficient significant digits in the simulated values, given that the values of the other
parameters do not change. For example, in ground-water problems, recharge parameters
have linear sensitivities if the forward problem is linear (the system is confined and all
boundary conditions are linear). For such parameters, perturbations generally can be
large, and inaccurate sensitivities result only when the perturbation is so small that the
numerators of equations 1 and 2 are dominated by round-off error.

Weighting Observations and Prior Information

Observations and prior information need to be weighted so that (1) the weighted residuals
are all in the same units so that they can be squared and summed in the least-squares
objective function and (2) to reflect the relative accuracy of the measurements (Hill and
Tiedeman, 2007, Chapter 3; Hill, 1998, p. 4, 13-14, 45). For a valid regression, weighting
needs to be proportional to the inverse of the variance-covariance matrix of the errors in
observations and prior information [Draper and Smith, 1998, p. 222]. Hill and Tiedeman

 18

Chapter 3: Inverse Modeling Considerations

(2007) and Hill (1998) suggest that the user attempt to define weighting that equals the
inverse of the error variance-covariance matrix. The following discussion presumes that
the weighting follows this suggestion.

When the observation or prior information errors are independent of one another, the
weight matrix is diagonal. Each non-zero element of the diagonal weight matrix equals
one over the variance of the error. Variances are rarely easy for users to understand, so
UCODE_2005 allows users to specify one of the following: variance, standard deviation,
or coefficient of variation. The weight or square-root of the weight also can be specified.
This allows the statistic that makes most sense in a given situation to be used in the input
file. For example, streamflow observation error may be most readily understood based on
a percent of the observed value, which can be most easily expressed as a coefficient of
variation of, for example, 0.20, or 20 percent. Hydraulic-head observation error is more
often understood as some number of feet, meters, or centimeters, and is most easily
expressed as a standard deviation of, for example, 0.3 meters. More detailed information
about determining values for weights is provided in Hill and Tiedeman (2007, Guideline
6) or Hill (1998, p. 46-49).

When a coefficient of variation is specified, the weight ωi ideally would be calculated
using the true value of the observed quantity or prior information, so that,

 ()2~
1

η
ω

+
=

ii

i
ycvi

 (3)

where i identifies the observation or prior information, cvi is the coefficient of variation,
iy~ is the true value, and η is a constant that can be added to control how much small

values of influence the results. The value of is, in general, unknown and is
approximated using either the observed value [for example, Keidser and Rosbjerg, 1991]
or the simulated value [for example, Wagner and Gorelick, 1986; Barlebo and others,
1998]. Anderman and Hill (1999) compare the two approaches and show that using
observed values tends to produce biased parameter estimates. In UCODE_2005 an
observation for which the coefficient of variation is used to define the weighting can
either (1) use observed values in equation 3 and η=0.0 or (2) use observed values at first
and use simulated values as regression approaches a solution, with η specified by the
user.

iy~ ~
iy

One approach is to divide the objective function into terms that include subsets of the
observations and prior information. For each subset, the weighting can be conceptualized
as a multiplicative factor times a matrix (Gailey and others, 1991; Barlebo and others,
1998). UCODE_2005 provides the ability to define a weight multiplication factor for any
user-defined group of observations or prior information.

In UCODE_2005, special functionality is provided if the objective function is divided
into two terms: a term that includes observations and prior information with weights that
are never calculated with simulated values and a term that includes observations with

 19

Chapter 3: Inverse Modeling Considerations

weights that can be calculated with simulated values. In ground-water models, the first
term often includes head observations and the second term often includes concentration
and flow observations. This produces equations 4 to 6.

The variance-covariance matrices for the errors in observations and prior information for
the two terms of the objective function become

 V1= σ1
2 U1

 V2= σ2
2 U2

 (4)

The subscripts 1 and 2 indicate the two terms of the objective function. V1 and V2 are the
variance-covariance matrices of the errors associated with the two sets of data, σ1

2 and
σ2

2 are the multiplicative factors, and U1 and U2 are matrices. If U1 and U2 are defined to
approximate V1 and V2, the expected value of σ1

2 and σ2
2 is 1.0. The objective function,

S(b), can be expressed as

S(b) = (1/σ1
2) S1(b) + (1/σ2

2) S2(b) (5)

Typically, this equation is rearranged to

S’(b) = S1(b) + (σ1
2/σ2

2) S2(b) = S1(b) + λr S2(b)

where λr is called the scaling factor. To adjust the weighting to ensure the desirable result
that the different subsets of data have, on average, equal variance, the scaling factor can
be calculated as:

 λr = (σ1
2/σ2

2) =

()

()
2

2

1

1

n
bS

n
bS

r

r

 (6)

The subscript r identifies the parameter-estimation iteration. Variables with this subscript
change each parameter-estimation iteration. n1 is the number of items in the first term of
the objective function and n2 is the number in the second term. Care needs to be taken
that the resulting weighting is reasonable (Guideline 6; Hill and Tiedeman, 2007; Hill,
1998). This is aided by defining U1 and U2 to approximate V1 and V2. In this case, λr
values that differ too much from 1.0 indicate that the final weighting may be unrealistic.
If any weights are calculated using simulated values, the scaling factor is initially set to
1.0 and is subsequently calculated with equation 6 at each parameter-estimation iteration.

The weight matrix is full when there are non-zero covariances, which are the off-
diagonals of the error variance-covariance matrix (Hill and Tiedeman, 2007, eq. 3-2; Hill,
1998, p.7, eq. 2). A diagonal weight matrix is strictly valid only if the measurement errors
are independent. UCODE_2005 can accommodate a diagonal or full weight matrix for
any set of observations or prior information, except for groups for which the weighting is
defined using simulated values. Thus, in equation 4, U1 can be a full matrix; U2 is always

 20

Chapter 3: Inverse Modeling Considerations

a diagonal matrix. There are two issues to consider related to full weight matrices. The
first is that many common types of correlated errors can be addressed by differencing of
the data. The second is whether a full weight matrix is important in practice.

In some circumstances differencing methods can be used to address commonly
encountered error correlation so that a diagonal weight matrix applies. For example,
hydraulic heads measured over time at a single well that has a poorly determined
elevation can be represented as changes from the first measured head. A second example
is for heads measured at wells that have been surveyed relative to one another. One well
can be defined as the reference and that value subtracted from the others. In both
situations, the error in elevation is eliminated using differencing. For more discussion
of differencing, see Hill and Tiedeman (2007, guideline 6) and Hill (1998, guideline 6).

The importance of using a full weight matrix even in the presence of correlated
measurement errors is questionable. A published study by Christensen and others (1998)
and unpublished numerical investigations by Mary C. Hill (U.S. Geological Survey,
written communication, 1996) indicate that typical error correlations have little effect on
nonlinear regression, residual analysis, or uncertainty analysis. This, however, is a
preliminary conclusion drawn from partial, limited investigations. Further work remains
to determine the importance of using full weight matrices in problems typical of ground-
water investigations. It is hoped that the ability of UCODE_2005 to represent full weight
matrices will enhance understanding of this issue.

Sensitivity Analysis

Sensitivity analysis is used to explore the relations between observations, parameters, and
predictions produced by the constructed model. As discussed by Saltelli and others
(2000) and Hill and Tiedeman (2007), sensitivity analyses can be local, using sensitivities
calculated for a given set of parameter values. Sensitivity analysis can also be global,
using values simulated using many sets of parameter values. UCODE_2005 and the three
postprocessors include a number of capabilities for local sensitivity analysis and one
method for global sensitivity analysis, as shown in Table 2.

 21

Chapter 3: Inverse Modeling Considerations

Table 2. Statistics for sensitivity analysis provided in UCODE_2005 and the other six
programs documented in this report.

Relation explored Statistics
Local sensitivity analysis

Observations-Parameters Dimensionless scaled sensitivities (dss)
Composite scaled sensitivities (css)
Parameter correlation coefficients (pcc)
Leverage
Parameter confidence intervals
Cook’s D
DFBetas

Parameters-Predictions Prediction scaled sensitivities (pss)
Observations-Parameters-Predictions Prediction confidence intervals

Global sensitivity analysis
Observations-Parameters Results of investigate-objective-function mode

Local sensitivity analysis has the advantage of requiring much less execution time than
global sensitivity analysis. Local sensitivity analysis is often conducted routinely during
model calibration to identify insensitive and extremely correlated parameters. For
example, during calibration, parameter correlation coefficients can be used to indicate
whether the observations provide enough information to estimate each of the defined
parameters. This can then be used to decide which parameters to estimate, as discussed
by Poeter and Hill (1997) and Hill and Østerby (2003). When considering an optimal set
of parameter values, parameter correlation coefficients can be used to determine if
optimized parameter values are likely to be unique.

Scaled sensitivities are useful measures of the information provided by observations for
many types of parameters, but not for parameters such as the hydraulic head at constant-
head boundaries that would change with a datum change (Hill and Tiedeman, 2007,
Chapter 4.4.1).

UCODE_2005 provides optional dynamic omission of insensitive parameters to improve
regression performance in the presence of insensitive parameters. The method is
described in the input instructions.

Common Ways of Improving a Poor Model

Problems such as insensitivity and extreme correlation of parameters and poor model fit
are common in model calibration. Possible ways of addressing these problems are as
follows, listed in order of how often the suggestion is most appropriate in practice.

1. Reconsider the model construction, including geometry of internal and external

boundaries, discretization, and so on. For example, in ground-water models, consider
the internal definition of hydrogeologic units. Regression difficulties and poor model
fit can help reveal misconceptions used to construct the model and mistakes in input
data.

 22

Chapter 3: Inverse Modeling Considerations

2. Modify the defined parameters by adding, omitting, and (or) linking parameters to be
estimated. See section “Parameterization” above. The procedure for linking
parameters is explained in the input instructions presented in this report.

3. Carefully eliminate observations or prior information if available evidence indicates
that they are likely to be biased. Do not omit observations just because the model
does not fit them well.

4. Adjust weights either for groups of observations and prior information, or perhaps
individually. Small changes in the weighting rarely affect regression results, so, in
most circumstances, avoid time-consuming repeated runs using slightly different
weights.

A useful approach is to continually strive to identify and correct inaccuracies in the
model construction or the use of observations (this is guideline 7 of table 3). Use the
model fit and calculated parameter sensitivities and correlation coefficients to facilitate
this process. Nearly always, nonlinear regression will converge as the problems are
resolved. Additional potential difficulties and their resolutions also are discussed in Hill
and Tiedeman (2007).

Alternative Models

The sparse data sets available for the development of most environmental models often
support feasible alternative conceptual models. Feasible conceptual models are those that
reasonably represent known conditions and yield an acceptable fit to the data with
reasonable parameter values. It is important to evaluate models that represent as many
potentially important undefined aspects of the system as possible.

Feasible alternative models need to be used to make predictions and to determine the
associated confidence in those predictions. Multi-model averaging facilitates evaluation
of predictions and their associated uncertainty (Poeter and Anderson, 2005; Poeter and
Hill, 2007). If the various models produce confidence intervals on predictions that are so
large that the appropriate scientific conclusion or management decision is unclear and
additional data collection is warranted, statistics of the regression can be used to help
identify new data that are most likely to reduce the uncertainty and differentiate the
models. This can facilitate development of models that are more representative of the
system (Hill and others, 2001; Tiedeman and others, 2003, 2004; Tonkin and others,
2007).

Residual Analysis

To judge whether a model represents a system accurately, it is crucial to analyze the
residuals (observed minus simulated values). A complete analysis of residuals includes
consideration of summary statistics and consideration of graphs and maps of weighted
and unweighted residuals (see of Hill and Tiedeman, 2007, Chapter 6 and Guideline 9;
and Hill, 1998, guideline 7). In the graphical analyses, some departure from ideal patterns
may be attributed to the limited number of data and the fitting of the regression. The
effect of these contributions can be evaluated by generating random data sets that have

 23

Chapter 3: Inverse Modeling Considerations

the same number of data and characteristics consistent with the fitting of the regression
(Cooley and Naff, 1990; Christensen and Cooley, 2005). Such random data sets can be
generated with UCODE_2005 output files, an optional user-generated input file, and the
computer programs RESIDUAL_ANALYSIS and RESIDUAL_ANALYSIS_ADV,
which are documented in Chapters 14, 15, and 17 of this report.

Predictions and Their Linear Confidence and Prediction Intervals

Often models are constructed to make predictions of what is likely to occur under
different circumstances. Predictions for these conditions can be simulated using a
calibrated model. Generally the uncertainty of the predictions also is of interest. This
section addresses two issues related to predictions and prediction uncertainty: (1) The use
of differences between predictions and (2) the different types of intervals that can be used
to represent prediction uncertainty.

Differences between predictions often are of interest. For example, two remediation
scenarios may be evaluated based on the difference in concentration simulated at a supply
well. Of concern is whether one is really better than the other, which can be evaluated be
determining whether the difference between predicted concentrations is significantly
different than 0.0. With UCODE_2005, the derived prediction capability and the ability
to run multiple process models using batch files make it easy to consider predicted
differences that are calculated by subtracting values produced by a base simulation from
values produced by a predictive simulation. That is:

 (value from predictive simulation) - (value from base simulation) = difference. (7)

The base simulation may represent conditions related to the calibration or to one of
several future scenarios being considered. In a ground-water example, values of interest
might be hydraulic heads at the same location before and after additional pumpage is
imposed on the system. In this circumstance, the predictive simulation includes the
additional pumpage; the base simulation does not. The difference would be the
drawdown resulting from the pumpage. The use of differences is discussed further by Hill
and Tiedeman (2007, Section 8.4.5) and Hill (1994).

UCODE_2005, used in conjunction with post-processor LINEAR_UNCERTAINTY,
includes linear methods of calculating and evaluating predictions. This section introduces
those methods. Detailed information about LINEAR_UNCERTAINTY and how to use
UCODE_2005 and LINEAR_UNCERTAINTY is provided by Hill and Tiedeman
(2007), Hill (1994), and Chapter 15 of this report.

The program LINEAR_UNCERTAINTY calculates 95-percent linear confidence and
prediction intervals on predictions using equations shown in Hill and Tiedeman (2007,
Chapter 8.3) and Hill (1998, eq. 28). UCODE_2005’s Nonlinear-Uncertainty mode can
be used to calculate nonlinear confidence and prediction intervals. Confidence and
prediction intervals can be defined as follows:

 24

Chapter 3: Inverse Modeling Considerations

Confidence intervals represent the uncertainty in the simulated values that results from
the uncertainty in the parameter values. For linear confidence intervals, the uncertainty in
the parameter values is expressed by the parameter variance-covariance matrix (Hill and
Tiedeman, 2007, eq. 7-1; Hill, 1998, eq. 28). The validity of linear confidence intervals
depends on the calibrated model accurately representing important aspects of the true
system, the model being linear, and the weighted residuals being normally distributed.
For nonlinear intervals, the uncertainty in the parameter values is expressed by the
parameter confidence region. The validity of nonlinear intervals depends on the
calibrated model accurately representing important aspects of the true system

Prediction intervals include the uncertainty in the parameter values as described for
confidence intervals, and also include the effects of the measurement error that is likely
to be incurred if the predicted quantity is to be measured. Prediction intervals are larger
than confidence intervals and need to be used when a measured value is to be compared
to a calculated interval.

Whether confidence or prediction intervals are used depends on whether or not the effects
of measurement error are to be included. The idea of a prediction interval is distinct from
the predictions, but the identical terminology can cause confusion. This terminology is
firmly entrenched in statistics; here we suggest careful use of the terms prediction and
prediction interval.

There are several ways to calculate confidence and prediction intervals, depending on
how many predictions are to be considered. The methods fall into two categories:
individual and simultaneous intervals. These are defined as follows.

Individual intervals apply when only one prediction is of concern. There is only one
method of calculating individual linear confidence and prediction intervals (Hill and
Tiedeman, 2007, eq. 8-12 and 8-13; Hill, 1994, eq. 11 and 15), and it is exact if the model
is linear and accurate, and the residuals are normally distributed.

Simultaneous intervals apply when the number of predictions of concern exceeds one,
or when the interval is calculated on a quantity that is not precisely defined, such as the
largest value wherever it occurs within the model.

Different types of simultaneous intervals are appropriate for different circumstances. The
names of the possible intervals are “Bonferroni”, “Scheffé d=k”, and “Scheffé d=np”, and
all are approximate. If the number of predictions (represented by k) exceeds one and is
less than the number of parameters, np, either approximate Bonferroni or Scheffé d=k
simultaneous intervals apply. If k is greater than np, Scheffé d=np simultaneous intervals
apply. Both the Bonferroni and Scheffé d=k methods tend to produce intervals that are
larger than exact intervals would be for a linear, accurate model with normally distributed
residuals. Therefore, the smaller of the two intervals needs to be used.
LINEAR_UNCERTAINTY only prints the smaller of the two intervals.

If the number of predictions of concern cannot be exactly defined, simultaneous linear
confidence and prediction intervals using the approximate Scheffé d=np method apply.

 25

Chapter 3: Inverse Modeling Considerations

Scheffé d=np intervals tend to be larger than exact linear intervals would be for a linear,
accurate model calculated for the same circumstances.

Calculating the different types of intervals depends on whether linear or nonlinear
intervals are calculated. Within each of those two categories, the methods differ only in
the critical values used (Hill and Tiedeman, 2007, Chapter 8.4; Hill, 1994, eq. 11-17).
The critical values are statistics from standard probability distributions. The probability
distributions of concern are the Student-t, Bonferroni-t, and F-distributions. Tables of the
statistics from these distributions were programmed into LINEAR_UNCERTAINTY and
the nonlinear-uncertainty mode of UCODE_2005. The appropriate critical value is
determined by the program based on information provided by the user. Two types of
intervals are considered -- individual and simultaneous. There are three ways of
calculating linear simultaneous intervals. Because the calculations are quick,
LINEAR_UNCERTAINTY calculates all of the intervals and prints three of them after
eliminating one of the simultaneous intervals because it is less accurate than its
alternative, as discussed in Chapter 15. Of the three intervals printed, the user needs to
choose the appropriate interval for a given application. The nonlinear-uncertainty mode
calculates and prints a single type of interval, as indicated by the user.

The uncertainty analysis can include only the estimated parameters, or can also include
parameters that were not estimated because of insensitivity, parameter correlation, or
both. Including unestimated parameters can be important if the unestimated parameter
values are important to the predictions. Including unestimated parameters is discussed
further in Chapter 15 and in Hill and Tiedeman (2007, Sections 7.2.5 and 8.1). The
example presented in Appendix C includes the effects of an unestimated parameter on
measures of prediction uncertainty.

Linear confidence and prediction intervals can be useful indicators of prediction
uncertainty (Christensen and Cooley, 1999; Hill and Tiedeman, 2007, Chapter 8, exercise
14). However, as mentioned above, their utility depends on model linearity and the model
adequately representing important aspects of the system. As these criteria are violated,
the stated significance level of the intervals becomes increasingly questionable. Instead of
a 95-percent interval, for example, the interval may in reality reflect a 99- or 50-percent
significance level. These differences can have considerable consequences. For example,
if a remediation effort is to be designed to accommodate a 95-percent uncertainty level,
designing it instead to a 99-percent uncertainty level requires considerable more expense.
Designing it to a 50-percent uncertainty level would produce an unacceptable level of
risk. Model linearity can be tested with the UCODE_2005 post processor
MODEL_LINEARITY, while model accuracy can be evaluated by analyzing model fit as
mentioned in the earlier section “Residual Analysis.” The proper use (and potential
inaccuracies) of using linear confidence and prediction intervals, for nonlinear problems,
are discussed by Hill and Tiedeman (2007), Christensen and Cooley (1999) and Hill
(1994, 1998). Using nonlinear intervals removes the requirement of the model being
linear.

Other common problems occur when the predictions of interest include types of
quantities not included in the observations used to calibrate the model, the prediction

 26

Chapter 3: Inverse Modeling Considerations

conditions differ dramatically from the calibration conditions, or aspects of the system
not represented by defined parameters contribute significant uncertainty. In such a
circumstance, confidence and prediction intervals may not accurately indicate prediction
uncertainty and need to be used with caution. In some cases including unestimated
parameter values in the analysis may be useful, but this option has not been researched.

When a number of alternative models are considered and calibrated, multi-model
averaging facilitates evaluation of predictions and their associated uncertainty (Poeter and
Anderson, 2005). The computer code MMA (Poeter, and. Hill, 2007) can be used to rank
models and calculate model-averaged predictions and uncertainties using data-exchange
files from UCODE_2005.

Identifying data likely to reduce prediction uncertainty can be important to prioritizing
data collection efforts. Such data can be identified using the computer program OPR-PPR
(Tonkin and others, 2007). Observations likely to reduce prediction uncertainty can be
identified using OPR (Observation-PRediction statistic). Parameters for which additional
field characterization is likely to reduce prediction uncertainty can be identified using
PPR (Parameter-Prediction statistic). These statistics are discussed further by Tiedeman
and others (2003, 2004) and Hill and Tiedeman (2007).

 27

Chapter 3: Inverse Modeling Considerations

 28

Chapter 4: UCODE_2005 Execution

Chapter 4: RUNNING UCODE_2005,
RESIDUAL_ANALYSIS, MODEL_LINEARITY, and

LINEAR_UNCERTAINTY

Running UCODE_2005

The Run Command for UCODE_2005 needs to be executed from the directory
containing the UCODE_2005 input files. The process model input, output, and batch files
can be in one or more separate directories. The process model(s) need to execute
completely from one batch file without human intervention. The batch file can in turn run
other batch files, and in this way there can be multiple process models.

The UCODE_2005 run command is of the form:

path:\UCODE_2005 input-file fn

where:

path:\ = the relative or absolute path to the UCODE_2005.exe on your computer
(alternatively you could specify this in your system path variable)

input-file = the name of the main UCODE_2005 input file (these files have extension
‘in’ in the examples distributed; see appendices C and D)

fn = filename prefix for UCODE_2005 output files (spaces are not allowed in fn, even on
operating systems that allow spaces in filenames)

Controlling Execution and Output

Table 3 lists the modes in which UCODE_2005 can be executed, the input block
keywords that control the modes, and the major output of interest to most users. A few
comments about each mode are provided here; the rest of the document provides
extensive information on data input, execution, and UCODE_2005 output for each mode.

The forward mode is generally run first to check for errors in model construction, path
specification, and calculation of simulated values.

The sensitivity-analysis mode produces statistics calculated for the parameter values
specified in the UCODE_2005 main input file. The statistics calculated include scaled
sensitivities and, depending on the value of SenMethod, parameter correlation
coefficients and parameter confidence intervals. These can be used for sensitivity analysis
as described in Chapter 3 and references cited therein.

The parameter-estimation mode is used to calculate parameter values that provide a
better fit to the objective function.

 29

Chapter 4: UCODE_2005 Execution

Table 3: Modes of UCODE_2005, the source of the parameter values, commonly used
model output, and input block keywords that control the mode.
[fn, replaced by the prefix listed on the command line (Chapter 4); OPT, Options input
block (Chapter 6); CON, UCODE_Control_Data input block (Chapter 6); MOD,
Model_Command_Lines input block (Chapter 6); PAR, Parameter_Groups, Parameter_Data,
Parameter_Values input blocks via template files (Chapters 7 and 11); * is replaced by ‘conf’ or
‘pred’, see Chapter 17.]

Mode1
Source of

Parameter
Values

Name of Main Output File and
Commonly Used Model Output 2 Input Block Keywords3

The first five modes are typically executed in order. The last two of these five need to follow
a successful Parameter-Estimation mode run. See section later in Chapter 4.

Forward PAR
Main output file: fn.#uout
•Fit of simulated equivalents to
observations (_os, _r, _w, _ws)

OPT: Verbose=4 or 5 to check
simulated equivalents

MOD: Purpose=forward

Sensitivity-
analysis PAR

Main output file: fn.#uout
•As for forward mode
•Composite and dimensionless scaled
sensitivities (_sc, _sd)
•Parameter correlation coefficients
and confidence intervals (_pcc, _pc)5

CON: Sensitivities=yes
4,5PAR: SenMethod=-1,0,or 2

4MOD: Purpose=forward or
forward&der

Parameter-
estimation

PAR or
values
calculated by
regression

Main output file: fn.#uout
•Optimal parameter values or data
from parameter-estimation iterations
to diagnose problems. (_pa, _pc, _ss,
_pe)

CON: Sensitivities=yes
Optimize=yes

4PAR: SenMethod=-1,0,1,or 2
4MOD: Purpose=forward or

forward&der
Test-
model-
linearity

Data-
exchange
file fn. _b1

Main output file: fn.#umodlin
•Simulated values for Beale’s
measure. (_b2)

CON: Linearity=yes
4MOD: Purpose=forward or

forward&der

Prediction
Data-
exchange
file _paopt

Main output file: fn.#upred
•Predictions and prediction scaled
sensitivities (_p, _spsr, _spsp, _sppr,
_sppp)

CON: Sensitivities=yes
Prediction=yes

4PAR: SenMethod=-1,0,1,or 2
4MOD: Purpose=forward or

forward&der
The next two modes need to be coordinated with other runs. See Chapter 17.
Advanced-
test-model-
linearity

fn._b1adv*
Main output file: fn.#umodlinadv_*
•Simulated values linearity measures.
(_b2adv*, _b4*)

CON: LinearityAdv=*
4 MOD: Purpose=forward or

forward&der

Nonlinear-
uncer-
tainty

PAR or
values
calculated by
regression

Main output file: fn.#unonlinint_*
•(_int*, _int*par, _int*wr)

CON: NonLinearIntervals=yes
MOD: Purpose=forward or

forward&der

The last mode is independent of all other runs.
Investigate-
objective-
function

PAR via
template
files

Main output file: fn.#usos
•Parameter values and associated
objective-function values (_sos)

CON: SOSSurface=yes
MOD: Purpose=forward

1 Forward: the process model is executed once. Sensitivity-analysis: for perturbation
sensitivities, the process model is executed once or twice for each parameter (SenMethod=1 or 2);

 30

Chapter 4: UCODE_2005 Execution

for process-model sensitivities, the process model is executed once (SenMethod=-1 or 0).
Parameter-estimation: process model is executed as for sensitivity-analysis for each parameter-
estimation iteration plus one (the last is for final statistics). Prediction: as for sensitivity-analysis;
use Sensitivities=no to check calculation of predictions. Test-model-linearity and Advanced-
test-model-linearity: the process model is executed twice for each parameter. Nonlinear-
uncertainty: Nonlinear regression is executed once for each limit of each interval. Investigate-
objective-function: the process model is executed once for each set of parameter values.
2 Selected data-exchange file extensions are listed in parentheses. See Chapter 14 and 17.
3 Verbose, Sensitivities, Optimize, SenMethod, Purpose, Prediction, Linearity, and SOSSurface
are keywords of the noted input block. See input block descriptions for more information. Set
keywords Sensitivities, Optimize, Linearity, Prediction, LinearityAdv, NonlinearIntervals, and
SOSSurface to ‘no’ by default or designation, except as noted.
4 If SenMethod=-1 or 0, use Purpose=forward&der. Purpose=derivative exists but is rarely used.
5 Parameter confidence intervals and parameter correlation coefficients (pcc) are not calculated if
SenMethod=1, so that option is not listed.

The test-model-linearity mode uses parameter values generated in the parameter-
estimation mode and stored in the data-exchange file with extension _b1. It produces a
data-exchange file with extension _b2. The latter is needed by MODEL_LINEARITY to
test the accuracy of linear confidence intervals on parameters and predictions.

The prediction mode is used to calculate predictions and associated sensitivities. Results
are used by LINEAR_UNCERTAINTY. The conditions simulated by the process model
may be different for the prediction mode than for previously defined models.

The advanced-test-model-linearity mode conducts additional tests of model linearity.
These tests have the advantage of accounting for nonlinearity with respect to the
predictions. It can be run after the prediction mode has been completed. See Chapter 17.

The nonlinear-uncertainty mode calculates nonlinear confidence or prediction intervals.
It needs to be the last of a series of runs described in Chapter 17.

The investigate-objective-function mode is usually used to investigate difficulties with
the regression. It produces output files that list sets of parameter values and associated
objective-function values. Graphics that plot the objective function in relation to one,
two, or three parameters can be used to investigate problems such as insensitivity, local
minima, and extreme parameter correlation.

 31

Chapter 4: UCODE_2005 Execution

Files Associated with Running UCODE_2005

As mentioned in Chapter 2, running UCODE_2005 requires three types of input files.

Main input file. In the files provided in the UCODE_2005 distribution (see Appendix

C), these are named with the extension ‘.in’.
Instruction files. Used to read information from the process-model output files. In the

examples provided with the UCODE_2005 distribution, these are named with the
extension ‘.instructions’.

Template files. Used to create process-model input files. In the examples provided, these
are named with the extension ‘.tpl’.

In addition, optional input files include:

Data files referenced in the main input file. Data can be in separate files to promote

clarity.
Derivatives interface file. Provides instructions for reading some or all sensitivities from

a file generated by the process model, rather than having UCODE_2005 calculate
sensitivities by perturbation.

fn.xyzt, a file with a location and time for each observation used for plotting results.
Other files provided for by the input blocks of the main input file.

The UCODE_2005 output files are named using the filename prefix defined on the
command line. The prefix is represented here using the letters fn. If they exist, output
files are replaced without warning when UCODE_2005 is executed. To preserve output
files, change the prefix defined on the command line, rename the files, or copy the files
into a different directory. The output files include the following.

fn.#uout is the main UCODE_2005 output file for the forward, sensitivity-analysis, and

parameter-estimation modes (Table 3). See Table 3 for the main output filename
produced for other modes; for all of tem, the filename extension begins with “#”.

Data-exchange files. Their suffixes begin with an underscore "_". For example, fn._os
and fn._nm are data-exchange files. Chapters 14 and Appendix B provides lists
and descriptions of the many data-exchange files produced by UCODE_2005.

Process-model input files generated by UCODE_2005 using template files.
Process-model output files generated from execution of the process model(s).

For the examples distributed with UCODE_2005, the process-model input and output
files reside in a separate directory than the UCODE_2005 input and output files.

Calibration and Prediction Conditions

The process model needed to simulate equivalents to observations may be quite different
than the process model needed to obtain predictions. The difference may be a different

 32

Chapter 4: UCODE_2005 Execution

stress, such as different pumpage in a ground-water model. Or it may be a different
process, such as when a ground-water model calibrated with head and flow data is used to
predict transport. Calibration conditions need to be defined for all modes except the
prediction mode. Prediction conditions are needed for five analyses achieved using the
modes listed in table 3.

1. Prediction mode with Adjustable=no in the Parameter_Data input block. (with
prediction conditions) Use these runs to check calculation of predictions. In the
output file, which has filename extension #upred, predictions are compared to
reference values.

2. Prediction mode with Adjustable=yes in the Parameter_Data input block, as
listed in table 3 (with prediction conditions). This produces scaled sensitivities
that can be used to identify model parameters important to predictions. The scaled
sensitivities are printed to data-exchange files described in Chapter 14.

3. Sensitivity-analysis or parameter-estimation mode (with calibration
conditions), and prediction mode (with prediction conditions). Calculate linear
confidence and prediction intervals for the predictions using
LINEAR_UNCERTAINTY (see Chapter 15).

4. Advanced-test-model-linearity mode (with both calibration and prediction
conditions). Test model linearity accounting for predictions using
CORFAC_PLUS, and MODEL_LINEARITY_ADV (see Chapter 17).

5. Nonlinear-uncertainty mode (with both calibration and prediction conditions).
Calculate nonlinear confidence and prediction intervals for the predictions.

For 3, two runs of UCODE_2005 are needed: (1) either sensitivity-analysis or parameter-
estimation mode, and (2) prediction mode. For both runs, in the Parameter_Groups,
Parameter_Data, and Derived_Parameters input blocks identical parameters need to be
defined as adjustable and parameters that are not adjusted need to be assigned the same
value.

For 4 and 5, both calibration and prediction runs need to be defined. See the instructions
for the advanced-test-model-linearity mode in Chapter 17 for additional information.

Typical UCODE_2005 Project Flow

A typical project flow involves the following:

1. Create a forward process model.
2. Create UCODE_2005 files: main input file, instruction files, template files.

Possibly a derivatives interface file. (see Chapters 6 through 13)
3. Execute UCODE_2005 in forward mode (Table 3) with Verbose=4 or 5 in the

Options input block of the UCODE_2005 main input file. Review the process-
model input and output files and fn.#uout to confirm that the substitutions and

 33

Chapter 4: UCODE_2005 Execution

extractions are correct. When satisfactory results are obtained, set Verbose=0
unless a problem is encountered.

4. Execute UCODE_2005 in sensitivity analysis mode (Table 3). Review fn.#uout to
evaluate sensitivities and correlations. If many sensitivities equal zero, consider
the suggestions below in the section ‘Troubleshooting’. If some composite scaled
sensitivities are less than 1.0 or less than 0.01 times the largest composite scaled
sensitivity, or if any correlation coefficients equal 1.00, consider the suggestions
in the section “Common ways of improving a poor model” in Chapter 3.

5. Execute UCODE_2005 parameter-estimation mode (Table 3). Review fn.#uout to
evaluate the results of the regression as described in Chapter 16. If the regression
did not proceed well, consider why, and alter input. See the suggestions in the
section “Common ways of improving a poor model” in Chapter 3.

6. Perform residual analysis using RESIDUAL_ANALYSIS as described in Chapter
15 and 16. Evaluate fn.#resan. Often it is useful to include
RESIDUAL_ANALYSIS in the batch file with UCODE_2005 in parameter-
estimation mode.

7. Simulate predictions using UCODE_2005 in prediction mode (Table 3). Review
fn.#upred. Execute LINEAR_UNCERTAINTY using the instructions in Chapter
15. Review fn.#linunc and evaluate the quality of the calibration from the
perspective of prediction using the prediction scaled sensitivities.

8. Use the instructions in Chapter 15 to run MODEL_LINEARITY. Look in
fn.#umodlin for the modified Beale’s measure and an explanation of what it
means.

9. See Chapter 17 for how to proceed for the advanced analyses and to calculate
nonlinear intervals.

Running RESIDUAL_ANALYSIS

Running RESIDUAL_ANALYSIS requires the following steps

1. Run UCODE_2005 in parameter-estimation mode (see Table 3) and obtain a
converged regression. Underscore files need to be produced, so
DataExchange=yes is needed by default or designation in the
UCODE_Control_Data input block.

2. Run RESIDUAL_ANALYSIS in the same directory using the same filename
prefix, fn. The RESIDUAL_ANALYSIS run command is of the form:

path:\ RESIDUAL_ANALYSIS fn

where:

path:\ = the relative or absolute path to RESIDUAL_ANALYSIS.exe on your computer
(alternatively you could specify this in your system path variable)

fn = filename prefix used for the UCODE_2005 run (spaces are not allowed in fn, even
on operating systems that allow spaces in filenames).

Additional information is provided in Chapter 15.

 34

Chapter 4: UCODE_2005 Execution

Running MODEL_LINEARITY

To execute MODEL_LINEARITY, first execute UCODE_2005 twice as indicated
below, in the same directory. Underscore files need to be produced, so
DataExchange=yes is needed by default or designation in the UCODE_Control_Data
input block.

1. Execute UCODE_2005 in parameter-estimation mode (see Table 3) to produce a
converged regression.

2. Execute UCODE_2005 in model linearity mode (see Table 3)

3. Execute MODEL_LINEARITY in the same directory using the same filename
prefix, fn. The MODEL_LINEARITY run command is of the form:

path:\MODEL_LINEARITY fn

where:

path:\ = the relative or absolute path to MODEL_LINEARITY.exe on your computer
(alternatively you could specify this in your system path variable)

fn = filename prefix used for the UCODE_2005 runs (spaces are not allowed in fn, even
on operating systems that allow spaces in filenames).

Additional information is provided in Chapter 15.

Running LINEAR_UNCERTAINTY

To execute LINEAR_UNCERTAINTY, first execute UCODE_2005 twice, as indicated
below, in the same directory. Underscore files need to be produced, so
DataExchange=yes is needed by default or designation in the UCODE_Control_Data
input block.

1. Execute UCODE_2005 in parameter-estimation mode (see Table 3) to produce a
converged regression.

2. Execute UCODE_2005 in prediction mode (see Table 3).

3. Execute LINEAR_UNCERTAINTY in the same directory using the same
filename prefix, fn. The LINEAR_UNCERTAINTY run command is of the form:

path:\ LINEAR_UNCERTAINTY fn

where:

path:\ = the relative or absolute path to LINEAR_UNCERTAINTY.exe on your computer
(alternatively you could specify this in your system path variable)

fn = filename prefix used for the UCODE_2005 runs (spaces are not allowed in fn, even
on operating systems that allow spaces in filenames).

Additional information is provided in Chapter 15.

 35

Chapter 4: UCODE_2005 Execution

Trouble Shooting

Most of the problems encountered when running UCODE_2005 arise from omitting
required data items from the input files, listing data in the input files in improper order,
specifying incorrect values, or specifying filenames and pathnames incorrectly.

UCODE_2005 is programmed to recognize certain problems related to input data. The
problems may be errors that cause execution to stop, or warnings that do not stop
execution. The input instructions describe some of these problems. When an error is
encountered, an error message is written to the main UCODE_2005 output file and
execution stops. Warnings also are printed to the main output file, but execution
continues. Some error messages also are printed to the screen and these are often useful
in detecting errors in filenames and pathnames.

Other problems commonly encountered result from the regression problem being poorly
posed. For example, (1) at least some of the defined parameters are insensitive to the
available data, (2) the parameters are extremely correlated, or (3) the model exhibits
strong nonlinearity. These problems can be addressed as discussed in Chapter 3 and the
references cited therein.

RESIDUAL_ANALYSIS, RESIDUAL_ANALYSIS _ADV,
LINEAR_UNCERTAINTY, MODEL_LINEARITY, and MODEL_LINEARITY_ADV
use files created by UCODE_2005, so problems with their execution are commonly
related to problems in running UCODE_2005. Check to be sure the needed data exchange
files have been produced, are located in the appropriate directory, and contain the
expected data.

The following sections provide specific directions for detecting and addressing two
common problems: incorrect simulated values (either simulated equivalents of
observations or predictions) and sensitivities that equal zero when they should not.

What to Do When Simulated Values are Wrong

When simulated values are wrong, they can be checked using two forward mode runs for
which keyword Verbose=4 or Verbose=5 in the Options input block (Chapter 6).

First, delete the model input files that are to be replaced using template files. Also delete
the model output files from which values are to be extracted and the main
UCODDE_2005 output file for the mode being executed (Table 3). Perform the first run
and save the newly created files in a different directory.

For the second run, change one or more starting parameter values in the
Parameter_Values input block (see Chapter 7) by as much as possible while maintaining
a process model that runs correctly (large changes help identify problems). Run
UCODE_2005.

 36

Chapter 4: UCODE_2005 Execution

Check the process-model input files to make sure they are changed as expected. If not,
check the template file. Possible problems are an incorrect template file or that the
parameter names listed in the template file do not match the parameter names in the
UCODE_2005 main input file. Also check the path to the template file and to the model
input file.

Check the process-model output files to see if simulated values are changed. If not, make
sure that the input files created by UCODE_2005 are being used by the process model(s).

Finally, check the UCODE_2005 main output file to see if the values extracted by
UCODE_2005 are changed as expected. If not, check the instruction file and the path to
the model output file specified in the UCODE_2005 main input file.

What to Do When Sensitivities Equal Zero

Another common problem is that the simulated values are correct but sensitivities are
unexpectedly equal to zero. One symptom may be that UCODE_2005 fails to complete
parameter estimation.

The existence of observation sensitivities equal to zero that should not be zero can be
investigated as follows. The data-exchange files listed are created if keyword
DataExchange=yes by default or designation in the UCODE_Control_Data input block
(Chapter 6). The printing of the sensitivity tables in the main output file is controlled by
keywords StartSens, IntermedSens, and FinalSens of the UCODE_Control_Data input
block (Chapter 6).

1. It is good practice to use the sensitivity-analysis mode to check for observation

sensitivities equal to zero before running the parameter-estimation mode. Check the
sensitivity tables printed in the main output file and in data-exchange files with
filename extensions _sc, _sd, _s1 and _su. For the sensitivity-analysis mode,
sensitivities are calculated using the starting parameter values.

2. If UCODE_2005 fails while estimating parameters and DataExchange=yes by
designation or default, the most recent sensitivities are listed in the data-exchange
files with filename extensions _sc, _sd, _s1 and _su. Check these files for sensitivities
that equal zero when they should not be zero.

3. Sensitivities for all intermediate sets of parameter values can be printed to the main
output file by setting IntermedSens=dss in the UCODE_Control_Data input block
and executing UCODE_2005 again in the parameter-estimation mode. The
sensitivities in the data-exchange files are always from the most recent parameter
values.

A value of zero is calculated and printed for the sensitivity by UCODE_2005 if the
simulated values read for the perturbed and unperturbed parameters are identical given
the number of significant figures printed in the output. If many of the other sensitivities
related to this parameter are nonzero, the zero value may simply indicate that the
observation is not very important to estimation of the parameter involved, and this is
correctly represented by the sensitivity values being equal to zero. In such a situation, no

 37

Chapter 4: UCODE_2005 Execution

corrective action is needed. If all of the sensitivities for a parameter are zero, a problem
may exist. The problem may be related to input file construction problems or something
more fundamental.

Input file construction errors can be investigated through the following steps.

a. Make sure that the process model can be run using the command provided in the
Mode_Command_Lines input block. Often this is best accomplished by deleting one
or more process-model output files to make sure they are being created correctly
using the command.

b. Check that input files are being created correctly using the template file. This can be
accomplished by deleting the input file before running UCODE_2005 in forward
mode and then checking the input file to be sure it has been created with the
expected numbers.

c. Make sure that the template file allows enough spaces for the substituted values for
the perturbed parameter value to create a change in the input file. If derived
parameters are used, this requires consideration of how the parameter change is
affected by the equation applied.

d. Check to make sure that the values simulated by the process model are changing and
being extracted by UCODE_2005 as intended. Use the procedure described in the
previous section of this report.

Five other possible corrective actions are:

(1) Smaller solver convergence criteria can be specified in the application codes to
improve the accuracy of the simulated values. This also can increase execution time.

(2) Alter the process-model input files or code so that the values extracted by
UCODE_2005 are printed with more significant figures in the process-model output file.
Be sure that the values are calculated with sufficient accuracy to make the additional
digits meaningful.

(3) The datum of the problem can be changed or normalized, as in Chapter 3 in the
section ‘Perturbation sensitivities’.

(4) Increase the perturbation amount for the parameter, possibly combined with using
more significant digits to represent the parameter in the template files. If large
perturbations still result in zero sensitivities, consider the possibility that the parameter
has no effect on the observed quantities or that the simulated values are not being
properly extracted from the model output. If the latter is suspected, consider the
suggestions in the previous section.

(5) Consider the methods for coping with insensitive parameters discussed in Chapter 3
in the section entitled ‘Common ways of improving a poor model’.

 38

Chapter 4: UCODE_2005 Execution

If available, the first three options are preferable because increasing the perturbation size
suggested in the fourth option produces less accurate sensitivities for nonlinear
parameters and the fifth option may require a less detailed parameterization.

 39

Chapter 4: UCODE_2005 Execution

 40

Chapter 5: Overview of UCODE_2005 Input Instructions

Chapter 5: OVERVIEW OF UCODE_2005 INPUT
INSTRUCTIONS

UCODE_2005 requires a main input file, at least one template file, and at least one
instruction file. The template files are used to define parameters to be estimated; the
instruction files describe how to extract values from process-model output files. The main
input file can read data from other files to facilitate data management. Additionally, a
Derivatives Interface input file is needed if any sensitivities are read from files produced
by a process model. For example, MODFLOW-2000 with its Sensitivity Process can be
used to calculate accurate sensitivity-equation sensitivities.

This chapter begins by describing the main UCODE_2005 input file. First basic input
concepts are explained. The main input file is then described in detail in subsequent
chapters.

Main Input File

As discussed in Chapter 4, the main input file for UCODE_2005 is named on the
command line, which is of the form:

C:\wrdapp\ucode_2005_1.000\bin\UCODE_2005.exe ex1.in ex1

The main input file can contain comments that the program will ignore. Comment lines
begin with # in the first column. No spaces or other characters can precede the # on
comment lines. Comment lines can be inserted as described below .

Input blocks

The main input file includes input blocks with the basic structure:

Begin blocklabel [blockformat]
Blockbody: many lines OR, when blockformat is ‘files’, a list
of one or more files

End blocklabel

The brackets around blockformat indicate that it is optional. Square brackets are used to
identify optional input throughout this document. All input is case-insensitive and space-
delimited.

Blocklabel and blockformat are defined in the following sections. The definition of
blockbody depends on blocklabel; the possible content of blockbody for each of the
blocklabels available in UCODE_2005 are described in the following chapters.

The input blocks described in this report are part of the JUPITER API or are designed
using the conventions established as part of the API.

 41

Chapter 5: Overview of UCODE_2005 Input Instructions

Blocklabel

The variable blocklabel identifies the purpose of the data block and the data it can
contain. This chapter provides general information about blocklabel. The data needed for
each blocklabel are described in subsequent chapters.

The UCODE_2005 blocklabels are listed in table 4. Required blocklabels are indicated.
Additional capabilities of UCODE_2005 can be accessed by using additional blocklabels.

Input blocks need to occur in the order shown in table 4. Some may be absent, but those
present need to occur in the order shown.

If a blocklabel is misspelled, the data are ignored and defaults assigned. Ignoring
unneeded input blocks allows great flexibility for the sequences of runs common with
UCODE_2005 because most input blocks do not need to be removed even if they are not
needed in a subsequent step. More generally, this feature allows different applications of
the JUPITER API to use the same or very similar input files. The drawback is that an
input block is ignored if the blocklabel is misspelled. To check, review the echo of the
input printed in the UCODE_2005 main output file.

In UCODE_2005 versions 1.009 and later, five input blocks were added to allow for the
circumstance in which additional parameters need to be defined for prediction conditions.
For example, porosity parameters may need to be added when predictions are advective
transport while calibration is accomplished using heads and flows. The new input blocks
and output files are described in a separate documentation file distributed with
UCODE_2005.

Blockformat

The variable blockformat defines the structure of the data presented. The options are
listed in Table 5. The default blockformat is Keywords, but it is urged that the
blockformat be listed specifically to reduce confusion.

The input blocks used in UCODE_2005 are very flexible. One resulting difficulty is that
if the blockformat specified does not match the format used, the information in the data
block is ignored and generally no error message is printed. For example, if blockformat
‘Keywords’ is specified by default or designation, data organized in blockformat ‘Table’
is ignored. The problem can be detected by inspecting the echo of the input in the main
UCODE_2005 output file.

 42

Chapter 5: Overview of UCODE_2005 Input Instructions

Table 4. Blocklabels of the main input file for UCODE_2005.
[Bold type and grey shading identify required input blocks, as qualified by footnotes 4
and 5; the other input blocks are optional.]

Chapter1 Purpose Blocklabel Default col-
umn order2

Options No
Merge_Files3 No
UCODE_Control_Data3 No
Reg_GN_Controls3 No
Reg_GN_NonLinInt3,4 No

46

Define UCODE_2005
operation

Model_Command_Lines No
Parameter_Groups3 No
Parameter_Data3 Yes
Parameter_Values3 Yes 7 Define parameters

Derived_Parameters3 Yes
Observation_Groups No
Observation_Data5 Yes Define observations
Derived_Observations Yes
Prediction_Groups No
Prediction _Data6 Yes

8

Define predictions
Derived_ Predictions Yes
Prior_Information_Groups No 9 Define prior information Linear_Prior_Information Yes

10

Define variance-covariance
matrices to weight groups
of observations or prior
information with correlated
errors.

Matrix_Files No

Model_Input_Files Yes 11 Interact with process-model
input and output files. Model_Output_Files Yes

Parallel_Control No 12 Run process model(s) using
multiple processors Parallel_Runners Yes

1 Chapter that describes these input blocks.
2 ‘Yes’: the input block has a default column order. With blockformat TABLE, these blocks can
contain data without column labels for selected keywords if the data are in default order.
Keywords defined in the JUPITER API are supported. Keywords added for UCODE_2005
always need column labels. ‘No’: the input block has no default column order, use column labels.
3 Programmers: These are UCODE_2005 input blocks, not part of the JUPITER API.
4 Reg_GN_NonLinInt is documented in Chapter 17.
5 Required for all UCODE_2005 modes except the prediction mode, for which all observation
input blocks need to be omitted. The prediction mode is defined when prediction=yes in the
UCODE_Control_Data input block. For mode definition, see table 3 and Chapter 17.
6 Required for UCODE_2005 modes prediction (table 3) and advanced-test-model-linearity and
nonlinear-uncertainty (Chapter 17). For other modes, all prediction input blocks need to be
omitted. The modes are defined with keywords in the UCODE_Control_Data input block. For
mode definition, see table 3 and Chapter 17.

 43

Chapter 5: Overview of UCODE_2005 Input Instructions

Table 5. Blockformat options.
Blockformat Prescribed input format
KEYWORDS Blockbody consists of a series of lines of the form:

Keyword=value
Under some circumstances there are restrictions on how the lines
are ordered; see the input block instructions.
If no blockformat is specified, KEYWORDS is assumed, but it is
advisable to explicitly identify the block format to reduce errors.
Comments are allowed.1,2

TABLE Blockbody consists of a table of data that may have labels on the
columns and may be read from the main input file or from another
input file. See the text for additional information.
Comments are allowed right after the BEGIN statement but not in
the rest of the input block. 1

FILES Blockbody consists of the pathname for one or more files.
Comments are allowed.1,2
To allow the format to be specified, the contents of each of the
listed files needs to begin with a
‘Begin Blocklabel [Blockformat]’ line and end with an
‘End Blocklabel’ line. The Blocklabel needs to be the same as in
the ‘Begin Blocklabel FILES’ block within which the files are
listed. See the section “Observation_Data Input Block” for an
example.

1 Comments are separate lines starting with a # in the first column. No blank lines are
allowed within any input blocks.
2 Comments can be inserted anywhere within the input block.

Blockbody

blockbody contains data or the names of files from which the data are to be read. The
format of the data is determined by blockformat.

The meaning of the data provided is defined using keywords. Keywords that are not
recognized are ignored. This allows a constructed input block to be used for multiple
purposes without modification. It also means that misspelled keywords are not flagged as
errors and default values will be used if keywords are misspelled. This problem can be
identified by reviewing the echo of the input file in the main UCODE_2005 output file.
For many keywords, a default is available and is used if the keyword is omitted.

 44

Chapter 5: Overview of UCODE_2005 Input Instructions

Blockformat KEYWORDS

If blockformat is specified as KEYWORDS, blockbody is expected to be a series of
phrases of the form keyword=value. For example, PARAMNAME=K1. There can
be spaces on each side of the equal sign. Phrases can occur on separate lines or can occur
on the same line if they are separated by spaces.

Some keywords can appear in any order while other keywords indicate the need for
associated data to be provided either through a subsequent set of keywords or by other
means. The options available depend on the input block, as described in the following
chapters.

An example of a keyword that indicates the need for associated data occurs for
blocklabel Parameter_Data. Each time the keyword PARAMNAME appears, a
parameter is defined and a related set of data is needed. For a parameter, the data can be
defined by keywords that follow keyword PARAMNAME in the Parameter_Data input
block, or by data provided in the Parameter_Groups input block. The keyword
PARAMNAME and associated data are repeated for each parameter. This can be tedious,
and blockformat TABLE is often more convenient in this circumstance.

Here is a simple example input block using blockformat keywords. The keywords are
defined in Chapter 6 in the section in the Options input block input instructions.
BEGIN Options Keywords
Verbose=0
Derivatives_Interface = "tc1.derint"
END Options

Blockformat TABLE

If blockformat is specified as TABLE, the first non-comment line of blockbody is
in the format:

NROW=nr NCOL=nc [COLUMNLABELS] [DATAFILES=nfiles]
[GROUPNAME=gpname]

The format of the rest of the blockbody depends on whether DATAFILES is listed, as
shown in Table 6.

Table 6. For blockformat TABLE, the format of blockbody after the first line without and

with the optional keyword DATAFILES.
Without DATAFILES keyword With DATAFILES keyword

[column-name] [column-name]...
val val ...
val val ...
...

number of lines: nr

[column-name] [column-name]...
pathname [SKIP=nskip]
pathname [SKIP=nskip]
...

number of lines: nfiles

 45

Chapter 5: Overview of UCODE_2005 Input Instructions

 Definition of keywords and variables:

NROW and NCOL are required keywords.

nr is the number of rows in the table.

nc is the number of columns in the table.

COLUMNLABELS is an optional keyword.

COLUMNLABELS omitted: A default column order is used to identify the data in the
columns of the table. Default column orders are only available for the blocklabels
identified in section ‘Blocklabels’. If a default column order is not available (Table 4,
last column) COLUMNLABELS is required.

COLUMNLABELS listed: Column names are used to identify the data in the columns of
the table. Data is read for columns with column names that are equivalent to keywords
for this blocklabel. The keywords for each input block are defined in the
following chapters. Data in columns with other labels are ignored. This allows data
sets to contain columns that are not used by UCODE_2005. However, it also means
that misspelled keywords are not flagged as errors and default values will be used if
keywords are misspelled.

DATAFILES is an optional keyword.

DATAFILES omitted: nr rows of data are read as shown in column 1 of Table 6.
Each val is a data value. The data type expected for val depends on the
blocklabel and possibly on column-name. All data values for a row need to be
on one line of the file. One line can contain up to 2,000 characters.

DATAFILES listed: A list of file pathnames is read, as shown in the second
column of Table 6. The number of pathnames read equals nfiles, for example,
DATAFILES=2. Each pathname is the path to a file from which rows of data are
read. Paths with spaces need to be enclosed in double quotes. Each file needs to
contain rows of data in columns in either the default column order or the order defined
by the column-name entries, if specified. Data read from all files are combined as
if read from one file. Each file is read in order until nr rows of data have been read.
If SKIP=nskip is specified, nskip lines at the beginning of the file are ignored,
and reading of data starts on the following line.

GROUPNAME is an optional keyword

For blocks that use groups, GROUPNAME=gpname can be used to assign a group
name to all rows in the table. gpname is the group name. If GROUPNAME=gpname

 46

Chapter 5: Overview of UCODE_2005 Input Instructions

is present, GROUPNAME will not be in the default list of columns and can not be
included with the COLUMNLABELS option.

Here is a simple example input block using blockformat table. The keywords are defined
in Chapter 7.

BEGIN Parameter_Values TABLE
These values override values in Parameter_Data input block
 nrow=9 ncol=2 columnlabels
 paramname startvalue
 Wells_TR -1.1000
 RCH_Zone_1 6.3072E+1
 RCH_Zone_2 3.1536E+1
 Rivers 1.2000E-3
 SS_1 1.3000E-3
 HK_1 3.0000E-4
 Vert_K_CB 1.0000E-7
 SS_2 2.0000E-4
 HK_2 4.0000E-5
END Parameter_Values

blockformat FILES

If blockformat is specified as FILES, the input block can contain one or more lines,
each containing a pathname to a file. Lines with # as the first character are interpreted as
comments and are ignored. Data read from all files in the list are combined to create one
blockbody. The data need to be composed of blocks with Begin and End statements.

Data can be read from files in two ways. The mechanisms and their characteristics are
described in Table 7.

Table 7. Alternatives for reading data from files.
Blockformat table
With DATAFILES

Blockformat files

There is only one Begin blockformat and
End blockformat block.

There can be more than one Begin
blockformat and End blockformat block.

All data are read as a table. Blockformat can change based on the
designations in the Begin statements

Here is a simple example input block using blockformat files. The keywords are defined
in Chapter 8 in the Observation_Data input block instructions.
BEGIN OBSERVATION_DATA FILES
tc1.hed
tc1.flo
END OBSERVATION_DATA

 47

Chapter 5: Overview of UCODE_2005 Input Instructions

Files tc1.hed and tc1.flo are read. For example, file tc1.flo might be as follows.
BEGIN OBSERVATION_DATA TABLE
 NROW=3 NCOL=4 COLUMNLABELS
 Obsname obsvalue statistic equation
 flow.ss -4.4 0.4 _
 flow.t3 -4.1 0.38 _
 flow.t12 -2.2 0.21 _
 flow.t3_ss 0.3 0.55 flow.t3 – flow.ss
 flow.t12_ss 2.2 0.45 flow.t12 – flow.ss
END OBSERVATION_DATA

Additional Input Files

The additional input files listed in Table 8 also may be needed. They are described briefly
below and in detail in subsequent chapters. Some of the filenames are determined
completely by the users, others (here, fn.omit and fn.xyzt) are prescribed. By convention,
no underscore or # signs are used in UCODE_2005 prescribed file extensions of user-
produced files.

The derivatives interface file allows sensitivities calculated by a process model to be used
in the UCODE_2005 calculations. This can be advantageous if the process model can
calculate sensitivities using a more accurate or computationally efficient method than the
perturbation methods available in UCODE_2005. For example, the Sensitivity Process of
MODFLOW-2000 can be used to calculate sensitivity-equation sensitivities that are
generally more accurate and in some circumstances can be calculated more efficiently
than perturbation sensitivities.

Template files are used to interact with process-model input file(s), as discussed in
Chapter 11.

The fn.xyzt file provides the user the opportunity of defining locations and times for each
observation. The fn is the prefix name defined on the command line; no other name is
allowed for this file. The location and time of observations are not needed for
UCODE_2005 to perform its calculations. However, evaluation of model fit generally
requires that quantities such as residuals and weighted residuals be plotted on maps or
against time. To assist the user in performing these essential analyses, UCODE_2005
looks for a file named fn.xyzt in the directory in which UCODE_2005 is executed. If
found, the file is read, residuals and weighted residuals are associated with each listed
observation, and output file fn._xyztwr is produced. The contents of the fn.xyzt file do
not in any way affect the calculations performed by UCODE_2005.

In many process models, simulated values are assigned specific numbers when the value
can not be simulated. This may occur, for example, in a ground-water model for what is
expected to be a saturated-zone hydraulic head from a part of the model that becomes
desaturated. In such a situation, any related observation generally can not be used in
regression. The input file fn.omit lists numbers that indicate that the process model can
not simulate a value. When a simulated equivalent equals one of these numbers,

 48

Chapter 5: Overview of UCODE_2005 Input Instructions

UCODE_2005 omits the observation from the regression and a message is printed in its
place in the UCODE output file. For fn.omit, the fn is the prefix name defined on the
command line; no other name is allowed for this file.

Most input blocks allow data to be read from other files. The flexibility of the input
blocks means that many such files could be defined.

Table 8. Additional input files, their purpose, the label of the input block that uses the

file(s), and the chapter that provides detailed input instructions.
[fn.xyzt and fn.omit, filenames for which the fn needs to be the same as the filename
prefix specified on the command line; the filename extensions need to be as indicated. By
convention, no underscore or # signs are used in the filename extensions of input files.]
File name or
description1

Purpose Blocklabel
(Chapter)

Derivatives Interface
File (optional)

Instructions for reading derivatives
calculated by a process model.

Options
(6)

Template files Used to create process-model input
files that reflect starting parameter
values defined in the Parameter_Group,
Parameter_Data input block, or as
updated by regression.

Model_Input_Files
(11)

fn.xyzt (optional) Provide spatial and temporal
coordinates for observations and
predictions.

No input block is
involved.
UCODE_2005
searches for a file
called fn.xyzt in the
directory from
which it is
executed. (13)

fn.omit A list of real numbers. If simulated
equivalents equal any of these values,
the associated observation is omitted
from the regression.

Reg_GN_Controls
(6)

Other files (optional) To provide data for input blocks using:
(1) blockformat table with the datafiles
keyword or (2) blockformat files. The
path of the file is defined in the input
block.

Most input blocks.
(6-12)

1 In the example of Appendix C, derivative-interface files have filename extension .derint
and template files have extension .tpl.

 49

Chapter 5: Overview of UCODE_2005 Input Instructions

 50

Chapter 6: Input Used to Define UCODE_2005 Operation

Chapter 6: INPUT TO CONTROL UCODE_2005
OPERATION

UCODE_2005 can be used to perform a number of tasks related to sensitivity analysis,
parameter estimation, and uncertainty analysis. As many as four input blocks can be used
to define what is accomplished in a given execution.

The Options input block can be used to control what is written to the main output file and
to identify a derivatives interface file, which provides directions for reading sensitivities
produced by the process model.

The UCODE_Control_Data input block controls most of what can be accomplished with
UCODE_2005.

The Reg_GN_Controls input block controls the modified Gauss-Newton regression,
including its double-dogleg option.

The Model_Command_Lines input block defines how to run the process model(s) and is
the only input block of this chapter that is always required.

 51

Chapter 6: Input Used to Define UCODE_2005 Operation
 --Options Input Block--

Options Input Block: Control Main Output File and Read
Sensitivities (optional)

The Options input block can be used to control the following:

1. The information written to the main output file

2. Sensitivities read for all or some parameters from a process-model output file that
calculates sensitivities. For example, MODFLOW-2000 calculates sensitivities
using the sensitivity-equation method which is generally more accurate than the
perturbation methods of UCODE_2005.

The three keywords are usually read using the KEYWORDS blockformat.

Verbose - Flag that controls what is written to the UCODE_2005 main
output file as follows. The default is Verbose=3 to provide
information for new applications and users, but Verbose=0 is
suggested for most circumstances.

Verbose Output
0 No extraneous output.
1 Warnings.
2 Warnings, notes.
3 (default) Warnings, notes, echo selected input.
4 Warnings, notes, echo all input. Includes all values read from

process-model output files.
5 Warnings, notes, echo all input, plus some miscellaneous

information. Includes all values read from process-model output
files.

The paths defined using the following two keywords can be up to 2,000 characters long
and need to be surrounded by double quotes if there are any spaces. The paths can be
relative or absolute.

Derivatives_Interface - Filename or path to derivatives-interface input file. Construction
of the derivatives interface input file is described in Chapter 13. No
default. If keyword Derivatives_Interface is not included in the
Options input block, no Derivatives Interface input file is read. The
Derivatives_Interface keyword needs to be omitted if
SenMethod=1 or 2 for all parameters in the Parameter_Groups and
Parameter_Data input blocks (see Chapter 7).

PathToMergedFile - Filename or path of a file into which data are merged from the
files listed in the following Merge_Files input block. If the file
exists, it is replaced.

The Derivatives Interface input file described in Chapter 13 only allows one file
to be read. Sensitivities located in more than one file can be read by (1) using

 52

Chapter 6: Input Used to Define UCODE_2005 Operation
 --Options Input Block--

PathToMergedFile to define a file, (2) listing the files with sensitivities in the
Merge_Files input block described next, and (3) in item 1 of the Derivatives
Interface input file described in table 13 of Chapter 13, listing the path specified
by PathToMergedFiles.

Example of an Options input block:
BEGIN Options Keywords
Verbose=0
Derivatives_Interface = "tc1.derint"
END Options

In this example, the derivatives interface file is located in the directory in which
UCODE_2005 is executed so no path is specified.

 53

Chapter 6: Input Used to Define UCODE_2005 Operation
 --Merge_Files Input Block--

Merge_Files Input Block (Optional)
The Merge_Files input block provides the information needed to combine data from a set
of files into one file. In UCODE_2005, a merged file is needed because the Derivatives
Interface input file can read sensitivities from only one file, and it is common to need
sensitivities that are located in more than one file. See the instructions for keyword
PathToMergedFile in the Options input block for additional information.

The data in the files to be combined in the Merge_Files input block need to be organized
such that they can all be read with the same DerFormat specified in item 5 of the
Derivative Interface input file (see table 13, Chapter 13). The merged file is named
fn._sumerge, where fn is the filename prefix defined in the run command, as described in
Chapter 4.

The Merge_Files input block has two keywords.

PathToFile - Path of a file. The path can be up to 2,000 characters long and
needs to be surrounded by double quotes if it contains any spaces.
The path can be relative or absolute.

SkipLines - Number of lines that are to be omitted from the top of the file
before it is appended onto the end in the combined file. Usually
these are header lines. Default=0.

If SkipLines=0 for the first “PathToFile”, the header lines in the combined file are the
header lines from the first file listed. For subsequent files listed, any header lines need to
be omitted; only lines of data from these files can be added to the merged file.

If Blockformat KEYWORDS is selected by designation or default, keywords defining a
file in the Merge_Files input block need to be grouped together. The PathToFile keyword
needs to be the first keyword on a new line. PathToFile and SkipLines, if needed, are
repeated to define multiple parameters. SkipLines is needed only to change the default
value.

If blockformat TABLE is selected without indicating ColumnLabels, the default column
order is the order in which the keywords are defined above and listed below. No columns
are ignored and a column for each keyword is needed. If ColumnLabels are indicated, the
column labels can appear in any order; the ParamName keyword need not be first, though
it often is first.

Default column order: PathToFile SkipLines

Example of a Merge_Files input block:
BEGIN Merge_Files TABLE
NROW=2 NCOL=2 COLUMNLABELS
PATHtoFILE SKIPLINES
../../CALIBRATION/EX1._SU 0
../../PREDICTION/EX1._SU 0
END Merge_Files

 54

Chapter 6: Input Used to Define UCODE_2005 Operation
 --UCODE_Control_Data Input Block--

UCODE_Control_Data Input Block: Define the Task and Output
(optional)

The UCODE_Control_Data input block defines the operations pursued by UCODE_2005
and defines some labeling for data-exchange files.

Variables can be read in any order. Included variables generally are read using the default
keyword format. TABLE format requires COLUMNLABELS because there is no default
order for these variables.

Only variables for which the default values are not acceptable need to be included.

Chapter 17 describes two additional keywords needed to pursue advanced testing of
model linearity and nonlinear confidence intervals.

Keywords are not case sensitive.

ModelName - Identifies the model. Up to 12 characters. Default=generic.

The following three keywords are used to define the units used in the model in the main
output file and the _dm data-exchange input file. Each can be up to 12 characters long.
The units defined are used as labels; UCODE_2005 performs no unit conversions.
Defining units here does not affect the solution. The default is NA, indicating that the
units are undefined. Specifying units can reduce confusion and modeling mistakes.

ModelLengthUnits - Defines the length unit. For example, ft for feet, m for meters, km
for kilometers, and mi for miles.

ModelMassUnits - Defines the mass unit. For example, mg for milligrams, g for
grams, kg for kilograms, lb for pounds.

ModelTimeUnits - Defines the time unit. For example, s for seconds, min for
minutes, d for days, mo for months, and yr for years.

If the following keywords, Sensitivities, Optimize, Linearity, LinearityAdv, Prediction,
NonlinearIntervals, and SOSSurface, are all “no” by designation or default, the forward
mode is executed. For model calibration, the forward mode is typically performed first to
check the execution of the process model(s) from the command lines, substitution of
parameter values, and reading of model output values. See Table 3 for the UCODE_2005
modes produced when these keywords equal “yes”.

Sensitivities - yes: calculate sensitivities or read them from a derivatives
interface file listed in the Options input block; UCODE_2005 main
output file is fn.#uout. no: do not calculate sensitivities.
Default=no.

Optimize - yes: estimate parameters; UCODE_2005 main output file is
fn.#uout. no: do not estimate parameters. Default=no.

 55

Chapter 6: Input Used to Define UCODE_2005 Operation
 --UCODE_Control_Data Input Block--

Linearity - yes: execute the test-model-linearity mode and produce the data-
exchange file fn._b2 needed by the program
MODEL_LINEARITY (Chapter 15). UCODE_2005 main output
file is fn.#umodlin. no: do not produce the file. Default=no.

The test-model-linearity mode needs to be run in a directory containing data-
exchange files from a successful parameter-estimation mode run. Designate the
same filename prefix on the command line that was used for the other runs.

Prediction - yes: determine predicted values and their sensitivities using the
Prediction input blocks of Chapter 8; UCODE_2005 main output
file is fn.#upred. The output is often used by postprocessor
LINEAR_UNCERTAINTY. This may require use of alternative
process-model input files and associated template files.
Default=no.

LinearityAdv - ‘conf’ or ‘pred’: execute the advanced-model-linearity mode and
produce files needed by the program MODEL_LINEARITY_ADV
(Chapter 17). UCODE_2005 main output file is fn.#umodlinadv_*,
where * is ‘conf’ or ‘pred’. Default=no.

Run the advanced-test-model-linearity mode in a directory containing data-
exchange files from successful parameter-estimation and prediction mode runs as
well as a CORFAC_PLUS run (Chapter 17). Designate the same filename prefix
on the command line that was used for the other runs. Use LinearityAdv=conf to
use parameter values from a data-exchange file with extension _b1advconf. Use
LinearityAdv=pred to use parameter values from a data-exchange file with
extension _b1advpred. The _b1adv* files are produced by CORFAC_PLUS. See
Chapter 17 for additional information.

NonlinearIntervals - yes: calculate nonlinear confidence intervals using the instructions
in Chapter 17. no: do not calculate nonlinear intervals.
NonlinearIntervals=yes results in a full regression for each interval
limit. Default=no.

SOSSurface - yes: calculate sum-of-squared weighted residuals objective
function values for the sets of parameter values defined as in (a)
below. file: calculate sum-of-squared-weighted-residuals
objective-function values for the sets of parameter values defined
as in (b) below. no: do not perform these calculations. Default=no.

When SOSsurface =yes or file, the UCODE_2005 main output file is fn.#usos and
computed values are printed to fn._sos. For each set of parameter values, a
forward command is executed. A command with Purpose=forward needs to be
defined in the Model_Command_Lines input block. Use these options to explore
the objective function. Commonly this is accomplished using contour maps for
two parameters at a time.

 56

Chapter 6: Input Used to Define UCODE_2005 Operation
 --UCODE_Control_Data Input Block--

(a) The sets of parameter values are controlled by the keywords Adjustable,
SOSIncrement, LowerConstraint, and UpperConstraint defined in the
PARAMETER_GROUPS or PARAMETER_DATA input block, as described in
the PARAMETER_DATA input block instructions. The number of sets (and the
number of runs) equals the product of SOSIncrement for each parameter with
Adjustable=yes, and can become large.

(b) The sets of parameter values are read from SOSFile. The parameters listed
need to have adjustable=yes in the PARAMETER_DATA input block; not all
adjustable parameters need be listed. If a listed parameter is not adjustable an
error message is printed and execution stops.

SOSFile - Filename or absolute or relative pathname of a user-created file
needed when SOSsurface=file. Up to 2000 characters; case
sensitivity depends on the operating system.

File SOSFile needs to contain a line with the number of parameters (equal to the
number of columns in the file), a line with the parameter names, and lines that
each contains a set of parameter values -- one parameter value for each listed
parameter name. The number of sets of parameter values is determined by the
number of lines in the file; reading continues to the end of the file. For example,
an SOSFile with one set of parameter values might contain:
5
par1 par2 par3 par4 par5
1.394 4.932 9.664 1546.987 0.3496E-06

StdErrOne - yes: calculate statistics without using the value of the calculated
standard error. Instead, use a value of 1.0. no: calculate statistics
using the standard error calculated from the listed observations.
This is typically only ‘yes’ for projects designed to explore the
type, location, and timing of data that may be most useful for
estimating parameters. Default=no.

EigenValues - yes: calculate and print eigenvalues and their associated
eigenvectors to the main output file; no: do not do this calculation.
Default=yes.

The following three keywords control printing of tables of observations, simulated
values, and residuals to the main output file before, between, and after parameter-
estimation iterations.

StartRes - Controls printing for the starting parameter values. Default=yes.

IntermedRes - Controls printing after each parameter-estimation iteration.
Default=no.

FinalRes - Controls printing for the final parameter values. Default=yes.

 57

Chapter 6: Input Used to Define UCODE_2005 Operation
 --UCODE_Control_Data Input Block--

The following three keywords control printing of sensitivity tables to the main output file
before, between, and after parameter-estimation iterations. All three keywords have the
same options:

Option Table(s) of sensitivities printed in the UCODE_2005 main
output file

css Composite scaled sensitivities
dss Dimensionless and composite scaled sensitivities
onepercentss One-percent scaled sensitivities and composite scaled sensitivities
allss Composite, dimensionless, and one-percent scaled sensitivities
unscaled Unscaled sensitivities and composite scaled sensitivities
all All tables listed above
none Nothing

StartSens - Controls printing for the starting parameter values. Default=dss.

IntermedSens - Controls printing after each parameter-estimation iteration.
Default=none.

Use IntermedSens=yes to ensure that sensitivities are available from the most
recent parameter-estimation iteration if the process model fails during a
parameter-estimation iteration. To control sensitivity calculations when regression
does not converge, use keyword Stats_On_Nonconverge of the Reg_GN_Controls
input block.

FinalSens - Controls printing for the final parameter values. Default=dss.

The creation of most data-exchange files is controlled by the mode executed (see table 3)
and keyword DataExchange. For the sensitivity-analysis mode, a different set of files is
produced if CreateInitFiles=yes regardless of the designation f DataExchange.

DataExchange - yes: generate the data-exchange files containing data for
graphical and numerical analysis. no: do not produce the files.
Default=yes.

CreateInitFiles - Applies only for sensitivity-analysis mode (table 3). yes: generate
data-exchange files with filename extensions _init, _init._mv,
_init._su, and, if prior information is defined, _init._supri. These
files are used by runs described in Chapter 17. No other data-
exchange files are produced. no: do not generate these files;
generate other data-exchange files if keyword DataExchange=yes.
Default=no.

 58

Chapter 6: Input Used to Define UCODE_2005 Operation
 --UCODE_Control_Data Input Block--

Example of a UCODE_Control_Data input block:
BEGIN UCODE_CONTROL_DATA KEYWORDS

ModelName=ex1fullprior
#Units

ModelLengthUnits=m
ModelMassUnits=na
ModelTimeUnits=d

#Performance
sensitivities=yes
optimize=yes
StdErrOne=no
EigenValues=yes

#Printing and output files
StartRes = yes
STARTSens = css
IntermedRes=no
IntermedSens= css
FinalRes= no
FINALSens= css
DataExchange=yes

END UCODE_CONTROL_DATA

 59

Chapter 6: Input Used to Define UCODE_2005 Operation
 --Reg_GN_Controls Input Block--

Reg_GN_Controls Input Block: Control Parameter Estimation
(optional)

The Reg_GN_Controls input block controls the performance of the modified Gauss-
Newton regression method of estimating parameter values for the UCODE_2005
parameter-estimation mode.

The variables can be read in any order. Included variables generally are read using the
default keyword format. TABLE format requires COLUMNLABELS because there is no
default order for these variables.

Only keywords for which the default values are not acceptable need to be included.
Keywords are not case sensitive.

Three keywords are used to control when parameter-estimation iterations stop. Ideally,
convergence is achieved by satisfying the TolPar criterion and TolSOSC equals 0.0.
However, values of 0.01 to 0.1 for TOLSOSC can be useful in the early stages of model
calibration to stop parameter-estimation iterations when they are not improving model fit.

TolPar - Tolerance based on parameter values: parameter-estimation
iterations stop if the maximum fractional change in parameter
values between parameter-estimation iterations is less than the
value of TolPar. Default=10-2.

The fractional change is defined relative to the native parameter value at the
beginning of the iteration. A value of 0.01 requires the fractional change for all
parameters to be less than 1 percent. The value specified here applies to all
parameters for which TolPar is not defined in the Parameter_Data input block.
Use the Parameter_Data input block to define unique values for selected
parameters. To obtain n significant digits in the estimated parameters, set
TolPar=10-n. If the parameter value equals 0.0, a value of 1.0 is used.

TolSOSC - Tolerance based on changes to model fit: parameter-estimation
iterations stop if the fractional decline in the sum-of-squared
weighted residuals over three parameter-estimation iterations is
less than TolSOSC. A value of 0.01 requires the reduction to be
less than 1 percent over three parameter-estimation iterations. If
TolSOSC=0.0, it is not used. Default=0.0.

MaxIter - Maximum number of parameter-estimation iterations allowed
before stopping. Default=5.

Two keywords restrict how much parameter values can change in one parameter-
estimation iteration.

MaxChange - Maximum fractional amount parameter values are allowed to
change between parameter-estimation iterations. The value

 60

Chapter 6: Input Used to Define UCODE_2005 Operation
 --Reg_GN_Controls Input Block--

specified here applies to all parameters; use the Parameter_Data
input block to define a unique MaxChange for each parameter.
Default=2.0, which means that parameter values can change as
much as 200 percent.

MaxChangeRealm - Native, MaxChange applies in native space. Regression:
MaxChange applies in regression space. In regression space
MaxChange applies to log-transformed values for log-transformed
parameters. Default=Native.

Three keywords are used to calculate the Marquardt parameter, which is used to improve
ill-posed regression problems (Cooley and Naff, 1990; Hill and Tiedeman, 2007, Chapter
5; Hill, 1998. p. 8). The Marquardt parameter, μ, is set to zero at the beginning of each
parameter-estimation iteration. If the downgradient direction on the sum-of-squared-
residuals surface and the parameter update vector are greater than MqrtDirection using
the current value of μ, then μ is increased as:

 μ new
 = MqrtFactor μ old

 + MqrtIncrement (8)

The Marquardt parameter can be increased multiple times within a parameter-estimation
iteration.

MqrtDirection - Angle (in degrees) between downgradient direction on the sum-
of-squared-residuals surface and the parameter update vector
above which the Marquardt parameter is applied. If this angle
approaches 90o, regression is unlikely to make progress. Altering
the search direction with the Marquardt parameter often improves
the situation. Default=85.4o.

MqrtFactor - See equation 8 for the Marquardt parameter. Default=1.5.

MqrtIncrement - See equation 8 for the Marquardt parameter. Default=0.001.

The following three keywords control the quasi-Newton updating described by Hill and
Tiedeman (2007, Appendix B) and Hill (1998, Appendix B). Quasi-Newton updating
occasionally produces convergence for difficult problems, though more often greater
improvement can be achieved using the double-dogleg method activated by keywords
listed later in this section or the suggestions described in the section “Common Ways of
Improving a poor model” of Chapter 2.

QuasiNewton - yes: use quasi-Newton updating as indicated by the criteria
below. no: never use quasi-Newton updating. Default=no.

 61

Chapter 6: Input Used to Define UCODE_2005 Operation
 --Reg_GN_Controls Input Block--

The following two keywords are used only if QuasiNewton=yes. If either of these two
criteria is met for a parameter-estimation iteration, Quasi-Newton updating is used for
that and all subsequent iterations.

QNiter - Number of parameter-estimation iterations executed before
including Quasi-Newton updating. A non-zero value is needed if
QuasiNewton=yes. Default=5.

QNsosr - Fractional change in the sum-of-squared weighted residuals over
two parameter-estimation iterations below which Quasi-Newton
updating is used. A value of 0.01 indicates that Quasi-Newton
updating occurs if the sum-of-squared weighted residuals changes
less than 1 percent over two iterations. Default=0.01.

OmitDefault - The number of values to read from user-created file fn.omit.
When a simulated equivalent equals one of these numbers, the
observation is omitted from the regression and a message is printed
in its place in the UCODE output file. This is useful if the
application code prints a default value for items that cannot be
calculated. Default=0.

The user-created file needs to have the name fn.omit, where fn is replaced by the
filename prefix specified on the UCODE_2005 command line. It needs to be
located in the directory where UCODE_2005 is executed. The file needs to
contain OmitDefault real numbers and be constructed as follows. The first line is
BEGIN OMIT_DATA. Starting with the next line, enter one value per line, with
no blank lines. End with the line END OMIT_DATA.

For example, if OMITDEFAULT=2, the file fn.omit may contain:

BEGIN OMIT_DATA
1.D30
999.
END OMIT_DATA

Stats_On_Nonconverge – yes: when parameter estimation does not converge in the
maximum number of iterations, calculate final sensitivities and
calculate and print final statistics. For perturbation sensitivities,
central differences are used so that the process model is executed
(2×NP)+1 more times, where NP is the number of estimated
parameters. no: when parameter estimation does not converge do
not calculate and print final statistics. Default=yes.

 62

Chapter 6: Input Used to Define UCODE_2005 Operation
 --Reg_GN_Controls Input Block--

Three keywords control dynamic omission of insensitive parameters from the regression.
If some adjustable parameters are insensitive, parameter estimation is likely to perform
poorly without dynamic omission of insensitive parameters.

OmitInsensitive – yes: use composite scaled sensitivities (CSS) to omit parameters
from the regression and reinclude them. no: always include all
adjustable parameters. Default=no.

Omit parameter j if CSSj< (MinimumSensRatio × CSSmax), where CSSj is the CSS
for parameter j, CSSmax is the largest CSS for any parameter. Affected parameters
are held at the last estimated value. Parameter j is included again if
ReincludeSensRatio>0.0 and CSSj >(ReincludeSensRatio × CSSmax).
Sensitivities for parameter j are calculated for each iteration, even when it is held
constant.

MinimumSensRatio – Used as described for OmitInsensitive. Default=0.005.

ReincludeSensRatio – Used as described for OmitInsensitive. Default=0.02.

If any observation is assigned a WtOSConstant>0 in the Observation_Data input block,
its weight can be calculated using simulated values and the following keyword is used.

TolParWtOS – TolParWtOS×TolPar equals the parameter-change threshold
below which simulated values are used to calculate weights on
observations with WtOSConstant>0. Above this threshold,
observed values are used to calculate the weights. Default=10.

Four keywords control the trust-region modification of Gauss-Newton regression with the
step size determined by the double-dogleg or hookstep strategy. The trust region method
and a number of step size strategies are described by Dennis and Schnabel (1996). Mehl
and Hill (2002) show that the trust-region method with the double dogleg strategy can
decrease the number of iterations needed by a factor of two and can produce solutions in
difficult problems relative to modified Gauss-Newton without these methods. For
difficult problems, the suggestions in the section “Common ways of improving a poor
model” of Chapter 3 of this report may also be useful. If TrustRegion=no, then MaxStep
and ConsecMax are ignored.

TrustRegion - Dogleg: use the trust-region modification with the double dogleg
step-size strategy. Hookstep: use the hookstep modification. no: do
not use a trust region modification. Default=no.

When TrustRegion=Dogleg or Hookstep, the following apply. Parameters can be
log-transformed. Dynamic omission of insensitive parameters and quasi-Newton
updating can be used. The convergence criteria are TolPar and TolSOSC, used as
described above. There is one restriction: Parameter values can not be
constrained; defined constraints are ignored. The update method used for each
parameter-estimation iteration is listed in the output file. If the method is always
“Full Newton” when using Dogleg, or “MU value from hookstep = 0.0” when
using Hookstep, then shorter execution time can be achieved with
TrustRegion=no.

 63

Chapter 6: Input Used to Define UCODE_2005 Operation
 --Reg_GN_Controls Input Block--

MaxStep - Maximum allowable step size. For the double-dogleg method, the
default is a function of the parameter values, and is printed in the
UCODE_2005 main output file. The default is used if the MaxStep
keword is omitted or if it is assigned a negative value; for example,
MaxStep=-1. If the regression is moving too slowly, assign
MaxStep a value that is larger than the default. If the regression is
too erratic, assign MaxStep a value that is smaller than the default.

ConsecMax - Maximum number of times that MaxStep is used consecutively
before execution stops. Default=5.

Use of the maximum allowable step size (MaxStep) by the regression is taken to
indicate that either (1) the problem is very poorly defined so that extreme and
probably unrealistic parameter values are being estimated or (2) MaxStep is too
small and impeding progress of the regression. Instead of incurring many
regression iterations, stopping the regression provides the user the opportunity to
(1) reevaluate the problem or (2) increase MaxStep, respectively.

Scaling - no: The least-squares matrix is not scaled by the non-zero starting
parameter values. yes: The scaling is employed. Default=yes.

This scaling can significantly improve convergence properties. However, in some
circumstances much better convergence has been reported without scaling by
Dennis, Gay and Welsch (1981) and S.W. Mehl (U.S. Geological Survey, written
commun., 2007). When the regression is does not reduce the sum of squared
weighted residuals over several iterations, omitting this scaling may improve
regression performance.

Example of a Reg_GN_Controls input block:
BEGIN REG_GN_CONTROLS KEYWORDS
#Defaults are used for keywords not listed here

tolpar=0.01
tolsosc=0.1
maxiter=10
maxchange=1.5
MaxchangeRealm=regression

END REG_GN_CONTROLS

 64

Chapter 6: Input Used to Define UCODE_2005 Operation
 --Model_Command_Lines Input Block--

Model_Command_Lines Input Block: Control Execution of the
Process model (required)

The Model_Command_Lines input block defines the command needed to execute a
process model. Different commands can be defined to execute the process model in a
way that produces one forward run, a run that also produces sensitivities (here the use of
‘der’ is derived from sensitivities being equivalent derivatives). For completeness, the
option in which the process model produces only sensitivities is also included, but this
option is rarely used.

The three keywords are listed below. Keywords are not case sensitive.

Command - Operating system command that executes the process model(s).
Up to 2,000 characters. The command can be the name of an
executable file or an absolute or relative pathname. If the
command includes spaces, it needs to be enclosed in single quotes;
otherwise, quotes are optional. If the command line includes
single quotes, a way to run it without single quotes needs to be
implemented. For example, on a Windows operating system it
could be placed in a batch file. There is no default.

Purpose - The type of process-model run executed by Command. For the
three options described here, the term "simulated values" can refer
to simulated equivalents to observations, predictions, or both.
Default=forward.

 forward: The command makes a model run that generates simulated
values.

 derivatives: The command makes a model run that generates sensitivities
of simulated values with respect to specified parameters.

 forward&der: The command makes a model run that generates both
simulated values and sensitivities of the simulated values with
respect to specified parameters.

CommandID - A name for the command. The command name is used at the top
of the main output file in a list of the programs run; it does not
influence the execution process. There is no default.

If Blockformat KEYWORDS is selected by designation or default, the Command
keyword needs to be listed first, followed by the two other keywords in any order. The
Command keyword needs to be the first keyword on a new line. This sequence is
repeated for each command. Each purpose can only be listed once.

Blockformat TABLE requires COLUMNLABELS because there is no default order for
these variables.

 65

Chapter 6: Input Used to Define UCODE_2005 Operation
 --Model_Command_Lines Input Block--

Example of a Model_Command_Lines input block:
BEGIN MODEL_COMMAND_LINES
Need single quotes around 'Command=value' if it includes
any spaces. Quotes are optional otherwise

Command='m.bat'
purpose=forward&der
CommandId=modflow

END MODEL_COMMAND_LINES

In many situations the ‘process model’ is actually a sequence of models. This is
accommodated using UCODE_2005 by assembling the required simulations in a batch
file on a Windows operating system, script on a Linux operating system, and so on. Then
the batch file or script is defined using the keyword Command.

For example, on a Windows operating system the batch file listed in the Command_Lines
input block might contain the following.
call ..\..\test-data-win\data-obs\tc1-obs.bat
call ..\..\test-data-win\data-preds\tc1-pred.bat

The listed batch files need to be inspected carefully. For example, any line containing the
command ‘pause’ in a batch file causes execution to halt until a key on the keyboard is
pressed. This would require constant attention as the UCODE_2005 run proceeded.

 66

Chapter 7: Input Used to Define Parameters

Chapter 7: INPUT TO DEFINE PARAMETERS
Up to four input blocks can be used to define parameters: Parameter_Groups,
Parameter_Data, Parameter_Values, and Derived_Parameters. The second is always
needed; the other three are optional.

Quantities needed to define parameters include the starting parameter value, values that
govern how perturbation sensitivities are calculated, and so on. Some of these quantities
may be the same for many parameters, and it is convenient to define such quantities for
the parameters as a group. UCODE_2005 provides for this using the optional
Parameter_Groups input block.

Information specific to individual parameters is defined in the required Parameter_Data
input block. If differences occur, data specified in the Parameter_Data input block replace
data specified in the Parameter_Groups input block.

To start with a set of parameter values previously calculated by UCODE_2005, or any
alternative values, while preserving a record of the original starting values, use the
Parameter_Values input block.

Commonly some parameters represent quantities that need to be manipulated before
being written into the process-model input file. For example, it may be useful to define
the parameter as hydraulic conductivity of the riverbed while the model input requires a
conductance defined as the hydraulic conductivity times area divided by riverbed
thickness. Or, it may be useful to define a recharge parameter in millimeters per year
within a model for which the length unit is meters. To calculate model inputs that are a
function of defined parameters, use the Derived_Parameters input block.

 67

Chapter 7: Input Used to Define Parameters
 --Parameter_Groups Input Block--

Parameter_Groups Input Block (optional)

Use the Parameter_Groups input block to assign data that apply to all or many of the
parameters within defined groups. Data for individual parameters can be assigned in the
subsequently read Parameter_Data input block, and, when quantities specified in the
Parameter_Groups block are repeated in the Parameter_Data block, the data specified in
the Parameter_Data block are used.

Keywords in this input block include:

GroupName - The name of the group (up to 12 characters; not case sensitive).
Default=ParamDefault

Other keywords - Any keyword from the Parameter_Data input block.

If Blockformat KEYWORDS is selected by designation or default, keywords associated
with a parameter group in the Parameter_Groups input block need to be grouped together
and follow the related GroupName. The GroupName keyword needs to be the first
keyword on a new line.

If Blockformat TABLE format is selected, COLUMNLABELS are needed because there
is no default column order for the Parameter_Groups input block.

Example of a Parameter_Groups input block:
BEGIN PARAMETER_GROUPS KEYWORDS
 groupname=Default adjustable=yes tolpar=0.005
END PARAMETER_GROUPS

 68

Chapter 7: Input Used to Define Parameters
 --Parameter_Data Input Block--

Parameter_Data Input Block (required)

The Parameter_Data input block provides information about individual parameters.

For each parameter, keywords listed below can be defined either in the Parameter_Data
or the Parameter_Group input block except that ParamName needs to be specified here.

By specifying the groupname for a parameter in this block, all values associated with that
group in the Parameter_Groups block are assigned to the parameter. Any data defined for
a parameter in this input block overrides data from the Parameter_Groups input block.

Linking parameters such that multiple parameters defined in the Parameter_Data input
block are treated as if they are one parameter can be useful in many situations. For
example, if parameters are too insensitive to be estimated individually, linking them
together can produce a parameter that can be estimated. Also, linking parameters is often
needed to obtain useful parameter correlation coefficients (Hill and Østerby, 2003). In
UCODE_2005, parameters can be linked by making suitable changes in the
Parameter_Data input block and using the Derived_Parameters input block. The
methodology is described in the documentation of the Derived_Parameters input block.

The KEYWORDS for the Parameter_Data input block are:

ParamName - Parameter name (up to 12 characters; not case sensitive) – a
character string that is used in a template file or in an equation of a
derived parameter in the Derived_Parameters input block. Each
parameter name needs to be unique and can not be the same as any
parameter name defined in the Derived_Parameter input block.

Naming convention for ParamName:

1) The first character needs to be a letter of the set (A-Z, a-z); and

2) All remaining characters need to be a letter, digit, or member of the set:

 _ . : & # @ (underscore, dot, colon, ampersand, number sign, at symbol).

The restrictions are needed for the parameter names to be used in the equations
defined in Chapter 13.

GroupName - Group name (up to 12 characters; not case sensitive). Each
parameter needs to be a member of one group.
Default=ParamDefault

StartValue - Starting parameter value. Default=A huge real number. The huge
real number is obtained for the computer being used and
commonly is about 1038.

 69

Chapter 7: Input Used to Define Parameters
 --Parameter_Data Input Block--

The following two keywords define lower and upper reasonable values for the parameter;
they do not constrain the parameter value. Estimates that are not reasonable can be
important indicators of model error (Poeter and Hill, 1996; Hill and Tiedeman, 2007,
Chapter 5.5). Estimated parameter values that are outside the defined range are identified
in the main output file and in the _pc data-exchange file. Estimated parameter values for
which the entire linear confidence interval is outside the defined range also are identified,
and are a strong indicator of model error.

LowerValue - Smallest reasonable value for this parameter. Default= −(Huge
real number). In absolute value, commonly about 1038.

UpperValue - Largest reasonable value for this parameter. Default= +(Huge
real number). Commonly about +1038.

The following keyword is used only when Optimize=yes in the UCODE_Control_Data
input block. In that situation, Constrain=yes indicates that the estimated parameter value
is required to remain between LowerConstraint and UpperConstraint. Using constraints
to avoid unreasonable parameter values can diminish a valuable tool for identifying
model error. Using constraints to avoid parameter values that prevent a code from
running (for example, n>1 for a vanGenuchten characteristic function) can be important
to achieving successful regressions.

Constrain – yes: constrain parameter values using LowerConstraint and
UpperConstraint. Default=no.

The following two keywords serve one of two purposes depending on keywords
Optimize and SOSSurface in the UCODE_Control_Data input block.

(1) When Optimize=yes, Constrain=yes indicates that the estimated parameter value
is required to remain between LowerConstraint and UpperConstraint.

(2) When SOSSurface=yes, LowerConstraint and UpperConstraint are used with
SOSIncrement to define sets of parameter values.

LowerConstraint - Lower limit of considered parameter values.

UpperConstraint - Upper limit of considered parameter values.

When Optimize=yes and Constrain=yes, constraining parameter values is
implemented as follows. If a parameter value has been constrained and is about to
violate a specified constraint in a given parameter-estimation iteration, the step
size for the parameter-estimation iteration is limited to the amount needed for the
parameter to reach the limiting constraint.

If one or more parameters have been omitted from the regression because of
constraints, in each subsequent parameter-estimation iteration their sensitivities
are re-evaluated and regression is attempted with the parameters. Parameter
values calculated to move to within the constraints are allowed to change with the
other parameter values. Parameter values calculated to move outside the

 70

Chapter 7: Input Used to Define Parameters
 --Parameter_Data Input Block--

constraints are considered as follows. First the parameter with the largest
fractional change is omitted and the parameter change vector is recomputed. If
additional parameter values move outside the constraints, the procedure is
repeated until a set of parameter values is obtained that are calculated to be within
their constraints.

Adjustable - yes: change this value as needed depending on the purpose of the
UCODE_2005 run defined in the UCODE_Control_Data input
file. no: leave the value of this parameter unchanged. Default=no.

PerturbAmt - Fractional amount of parameter value to perturb to calculate
sensitivity. Commonly 0.01 to 0.10. Default=0.01. See discussion
in Chapter 3.

Transform - yes: log-transform the parameter for the regression. no: estimate
the native value in the regression. If Transform=yes, any
transformed values printed to files are in log base 10 except that
weighted residuals for prior information are in natural log. Within
the program calculations are done using natural logs. Default=no.

TolPar - Replaces, for this parameter, the value of TolPar from the
Reg_GN_Controls input block. Default=TolPar from the
Reg_GN_Controls input block.

MaxChange - Maximum fractional parameter change allowed between
parameter iterations. Default=2.0.

SenMethod - A flag indicating how sensitivities are obtained. Sensitivities for
different parameters can be obtained using different methods. For
each parameter, sensitivities for all simulated values are calculated
by a single method. Default=1. Options include:

SenMethod Source of sensitivities
-1 Process-model output file. Sensitivities for log transformed

parameters are read as transformed sensitivities.
0 Process-model output file. Sensitivities for log transformed

parameters are read as native parameter sensitivities and
transformed by UCODE_2005.

1 Calculate by forward-difference perturbation. (Default)
2 Calculate by central-difference perturbation (two-point method)

ScalePval - A positive number used in scaled sensitivities if the absolute
value of the parameter value is less than ScalePval. If the absolute
value of the parameter value is less than ScalePval, ScalePval
replaces the parameter value in the scaling of one-percent,
dimensionless, and composite scaled sensitivities.
Default=StartValue/100. ScalePval also is used in Nonlinear
Uncertainty Mode. There are no default values in this situation.

 71

Chapter 7: Input Used to Define Parameters
 --Parameter_Data Input Block--

Good choices for ScalePval are (1) the smallest (in absolute value) reasonable
value of the parameter or (2) a value two to three orders of magnitude smaller
than the expected value, which is typically the starting value. If the smallest
reasonable value is 0.0, a reasonable non-zero value needs to be used. ScalePval
has no effect on the scaled sensitivities for log-transformed parameters or on
parameter estimation.

SOSIncrement - The number of values to be considered between and including the
specified LowerConstraint and UpperConstraint for parameters
with adjustable=yes. Only used when SOSsurface=yes in the
UCODE_Control_Data input block. The number of runs equals the
product of all non-zero values of SOSIncrement for parameters
with adjustable=yes. A value of 5 results in parameter values at the
LowerConstraint, the UpperConstraint and three evenly spaced
intermediate values. For log-transfomed parameters, the
intermediate values are evenly spaced in log space. Default=5.

NonLinearInterval – yes: calculate nonlinear intervals for this parameter when
NonlinearIntervals=yes in the UCODE_CONTROL_DATA block.
no: do not calculate nonlinear intervals for this parameter.
Default=no.

If Blockformat KEYWORDS is selected by designation or default, keywords defining a
parameter in the Parameter_Data input block need to be grouped together and follow the
related ParamName. The ParamName keyword needs to be the first keyword on a new
line. ParamName and associated keywords are repeated to define multiple parameters.

If blockformat TABLE is selected without indicating ColumnLabels, the default column
order is the order in which the keywords are defined above and listed below. No columns
are ignored and a column for each keyword is needed. If ColumnLabels are indicated, the
column labels can appear in any order; the ParamName keyword need not be first, though
it often is first. If keyword NonLinearInterval is used, column labels are needed because
it is not included in the default column order.

Default Column Order: PARAMNAME GROUPNAME STARTVALUE LOWERVALUE
UPPERVALUE CONSTRAIN LOWERCONSTRAINT UPPERCONSTRAINT
ADJUSTABLE PERTURBAMT TRANSFORM TOLPAR MAXCHANGE SENMETHOD
SCALEPVAL SOSINCREMENT NONLINEARINTERVAL

 72

Chapter 7: Input Used to Define Parameters
 --Parameter_Data Input Block--

Example of a Parameter_Data input block:
BEGIN PARAMETER_DATA TABLE
Defaults are used for keywords that are not listed.
Selected values are listed here for easy reference:
SenMethod=1 (sensitivities are calculated by perturbation),
maxchange=2.0
nrow=9 ncol=6 columnlabels groupname=mypars
paramname startvalue lowervalue uppervalue scalepval adjustable
Wells_TR -1.1000 -1.4 -0.8 1.0E-3 yes
RCH_Zone_1 60. 30.0 80.0 1.0E-2 yes
RCH_Zone_2 30. 20.0 60.0 1.0E-2 yes
Rivers .00120 .00012 1.2E-2 1.0E-6 no
SS_1 .00130 .00013 1.3E-2 1.0E-6 yes
HK_1 .00030 .00003 3.0E-3 1.0E-7 yes
Vert_K_CB 1.0E-7 1.0E-8 1.0E-6 1.0E-10 yes
SS_2 6.2E-5 2.0E-5 2.0E-3 1.0E-7 no
HK_2 4.0E-5 4.0E-6 4.0E-4 1.0E-8 no
END PARAMETER_DATA

 73

Chapter 7: Input Used to Define Parameters
 --Parameter_Values Input Block--

Parameter_Values Input Block: Use Alternative Starting
Parameter Values (optional)

A Parameter_Values input block can optionally follow the Parameter_Data block. A
Parameter_Values block provides a convenient way to use the following.

(1) Parameter values generated by an earlier run of UCODE_2005 and written to data-
exchange file fn._pasub (fn is a filename prefix defined on the command line).

(2) Parameter values generated by an external preprocessing program.

(3) Alternate starting values without losing a record of starting values listed in the
Parameter_Groups or Parameter_Data input blocks. This can be important because
regression performance sometimes can be improved by using alternate starting values
(Hill and Tiedeman, 2007).

All parameters need to have a starting value defined at least once using the StartValue
keyword in the Parameter_Groups, Parameter_Data, or Parameter_Values input blocks. If
defined more than once, values defined in the Parameter_Values input block replace
values defined elsewhere; values in the Parameter_Data input block replace values
defined in the Parameter_Groups input block.

The KEYWORDS for the Parameter_Values input block are:

ParamName - The name of the parameter for which a value is specified.

StartValue - The specified parameter value.

If Blockformat KEYWORDS is selected by designation or default, each keyword
ParamName needs to be followed by the associated keyword StartValue. The
ParamName keyword needs to be the first keyword on a new line.

If Blockformat TABLE is selected without indicating COLUMNLABELS, the default
column order is as listed above: ParamName StartValue.

 74

Chapter 7: Input Used to Define Parameters
 --Parameter_Values Input Block--

Example of the Parameter_Values input block:
BEGIN Parameter_Values TABLE
These values override values listed in Parameter_Data
input block
 nrow=9 ncol=2 columnlabels
 paramname startvalue
 Wells_TR -1.1000
 RCH_Zone_1 6.3072E+1
 RCH_Zone_2 3.1536E+1
 Rivers 1.2000E-3
 SS_1 1.3000E-3
 HK_1 3.0000E-4
 Vert_K_CB 1.0000E-7
 SS_2 2.0000E-4
 HK_2 4.0000E-5
END Parameter_Values

 75

Chapter 7: Input Used to Define Parameters
 --Derived_Parameters Input Block--

Derived_Parameters Input Block: Define Model Inputs as
Functions of Parameters (optional)

A Derived_Parameter input block can optionally end the parameter input section. The
keywords of the Derived_Parameters input block are:

DerParName - Name of derived parameter (up to 12 characters, not case
sensitive) – a character string that is to be substituted into a
process-model input file or used in another equation. Each derived
parameter name needs to be unique and can not be the same as any
parameter name defined in the Parameter_Data input block

Naming convention for ParamName:

1) The first character needs to be a letter of the set (A-Z, a-z); and

2) All remaining characters need to be a letter, digit, or member of the set:

 _ . : & # @ (underscore, dot, colon, ampersand, number sign, at symbol).

The restrictions are needed for the parameter names to be used in the equations
defined in Chapter 13.

DerParEqn - An equation without an “equal” sign (that is, just the equation
right-hand side) by which the derived parameter is calculated,
generally using defined parameters.

The following rules apply to DerParEqn:
1) Equation protocols are outlined in the EQUATION section of this document in

Chapter 13.
2) Variables listed in an equation can be a parameter name from the

Parameter_Data section, or a derived parameter name that is previously
defined in the Derived_Parameters input block.

3) Template files can be constructed using derived parameter names defined in the
Derived_Parameters input block or parameter names defined in the
Parameter_Data input block. Not all defined names need to appear in the
template files.

If Blockformat KEYWORDS is selected by designation or default, each keyword
DerParName needs to be followed by the associated DerParEqn. The DerParName
keyword needs to be the first keyword on a new line.

If Blockformat TABLE is selected without indicating COLUMNLABELS, the default
column order is as listed above: DerParNamE DerParEqn.

 76

Chapter 7: Input Used to Define Parameters
 --Derived_Parameters Input Block--

Example of the Derived_Parameters input block:
BEGIN Derived_Parameters TABLE
nrow=1 ncol=2 columnlabels
derparname derpareqn
K T/b
END Derived_Parameters

As mentioned in the documentation of the Parameter_Data input block, linking
parameters can be useful in many situations. In UCODE_2005, parameters can be linked
as follows.

1. Identify a parameter to which other parameters are linked. This is called the
anchor parameter.

2. Delete the linked parameters from the Parameter_Data input block. The template
files remain unchanged.

3. In the Derived_Parameters input block, define the linked parameters using the
anchor parameter. Use equations as needed to maintain the desired relation
between the linked parameters and the anchor parameter.

For example, consider the following Parameter_Data input block
BEGIN PARAMETER_DATA TABLE
Use the defaults:
SenMethod=1 (sensitivities are calculated by perturbation),
maxchange=2.0
tolpar from the Reg_GN_Controls input block is used for all
parameters, perturbamt=0.01
1 2 3 4 5 6
nrow=5 ncol=6 columnlabels GroupName=MyPars
paramname STARTVALUE lowervalue uppervalue scalepval transform
RCH_Zone_2 3.1536E+1 20.0 60.0 1.0E-2 no
Rivers 1.2000E-3 1.2E-4 1.2E-2 1.0E-6 yes
HK_1 3.0000E-4 3.0E-5 3.0E-3 1.0E-7 yes
Vert_K_CB 1.0000E-7 1.0E-8 1.0E-6 1.0E-10 yes
HK_2 4.0000E-5 4.0E-6 4.0E-4 1.0E-8 yes
END PARAMETER_DATA

Parameters HK_1, HK_2, and Rivers can be combined with the following
Parameter_Data and Derived_Parameters input blocks, using HK_1 as the anchor
parameter.
BEGIN PARAMETER_DATA TABLE
Use the defaults: SenMethod=1 (sensitivities are calculated by
perturbation), maxchange=2.0, tolpar from the Reg_GN_Controls input
block is used for all parameters, perturbamt=0.01
Combined parameters are saved here in comment statements:
#Rivers 1.2000E-3 1.2E-4 1.2E-2 1.0E-6 yes
#HK_2 4.0000E-5 4.0E-6 4.0E-4 1.0E-8 yes
1 2 3 4 5 6
nrow=3 ncol=6 columnlabels GroupName=MyPars
paramname STARTVALUE lowervalue uppervalue scalepval transform
RCH_Zone_2 3.1536E+1 20.0 60.0 1.0E-2 no
HK_1 3.0000E-4 3.0E-5 3.0E-3 1.0E-7 yes
Vert_K_CB 1.0000E-7 1.0E-8 1.0E-6 1.0E-10 yes
END PARAMETER_DATA

 77

Chapter 7: Input Used to Define Parameters
 --Derived_Parameters Input Block--

BEGIN Derived_Parameters TABLE
nrow=2 ncol=2 columnlabels
derparname derpareqn
Rivers HK_1*1.2000E-3/3.0000E-4
HK_2 HK_1*4.0000E-5/3.0000E-4
END Derived_Parameters

In this case, the equations in the Derived_Parameter input block ensure that the linked
parameters maintain a constant ratio to the value of HK_1 as it is adjusted. That is, the
ratio of each linked parameter value to the anchor parameter value stays the same as it
was for the starting parameter values. If another relation is desired, such as preserving a
sum or difference, the equations can be changed accordingly.

 78

Chapter 8: Input Used to Define Observations and Predictions

Chapter 8: INPUT TO DEFINE OBSERVATIONS AND
PREDICTIONS

Observations and predictions are defined using input blocks that are nearly identical, so
both are described in this chapter.

UCODE_2005 allows substantial flexibility in the values used as simulated equivalents
of the observations or as predictions. Such values can be calculated from one or more of
the values read from the process-model output file(s). This flexibility is needed, for
example, when an observation is located at a point in space that is not represented by a
printed value in the simulation output, but rather falls between the locations of a number
of printed values. In this situation, UCODE_2005 can be instructed to interpolate the
printed values to obtain a simulated value for comparison with the observation.
Alternatively, an observation or prediction may be the equivalent of the sum of many
values or portions of values printed by the application code(s). In UCODE_2005, these
values or appropriate portions of them can be summed to obtain an equivalent simulated
value or prediction using the Derived_Observations and Derived_Predictions input
blocks.

Observations

Up to three input blocks can be used to define observations: Observation_Groups,
Observation_Data, and Derived_Observations. To define observations, the second input
block is always needed; the first and last are optional.

Observations need to be defined for all UCODE_2005 modes except the prediction mode,
for which all observation input blocks need to be omitted. The prediction mode is defined
when prediction=yes in the UCODE_Control_Data input block. For mode definition, see
table 3 and Chapter 17.

The quantities needed to define observations include the observed value, values that
quantify the accuracy of the observed value, and so on. Some of these quantities are the
same for many observations, and it is convenient to define them for observations as a
group. UCODE_2005 provides for this using the optional Observation_Groups input
block.

Information specific to individual observations is defined in the required
Observation_Data input block. If the information differs from that specified in the
Observation_Groups input block, the data specified in the Observation_Data input block
are used.

In some circumstances the observation represents a quantity that is not directly provided
in the process-model output file. For example, hydraulic-heads may be produced by the
process model, but the observation may be drawdown. In these circumstances it is
advantageous to calculate simulated equivalents that are a function of values read from

 79

Chapter 8: Input Used to Define Observations and Predictions

the output file(s). This can be accomplished by using Derived_Observations, which can
be specified in the Observation_Data input block or, if the user prefers to separate these
for organizational reasons, they can be specified in the Derived_Observations input
block.

 80

Chapter 8: Input Used to Define Observations and Predictions
 --Observation_Groups Input Block--

Observation_Groups Input Block (optional)

Use the Observation_Groups input block to define groups and to assign data that apply to
all or many of the observations within defined groups. Data for individual observations
can be assigned in the subsequently read Observation_Data input block. When quantities
are specified in both blocks, data specified in the Observation_Data block are used.
Keywords in this input block include:

GroupName - Name for a group of observations (up to 12 characters; not case
sensitive). Default=DefaultObs.

UseFlag - yes: use the simulated values in this group to compare against
observed values in the regression. no: do not include the
observations of this group in the regression. Use ‘no’ for items
only read to calculate derived observations. Default=yes.

PlotSymbol - An integer intended for use in post-processing programs to assign
symbols for plotting. Default=1.

WtMultiplier - Value used to multiply the weights associated with members of a
group when the weighting is defined using Statistic and StatFlag
keywords described for the Observation_Data input block.
Default=1.0.

A CovMatrix is needed to represent correlation between errors in the members of a
group. One matrix is used to define the weighting for all the members in the group.
Members with independent errors have zero off-diagonal terms in the matrix.

CovMatrix - Name of the error variance-covariance matrix. The matrix is
specified in the Matrix_Files input block of Chapter 10. CovMatrix
should not be specified if there is no correlation between errors in
the members of a group.

Other keywords - Any keyword from the Observation_Data input block.

If Blockformat KEYWORDS is selected by designation or default, keywords associated
with an observation group need to be grouped together and follow the related
GroupName. The GroupName keyword needs to be the first keyword on a new line.

If Blockformat TABLE format is selected, COLUMNLABELS are needed because there
is no default column order for the Observation_Groups input block.

 81

Chapter 8: Input Used to Define Observations and Predictions
 --Observation_Groups Input Block--

Example of an Observation_Groups input block:
BEGIN OBSERVATION_GROUPS TABLE
 nrow=5 ncol=3 columnlabels statflag=sd
 GROUPNAME plotsymbol useflag
 heads 1 yes
 headsext 0 no
 hds4der 1 yes
 notused 0 no
 flowobs 2 yes
END OBSERVATION_GROUPS

 82

Chapter 8: Input Used to Define Observations and Predictions
 Observation_Data Input Block

Observation_Data Input Block (required except for prediction
mode)

The Observation_Data input block provides information about individual observations.
For each observation, all the keywords listed below need to be defined either in the
Observation_Data or the Observation_Groups input block or by default.

By specifying a groupname for an observation, all definitions for that group from the
Observation_Groups input block are assigned to the observation. Keywords defined in
the Observation_Groups input block only need to appear here to change the designation.
Any data defined for an observation in this block overrides data from the
Observation_Groups input block with one exception: if a CovMatrix is specified for the
group in the Observation_Groups input block, then values assigned to Statistic and
StatFlag in the Observation_Data input block are ignored.

The following keywords are available for this input block:

ObsName - Observation name (up to 20 characters, not case sensitive). Each
observation name needs to be unique.

Naming convention for ObsName:

1) The first character needs to be a letter of the set (A-Z, a-z); and

2) All remaining characters need to be a letter, digit, or member of the set:

 _ . : & # @ (underscore, dot, colon, ampersand, number sign, at symbol).

3) The name ‘dum’ can not be used.

The restrictions are needed for the parameter names to be used in the equations
defined in Chapter 13.

ObsValue - Observation value or, if the observation is below a detection limit
(NonDetect=yes; see fifth keyword down), the value to use in the
regression.

Statistic - Value used to calculate the observation weight.

StatFlag - Character string that defines the corresponding statistic and how
it is used to calculate the weight. No default. Options are:

StatFlag Statistic Weight calculated as
VAR Variance 1/Statistic
SD Standard deviation 1/(Statistic)2
CV Coefficient of variation 1/(Statistic×ObsValue)2
WT Weight Statistic
SQRWT Square root of the weight Statistic2

 83

Chapter 8: Input Used to Define Observations and Predictions
 Observation_Data Input Block

GroupName - Group name from the Observation_Groups input block. The
group attributes defined in the Observation_Groups input block are
assigned to the observation and are then changed to attributes from
the Observation_Data input block if specified. If the groupname
used here has not been defined, the observation will not be used in
the regression. Default=DefaultObs.

Equation - An equation without an “equal” sign that defines how to calculate
a simulated equivalent value to compare to the observation from
simulated equivalents of previously defined observations. Use of _
for the equation indicates that the extracted value is used directly
and it is not considered to be derived. Default= _.

See the comment under the Derived_Observations section concerning calculating
sensitivities for derived observations. The following rules apply to equations:

1. Equation protocols are outlined in Chapter 13 of this report. Equations can
contain spaces only if the equation is enclosed in double or single quotes.

2. Equations can cite any ObsName previously listed in the Observation_Data
input block. Cited observations can have a UseFlag of “yes” or “no”.

3. Equations can be nonlinear.

4. An observation derived with an equation can not be used in conjunction with
sensitivities calculated by the process model (SenMethod=-1 or 0 in the
Parameter_Data input block). Rather sensitivities need to be calculated by
perturbation (SenMethod=1 or 2).

Nondetects are common when using concentration and other types of observations, and
can be important to include in any analysis, as discussed by Helsel (2004). That text
discusses the disadvantages of the commonly used methods of deletion and substitution.
Deleting non-detects can bias the solutions to higher values; substitution using detection
limits (commonly one-half the detection limit is used) can bias the solution because of the
generally downward trend of detection limits. These common methods can be pursued
using UCODE_2005, but the results need to be considered carefully.

NonDetect - yes: the observed value is below a detection limit and the value
specified as ObsValue is used in the regression. This is what Helsel
(2004) calls a substitution method. If NonDetect=yes, calculation
of the residual depends on the simulated value: if simulated value
≤ ObsValue, the residual equals zero; if simulated value >
ObsValue, the residual equals ObsValue minus the simulated
value, as usual. If NonDetect=yes, default columns can not be used
and the runs statistic is not printed. Default=no.

 84

Chapter 8: Input Used to Define Observations and Predictions
 Observation_Data Input Block

The next keyword controls the use of simulated values to calculate weights as described
in equation 3 of Chapter 3. The calculation uses keyword TolParWtOS from the
Reg_GN_Control input block. If WtOSConstant>0, the following apply: (1) default
column order cannot be used and columnlabels are needed and (2) StatFlag=CV is
needed for this observation and a correlated weight matrix cannot be used for the group.
Generally the value of WtOSConstant is the same for all members of a group.

WtOSConstant – The constant η in equation 3. Default=0.0.

If Blockformat KEYWORDS is selected by designation or default, keywords defining an
observation in the Observation_Data input block need to be grouped together and follow
the related ObsName. The ObsName keyword needs to be the first keyword on a new
line. ObsName and associated keywords are repeated to define multiple observations.

If blockformat TABLE is selected without indicating ColumnLabels, the default column
order listed below is used. No columns are ignored and a column for each keyword is
expected. If ColumnLabels are indicated, the column labels can appear in any order; the
ObsName keyword need not be first, though it often is. The keywords WtOSConstant and
NonDetect are not included in the default column order. If WtOSConstant and(or)
NonDetect need to be other than the 0.0 default value, they need to be defined in the
Observation_Groups input block or column labels need to be used.

Default Column Order:
OBSNAME OBSVALUE STATISTIC STATFLAG GROUPNAME EQUATION

Example of the Observation_Data input block. This example is consistent with the
example in the Observation_Groups input block example in the previous section.
BEGIN OBSERVATION_DATA FILES
tc1.hed
tc1.flo
END OBSERVATION_DATA

Files tc1.hed and tc1.flo are read. For example, file tc1.flo:
#For GroupName=flowobs, StatFlag=sd in
#the Observation_Groups input block
BEGIN OBSERVATION_DATA TABLE
 NROW=5 NCOL=5 COLUMNLABELS
 Obsname obsvalue statistic equation groupname
 flow.ss -4.4 0.4 _ flowobs
 flow.t3 -4.1 0.38 _ notused
 flow.t12 -2.2 0.21 _ notused
 flow.t3_ss 0.3 0.55 “flow.t3 – flow.ss” flowobs
 flow.t12_ss 2.2 0.45 “flow.t12 – flow.ss” flowobs
END OBSERVATION_DATA

In file tc1.hed, which is listed next, the equations demonstrate some available
capabilities. For example, h1.0 and h1.0a may be heads in layers intersected by a single
well so that the simulated equivalent needs to reflect both values. Here, a simple average

 85

Chapter 8: Input Used to Define Observations and Predictions
 Observation_Data Input Block

is chosen and given the name h1.0_der. The h2.0 series is presented to display some of
the equation functionality; h2.0_der just equals h2.0a.
BEGIN OBSERVATION_DATA TABLE
#StatFlag designation here overrides value from the
#Observation_Groups input block
NROW=8 NCOL=6 COLUMNLABELS
obsname obsvalue statistic statflag equation GROUPNAME
h1.0 0.0 1.0025 var _ headsext
h1.0a 0.0 1.0025 var _ headsext
h1.0_der 101.8040 1.0025 var (h1.0+h1.0a)/2. hds4der
h1.1 -0.290E-01 0.0025 var _ heads
h1.12 -0.129 0.0025 var _ heads
h2.0 128.1170 1.0025 var _ headsext
h2.0a 138.2260 1.0025 var _ headsext
h2.0_der 128.1170 1.0025 var sqrt(h2.0^2)+h2.0a-h2.0 hds4der
END OBSERVATION_DATA TABLE

 86

Chapter 8: Input Used to Define Observations and Predictions
 Derived_Observations Input Block

Derived_Observations Input Block: Define Simulated
Equivalents as Functions of Model Outputs (optional)

The Derived_Observations input block is identical to the Observation_Data input block
except in name. It is included in UCODE_2005 so the user can define derived
observations in a separate block, which is convenient in some circumstances.

Derived_Observations can not be used in conjunction with sensitivities calculated by the
process model (SenMethod=-1 or 0 in the Parameter_Data input block). Rather, if the
quantity of interest cannot be calculated by the process model, sensitivities for derived
observations need to be calculated by perturbation (SenMethod=1 or 2).

Example of the Derived_Observations input block. ObsNames head1 and head6 need to
be defined in the Observation_Data block because they are not defined previously in the
Derived_Observations block:
BEGIN Derived_Observations TABLE
nrow=1 ncol=6 columnlabels
obsname obsvalue statistic statflag equation GROUPNAME
dd5 0.012 1e-6 VAR head1-head6 drawdowns
END Derived_ Observations

 87

Chapter 8: Input Used to Define Observations and Predictions

Predictions

Up to three input blocks can be used to define predictions: Prediction_Groups,
Prediction_Data, and Derived_ Predictions. To define predictions, the second input block
is always needed; the first and last are optional.

Predictions need to be defined for three UCODE_2005 modes: prediction mode (table 3)
and advanced-test-model-linearity and, usually, nonlinear-uncertainty mode (Chapter 17).
For other modes, all prediction input blocks need to be omitted.

The modes are defined with keywords in the UCODE_Control_Data input block. For
mode definition, see table 3 and Chapter 17.

The prediction input blocks can be omitted by deleting them or placing a “#” character in
the first place of each line of the blocks.

Up to three input blocks can be used to define predictions: Prediction_Groups,
Prediction_Data, and Derived_Predictions. The second is always needed; the first and last
are optional.

The quantities needed to define predictions include a reference value, a scaling factor that
can be used to calculate scaled prediction sensitivities, and so on. Some of these
quantities are the same for many predictions, and it is convenient to define them for
predictions as a group. UCODE_2005 provides for this using the optional
Prediction_Groups input block.

Information specific to individual predictions is defined in the required Prediction_Data
input block. If differences occur, data specified in the Prediction_Data input block
replace data specified in the Prediction_Groups input block.

In some circumstances the prediction represents a quantity that is not directly provided in
the process-model output file. For example, hydraulic-heads may be produced by the
process model, but the prediction may be drawdown. In these circumstances it is
advantageous to calculate a prediction that is a function of values read from process-
model output file(s). This can be accomplished by using derived predictions, which can
be specified using equations in the Prediction_Data input block or, if the user prefers to
separate these for organizational reasons, in the Derived_ Predictions input block.
Derived predictions can not be used in conjunction with sensitivities calculated by the
process model (SenMethod=-1 or 0 in the Parameter_Data input block).

In UCODE_2005 versions 1.009 and later, five input blocks and a number of output files
were added to allow for the circumstance in which additional parameters need to be
defined for prediction conditions. For example, porosity parameters may need to be
added when predictions are advective transport while calibration is accomplished using
heads and flows. The new input blocks and output files are described in a separate
documentation file distributed with UCODE_2005.

 88

Chapter 8: Input Used to Define Observations and Predictions
 --Prediction_Groups Input Block--

Prediction_Groups Input Block (optional)

Use the Prediction_Groups input block to define groups and to assign data to all
predictions within a group. Data for individual predictions can be assigned in the
subsequently read Prediction_Data input block. When quantities are specified in both
input blocks, the data specified in the Prediction_Data input block are used. Keywords in
this input block include:

GroupName - Name for a group of predictions (up to 12 characters; not case
sensitive). GroupNames for predictions need o be unique and
different than any listed in the Observation_Groups input block.
Default=DefaultPreds.

UseFlag - yes: report and analyze the predictions in this group. no: do not
report and analyze the predictions in this group. Use ‘no’ for items
extracted only to calculate derived predictions. Default=yes.

PlotSymbol - An integer intended for use in post-processing programs to assign
symbols for plotting. Default=1.

Other keywords - Any keyword from the Prediction_Data input block.

If Blockformat KEYWORDS is selected by designation or default, keywords associated
with a prediction group need to be grouped together and follow the related GroupName.
The GroupName keyword needs to be the first keyword on a new line.

If Blockformat TABLE format is selected, COLUMNLABELS are needed because there
is no default column order for the Prediction_Groups input block.

Example of a Prediction_Groups input block:
BEGIN PREDICTION_GROUPS KEYWORDS
groupname= heads
 plotsymbol=1 useflag=yes
groupname=flows
 plotsymbol=2 useflag=yes
END PREDICTION_GROUPS

 89

Chapter 8: Input Used to Define Observations and Predictions
 --Prediction_Data Input Block--

Prediction_Data Input Block (required only for prediction mode)

The Prediction_Data input block provides information about individual predictions. For
each prediction, the keywords listed below need to be defined either by default or in the
Prediction_Data or the Prediction_Groups input block.

By specifying a groupname for a prediction, all definitions for that group from the
Prediction_Groups input block are assigned to the prediction. Keywords defined in the
Prediction_Groups input block only need to appear here to change the designation. Any
data defined for a prediction in this block overrides data from the Prediction_Groups
input block.

The following keywords are available for this input block:

PredName - Prediction name (up to 20 characters, not case sensitive). Each
prediction name needs to be unique.

Naming convention for PredName:

1) The first character needs to be a letter of the set (A-Z, a-z); and

2) All remaining characters need to be a letter, digit, or member of the set:

 _ . : & # @ (underscore, dot, colon, ampersand, number sign, at symbol).

3) The name ‘dum’ can not be used.

The restrictions are needed for the parameter names to be used in the equations
defined in Chapter 13.

RefValue - Reference value to which the prediction is compared. This value
is used to calculate scaled sensitivities. If RefValue equals zero,
the scaled sensitivities are set to zero.

MeasStatistic - A statistic used to calculate the variance with which the predicted
quantity could be measured.

The variance is printed in the _pv data-exchange file, which is used by
LINEAR_UNCERTAINTY (Chapter 15) and the nonlinear-uncertainty mode of
UCODE_2005 (Chapter 17) to calculate prediction intervals (Chapter 3).

MeasStatFlag - Character string that defines how the corresponding MeasStatistic
is used to calculate the measurement error for the prediction. No
default. Options are:

MeasStatFlag Variance is calculated as
VAR MeasStatistic
SD (MeasStatistic)2

GroupName - Group name from the Prediction_Groups input block. The group
attributes defined in the Prediction_Groups input block are

 90

Chapter 8: Input Used to Define Observations and Predictions
 --Prediction_Data Input Block--

 assigned to the prediction and are then changed to attributes
specified in the Prediction_Data input block if applicable.

Equation - An equation without an “equal” sign that defines how to calculate
a derived prediction from previously defined PredNames. Use of _
for the equation indicates that the extracted value is used directly,
so it is not considered to be derived. Default= ‘_’.

See the comment under the Derived_Predictions section concerning calculating
sensitivities for derived predictions. The following rules apply to equations:

1. Equation protocols are outlined in Chapter 13 of this report. Equations can
contain spaces only if the equation is enclosed in double or single quotes.

2. Equations can cite any PredName previously listed in the Prediction_Data
input block. Cited predictions can have a UseFlag of “yes” or “no”.

3. Equations can be nonlinear.

4. A prediction derived with an equation can not be used in conjunction with
sensitivities calculated by the process model (SenMethod=-1 or 0 in the
Parameter_Data input block). Rather, sensitivities need to be calculated by
perturbation (SenMethod=1 or 2).

If Blockformat KEYWORDS is selected by designation or default, keywords defining a
prediction in the Prediction_Data input block need to be grouped together and follow the
related PredName. The PredName keyword needs to be the first keyword on a new line.
PredName and associated keywords are repeated to define multiple predictions.

If blockformat TABLE is selected without indicating ColumnLabels, the default column
order is used and is listed below. No columns are ignored and a column for each keyword
is expected. If ColumnLabels are indicated, the column labels can appear in any order;
the PredName keyword need not be first, though it often is.

Default Column Order:
PREDNAME REFVALUE MEASSTATISTIC MEASSTATFLAG GROUPNAME EQUATION

Example Prediction_Data input block:
BEGIN PREDICTION_DATA FILES
tc1.hed
tc1.flo
END PREDICTION_DATA

 91

Chapter 8: Input Used to Define Observations and Predictions
 --Prediction_Data Input Block--

Files tc1.hed and tc1.flo are read. For example, file tc1.flo:
#For GroupName=FlowPred, MeasStatFlag=SD in
#the Prediction_Groups input block
#Double quotes are needed for the equations because they
#include spaces.
BEGIN PREDICTION_DATA TABLE
 NROW=5 NCOL=5 COLUMNLABELS
 predname refvalue measstatistic equation groupname
 flow.ss -4.4 0.4 _ flowpred
 flow.t3 -4.1 0.38 _ notused
 flow.t12 -2.2 0.21 _ notused
 flow.t3_ss 0.3 0.55 “flow.t3 – flow.ss” flowpred
 flow.t12_ss 2.2 0.45 “flow.t12 – flow.ss” flowpred
END PREDICTION_DATA

Derived_Predictions Input Block: Define Predictions as Functions of
Model Outputs (optional)

The Derived_Predictions input block is identical to the Prediction_Data input block except in name.
It is included in UCODE_2005 so the user can define derived predictions in a separate block, which
may be convenient in some circumstances.

Derived_ Predictions can not be used in conjunction with sensitivities calculated by the process
model (SenMethod=-1 or 0 in the Parameter_Data input block). Rather, if the quantity of interest
cannot be calculated by the process model, sensitivities for derived predictions need to be calculated
by perturbation (SenMethod=1 or 2).

In the following example of the Derived_ Predictions input block, the derived predictions from the
example for the Prediction_Data input block are defined here instead. In practice they can only
appear in one of the input blocks.
#For GroupName=FlowPred, MeasStatFlag=SD in
#the Prediction_Groups input block
#Double quotes are needed for the equations because they
#include spaces.
BEGIN Derived_Predictions TABLE
 NROW=2 NCOL=5 COLUMNLABELS
 predname refvalue measstatistic equation groupname
 flow-t3-ss 0.3 0.55 “flow-t3 – flow-ss” flowpred
 flow-t12-ss .2 0.45 “flow-t12 – flow-ss” flowpred
END Derived_Predictions

 92

Chapter 9: Input to Include Measurements of Parameter Values

Chapter 9: INPUT TO INCLUDE MEASUREMENTS OF
PARAMETER VALUES

Parameter values can sometimes be directly measured. For example, in ground-water
problems pump tests can be used to measure hydraulic conductivity. These measurements
can be valuable. Their utility is addressed by Guideline 5 of Table 1 in Chapter 3.

Prior information data are input using the Prior_Information_Groups, which provides
data related to groups of prior information on the estimated parameters, and the
Linear_Prior_Information block, which provides data for each individual prior item.

 93

Chapter 9: Input to Include Measurements of Parameter Values
 --Prior_Information_Groups Input Block--

Prior_Information_Groups Input Block (optional)

The Prior_Information_Groups input block is used to assign data that apply to many or
all of the items of prior information within defined groups. Data for individual items of
prior information can be assigned in the Linear_Prior_Information input block, which is
described in the next section. The information entered here is replaced by data entered in
the Linear_Prior_Information input block.

Keywords this input block include:

GroupName - Name for a group of prior information items (up to 12
alphanumeric characters including _, i.e. underscore, not case
sensitive). Default=DefaultPrior.

UseFlag -yes: include this group when estimating parameters. no: do not
include this group. Default=yes.

PlotSymbol - An integer used in post-processing programs for the purpose of
assigning symbols for plotting. Default=1.

WtMultiplier - A value that multiplies the weight for each member of the group
when the weighting is defined using Statistic and StatFlag
keywords described for the Linear_Prior_Information input block.
Default=1.0

A CovMatrix is needed to represent correlation between errors in the members of a
group. One matrix is used to define the weighting for all the members in a group. In the
matrix, members with independent errors will have off-diagonal terms that equal zero.

CovMatrix - Name of the error variance-covariance matrix. The matrix is
specified using the Matrix_Files input block, which is described in
Chapter 10. CovMatrix should not be specified if there is no
correlation between errors in the members of a group.

Other keywords - Any keyword from the Linear_Prior_Information input block.

If Blockformat KEYWORDS is selected by designation or default, keywords associated
with a prior information group in the Prior_Information_Groups input block need to be
grouped together and follow the related GroupName. The GroupName keyword needs to
be the first keyword on a new line.

If Blockformat TABLE format is selected, COLUMNLABELS are needed because there
is no default column order for the Prior_Information_Groups input block.

Example of the Prior_Information_Groups input block:
BEGIN Prior_Information_Groups
 GroupName=PRIOR WtMultiplier=1. USEFLAG=yes
 statistic=0.0004 statflag=var plotsymbol=3
END Prior_Information_Groups

 94

Chapter 9: Input to Include Measurements of Parameter Values
 --Linear_Prior_Information Input Block--

Linear_Prior_Information Input Block (optional)

The Linear_Prior_Information input block provides information about individual items of prior
information. For each item of prior information, all six of the keywords listed below need to be
defined either in the Linear_Prior_Information or the Prior_Information_Groups input block.

By specifying a groupname in this block, all values associated with that group as defined in the
Prior_Information_Groups input block are assigned. Keywords defined in the
Prior_Information_Groups input block only need to appear here to change the designation.

Items to be specified for each individual prior information item include:

PriorName - Prior information equation name (up to 20 alphanumeric characters
including _, i.e. underscore, not case sensitive). Each name needs to be
unique.

Equation - An equation without an “equal” sign that defines the prior information in
terms of parameter names as specified in the Parameter_Data or
Derived_Parameters input blocks.

The following rules apply to Equation. Though the same equation capability used by
observations and predictions and described in Chapter 13 is used by
Linear_Prior_Information, not as many features can be used because the equations need to
be linear.

1. The equations can include integer or real numbers and the characters + and *. They can
not include the two characters / and ^. They can only include parentheses [the two
characters “(” and “)”] in the only allowed function, Log10 (see item 3). Equations can
contain spaces only if the equations are enclosed in double or single quotes.

2. Equations can cite any ParamName in the Parameter_Data or Derived_Parameters input
blocks.

3. Equations need to be linear. If the parameter is log-transformed it needs to be log-
transformed in the equations specified here, using log base 10. Thus, for a parameter
named K with Transform=yes in the Parameter_Data or Parameter_Groups input Block,
Log10(K) would need to appear in the equation.

PriorInfoValue - Value of prior information. For log-transformed parameter, specify the
native, untransformed value here. UCODE_2005 will log-transform the
value.

Statistic - Value used to calculate the prior information weight.

 If the parameter is log-transformed the statistic needs to be related to the base 10 log-
transformed parameter. For example, for log-transformed values for which the data specify
the value within plus and minus two orders of magnitude with a 95-percent probability,
Statistic=1.0 for StatFlag=SD. This is consistent with the following numerical example:
PriorInfoValue=0.1; the true value is expected to be between 0.001 and 10.0 (plus and minus
two orders of magnitude) with a 95-percent probability. This example suggests that in most

 95

Chapter 9: Input to Include Measurements of Parameter Values
 --Linear_Prior_Information Input Block--

circumstances the standard deviation is likely to be less than 1.0. For more information, see
Hill (1998, p. 48) and Hill and Tiedeman (2007, chapter 5 and guideline 6).

StatFlag - Character string that defines the corresponding statistic and how it is used to
calculate the weight. No default. Options are:

StatFlag Statistic Weight calculated as
VAR Variance 1/Statistic
SD Standard deviation 1/(Statistic)2
CV Coefficient of variation 1/(Statistic× PriorInfoValue)2
WT Weight Statistic
SQRWT Square root of the weight Statistic2

GroupName - Name for a group of prior information items.

GroupName can be composed of up to 12 alphanumeric characters including _ (underscore),
and is not case sensitive. Specifying a GroupName transfers data defined in the
Prior_Information_Groups input block for the group to this item. Data specified in the
Linear_Prior_Information input block overrides data provided for the group in the
Prior_Information_Groups block.

If Blockformat KEYWORDS is selected by designation or default, keywords defining an item of
prior information in the Linear_Prior_Information input block need to be grouped together and
follow the related PriorName. The PriorName keyword needs to be the first keyword on a new line.
PriorName and associated keywords are repeated to define multiple items of prior information.

If blockformat TABLE is selected without indicating ColumnLabels, the default column order is
used and is listed below. No columns are ignored and a column for each keyword is expected. If
ColumnLabels are indicated, the column labels can appear in any order; the PriorName keyword
need not be first, though it often is first.

Default column order: PriorName Equation PriorInfoValue Statistic
StatFlag GroupName

 96

Chapter 9: Input to Include Measurements of Parameter Values
 --Linear_Prior_Information Input Block--

Example of the Linear_Prior_Information input block (Prior_Information_Groups block is included
for completeness):
BEGIN PRIOR_INFORMATION_GROUPS
 GROUPNAME=PRIOR WTMULTIPLIER=1. USEFLAG=YES PLOTSYMBOL=3
 STATFLAG=VAR
END PRIOR_INFORMATION_GROUPS

BEGIN Linear_Prior_Information TABLE
#SS_1 and HK_1 are transformed
#PriorInfoValue is in native space
#Statistic is in log10 space
 nrow=4 ncol=5 columnlabels GROUPNAME=PRIOR
 PriorName Equation PriorInfoValue Plotsymbol Statistic
 Eqn_Wells_Tr wells_tr -1.0 3 0.1
 Eqn_SS_1 log10(SS_1) 1.0e-2 3 1.0
 Eqn_HK_1 log10(HK_1) 1.0e-3 3 1.0
 Eqn_Rch_Ann .5*Rch1+.5*Rch2 37.0 4 4.0
END Linear_Prior_Information

 97

Chapter 9: Input to Include Measurements of Parameter Values
 --Linear_Prior_Information Input Block--

 98

Chapter 10: Input to Define Weight Matrices

Chapter 10: INPUT TO DEFINE WEIGHT MATRICES
When the errors in observations are correlated, the errors are described statistically not
only using variances, but also covariances. The resulting variance-covariance matrix is
inverted to create the weight matrix (Hill and Tiedeman, 2007, Chapter 3.1.3; Hill, 1998,
p. 13-14). The Matrix_Files input block is used to read the error variance-covariance
matrix.

Before deciding to use a full weight matrix, it can be useful to consider using the
difference between two measured values. For example, two nearby wells may not have
accurately measured elevations, but their elevations relative to one another may be
known precisely. In this situation, it may be more useful to use the difference in hydraulic
head between the two wells in regression instead of the hydraulic head in each of the
wells. Additional examples of using differences in regression are discussed by Hill and
Tiedeman (2007) and Hill (1998).

For some situations, correlations can not be avoided. In ground-water studies, one
circumstance is when streamflow gain and loss observations are derived from a set of
streamflow measurements located sequentially along a single stream with no tributaries,
as discussed by Hill (1992), Christensen and others (1998), Hill (1998, p. 47), and Hill
and Tiedeman (2007, guideline 6). Consider the situation in which three streamflow
measurements, Q1, Q2, and Q3, are used to produce two streamflow gain or loss
observations, Q2-Q1 and Q3-Q2. The variance of each of the two streamflow gains or
losses equals the sum of the variances of the streamflow measurements subtracted to get
the gain or loss. The covariance between adjacent streamflow gain and loss
measurements is the negative variance of the shared streamflow measurement.

These relations can be extended directly for a river with more than three sequential
streamflow measurements. For example, consider a set of seven streamflow
measurements each with a variance of 1.0. The variance-covariance matrix of the six
streamflow gain and loss errors equals:

 2. -1. 0. 0. 0. 0.
 -1. 2. -1. 0. 0. 0.

 0. -1. 2. -1. 0. 0.

 0. 0. -1. 2. -1. 0.

 0. 0. 0. -1. 2. -1.

 0. 0. 0. 0. -1. 2.

This example is used in this chapter to illustrate the capabilities of the Matrix_Files input
block.

 99

Chapter 10: Input to Define Weight Matrices
 --Matrix_Files Input Block--

Matrix_Files Input Block (optional)

If the keyword CovMatrix is used to define the names of one or more matrices in the
Observation_Groups and(or) Prior_Information_Groups input blocks, a Matrix_Files input block is
needed. One matrix needs to be defined for each specified CovMatrix name. In this work the
matrices contain the variances (diagonal terms) and covariance (off-diagonal terms) of errors in the
observations or prior information.

All observations or prior information with intercorrelated errors need to be included in a single
group of the Observation_Groups or Prior_Information_Groups input blocks. Multiple groups of
observations or prior information can have intercorrelated errors. For example, errors in
observations obs1, obs2, and obs3 may be intercorrelated, and errors in observations obs4, obs5,
and obs6 may be intercorrelated. The lack of correlation in errors between the members of the first
group and the second group means that these observations can be assigned to two different groups,
or they can be assigned to a single group for which only selected covariances are non-zero.

Each column of the variance-covariance matrix is associated with one observation or prior
information, and the same order is repeated for the rows of the matrix. The order of otems in the
matrix is determined by the order the observations or prior information are defined in the
Observation_Data or Linear_Prior_Information input blocks.

There are two keywords of the Matrix_Files input block.

MatrixFile - Name of or path to the file from which one or more matrices are read. (Up
to 2,000 characters; case sensitivity depends on the operating system).

NMatrices - Number of matrices to be read from MatrixFile. Default=1.

NMatrices can be omitted if the default value is used. If it is included and block format
KEYWORDS is used, then keywords MatrixFile and NMatrices need to be listed in pairs
and in the order shown.

If Blockformat TABLE format is selected, COLUMNLABELS are needed because there is no
default column order for the Matrix_Files input block.

The files listed using MatrixFile can include matrices entered in complete or compressed format.
The complete format is useful when the matrix has few zero values. The compressed format is
useful when the matrix contains a large number of zero values.

Example of the Matrix_Files input block:
BEGIN Matrix_Files KEYWORDS
 MatrixFile=matrix.dat NMatrices=1
END Matrix_Files

 100

Chapter 10: Input to Define Weight Matrices
 --Matrix_Files Input Block--

Complete Matrix

The input format of a complete matrix is:

CompleteMatrix [NAME]
NGMEM NGMEM [ControlRecord]
[Array Control Record]
VAL(1,1) VAL(1,NGMEM)
 . . .
 . . .
 . . .
VAL(NGMEM,1) VAL(NGMEM,NGMEM)

where,

CompleteMatrix - A keyword that identifies that this matrix is being read in complete matrix
format (case-insensitive).

NGMEM - The number of members in the group being considered. The matrix
dimensions are (NGMEM, NGMEM). The value of NGMEM needs to equal the
number of observations or prior information defined for the group in the
Observation_Data or Linear_Prior_Information input block.

ControlRecord - Optional keyword which, when present, results in the array being read as
defined by an optional array control record.

Array Control Record - Optional line that can be used to define how the array is read. The default
is to read the array as free format. Construction of the Array Control Record
is discussed below.

VAL(i,j) - The value of the matrix element in row i and column j.

The Array Control Record generally is used only if the matrix is to be read from another file or if
the matrix can not be read using free format. Free format requires that the numbers be separated by
one or more spaces, a comma, a comma and one or more spaces, or are on a new line. Construction
of the array control record is discussed later in this chapter.

Example complete matrix using three methods for data input are shown. To be consistent with the
example presented for the Matrix_Files input block, the files that start with “CompleteMatrix”
would be called “matrix.dat” and located in the same directory. If located in another directory a
pathname would need to be specified for Matrix_Files input block keyword MatrixFile.
1. Use the default free format to read the matrix.
CompleteMatrix CovPRIOR
6 6
 2. -1. 0. 0. 0. 0.
 -1. 2. -1. 0. 0. 0.
 0. -1. 2. -1. 0. 0.
 0. 0. -1. 2. -1. 0.
 0. 0. 0. -1. 2. -1.
 0. 0. 0. 0. -1. 2.

 101

Chapter 10: Input to Define Weight Matrices
 --Matrix_Files Input Block--

2. Use the Array Control Record to read from a separate file.
CompleteMatrix CovPRIOR
6 6 ControlRecord
OPEN/CLOSE covprior.txt 1. “(FREE)” 1

where file covprior.txt would contain:
 2. -1. 0. 0. 0. 0.
 -1. 2. -1. 0. 0. 0.
 0. -1. 2. -1. 0. 0.
 0. 0. -1. 2. -1. 0.
 0. 0. 0. -1. 2. -1.

 0. 0. 0. 0. -1. 2.

3. Use an Array Control Record with an F11.0 format that requires the numbers to be right-justified
in fields that are six places wide:
CompleteMatrix CovPRIOR
6 6 ControlRecord
internal 1.0 (3F6.0) 21
 2. -1. 0. 0. 0. 0.
 -1. 2. -1. 0. 0. 0.
 0. -1. 2. -1. 0. 0.
 0. 0. -1. 2. -1. 0.
 0. 0. 0. -1. 2. -1.

 0. 0. 0. 0. -1. 2.

 102

Chapter 10: Input to Define Weight Matrices
 --Matrix_Files Input Block--

Compressed Matrix

The input format of a compressed matrix is:

CompressedMatrix [NAME]
NNZ NGMEM NGMEM [ControlRecord]
[Array Control Record]
IPOS(1) VAL(1)
IPOS(2) VAL(2)
...
IPOS(NNZ) VAL(NNZ)

CompressedMatrix - A keyword that identifies that this matrix is being read in compressed
format (case-insensitive),

NNZ - The number of non-zero values in the matrix,

NGMEM - The number of members in the group. The matrix dimensions are
(NGMEM, NGMEM).

The value of NGMEM needs to equal the number of observations or prior information
defined for the group in the Observation_Data or Linear_Prior_Information input block.
NGMEM is repeated because the software can read asymmetric matrices.

 IPOS(i) - The position of the ith non-zero entry in the matrix, assuming column-major
storage order as described below.

VAL(i) - The corresponding non-zero value.

Array Control Record - Optional line that can be used to define how the array is read. The default
is to read the array as free format. Construction of the Array Control Record
is discussed below.

In column-major storage order, all entries of column 1 are numbered first, starting at row 1,
followed by all entries of column 2, and so on. For example, for a matrix of 6 rows and 6 columns,
the column-major storage ordering is as follows:

 1 7 13 19 25 31

 2 8 14 20 26 32

 3 9 15 21 27 33

 4 10 16 22 28 34

 5 11 17 23 29 35

 6 12 18 24 30 36

 103

Chapter 10: Input to Define Weight Matrices
 --Matrix_Files Input Block--

For the example described in the beginning of this chapter, the matrix contains 16 non-zero values,
so NNZ = 16. This matrix would be represented in compressed form as:
CompressedMatrix
 16 6 6
 1 1.
 2 -1.
 7 -1.
 8 2.
 9 -1.
14 -1.
15 2.
16 -1.
21 -1.
22 2.
23 -1.
28 -1.
29 2.
30 -1.
35 -1.
36 2.

Array Control Records

Array control records are read in free format using convenient text-based conventions.

Array Control Record Input Instructions

Entries in bold italics are keywords that can be uppercase or lowercase. Three keywords are
possible: CONSTANT, INTERNAL and OPEN/CLOSE.

1. CONSTANT CNSTNT

All elements of the array are set to the value supplied by CNSTNT.

2. INTERNAL CNSTNT FMTIN IPRN

The array is read from the file that contains the Array Control Record.

3. OPEN/CLOSE FNAME CNSTNT FMTIN IPRN

The array is read from the file with a name specified by FNAME. This file is opened just
prior to reading the array and closed immediately after the array is read. A file that is read
using this Array Control Record can contain only a single array.

Each Array Control Record is limited to a length of 2000 characters.

 104

Chapter 10: Input to Define Weight Matrices
 --Matrix_Files Input Block--

Explanation of Variables in the Array Control Records

CNSTNT - a real number. For keywords INTERNAL and OPEN/CLOSE , all elements in the matrix are
multiplied by CNSTNT after they are read.

FMTIN - the format for reading array elements. The format string needs to contain 100 characters or less.
The format string needs to either be a standard Fortran format that is enclosed in parentheses, or "(FREE)",
including the double quotes, which indicates free format. When the "(FREE)" option is used, be sure that all
array elements have a non-blank value and that a comma or at least one blank separates adjacent values.

IPRN - a flag that indicates whether to print the array to the main output file and determines the format used.
Matrices read as compressed are printed as full matrices. If IPRN is less than zero, the array is not printed.
IPRN is set to zero when the specified value exceeds those defined. The defined values of IPRN and how
two numbers are printed using the different formats are presented after the variable definitions.

FNAME – a file name or an absolute or relative pathname less than or equal to 2,000 characters in length.

 IPRN FORMAT
How the number
-3.44234 is

printed

How the number
-3.44234x10-4 is

printed
Column number 123456789012345 123456789012345

 0 10G11.4
 1 11G10.3
 2 9G13.6

 3 15F7.1
 4 15F7.2
 5 15F7.3
 6 15F7.4

 7 20F5.0
 8 20F5.1
 9 20F5.2
 10 20F5.3
 11 20F5.4

 -3.442
 -3.44
 -3.44234

 -3.4
 -3.44
 -3.442
-3.4453

 -3.
 -3.4
-3.44

-0.3442E-03
-0.344E-03
-0.344234E-03

 -0.0
 -0.00
 -0.000
-0.0003

 -0.
 -0.0
-0.00
-.000

Column number 123456789012345 123456789012345
 12 10G11.4

 13 10F6.0
 14 10F6.1
 15 10F6.2
 16 10F6.3
 17 10F6.4
 18 10F6.5

 19 5G12.5
 20 6G11.4
 21 7G9.2

 -3.442

 -3.
 -3.4
 -3.44
-3.442

 -3.4423
 -3.442
 -3.4

-0.3442E-04

 -0.
 -0.0
 -0.00
-0.000
-.0003

-0.34423E-04
-0.3442E-04
-0.34E-04

Column number 123456789012345 123456789012345

*Number does not fit in the field provided. For many compilers this results in the printing of a
series of asterisks, as shown. Positive numbers would be printable in some of the situations for
which asterisks are displayed here.

 105

Chapter 10: Input to Define Weight Matrices
 --Matrix_Files Input Block--

Examples of Array Control Records

The following examples read an array consisting of 4 rows with 7 columns per row:
INTERNAL 1.0 (7F4.0) 3 This reads the array values from
 1.2 3.7 9.3 4.2 2.2 9.9 1.0 the file that contains the array
 3.3 4.9 7.3 7.5 8.2 8.7 6.6 control record. The values
 4.5 5.7 2.2 1.1 1.7 6.7 6.9 immediately follow the array
 7.4 3.5 7.8 8.5 7.4 6.8 8.8 control record.

OPEN/CLOSE test.dat 1.0 (7F4.0) 3 This reads the array
 from the file named
 “test.dat". Test.dat
 contains only the
 array.

 106

Chapter 11: Input to Interact with the Process model Input and Output Files

Chapter 11: INPUT TO INTERACT WITH THE PROCESS
MODEL INPUT AND OUTPUT FILES

UCODE_2005 interacts with process model(s) through model input and output files. This
chapter describes the tools available for the needed interactions using the
Model_Input_Files input block and associated Template files and the
Model_Output_Files input block and associated Instruction files.

For UCODE_2005 to run correctly, at least one process-model input file needs to be
manipulated via a Template file as defined by the Model_Input_Files input block and one
output file needs to be perused to extract simulated equivalents as defined by the
Model_Output_Files input block, so both these input blocks are required.

Construct Process-Model Input Files Using Current Parameter

Values

When UCODE_2005 runs a model, it first uses data from the Model_Input_Files input
block to create model input files from Template input files. There is one template file for
each model input file. If many model input files need to be changed, one template file is
needed for each of them. The model input files created by UCODE_2005 reflect the most
recent parameter values.

 107

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Model_Input_Files Input Block--

Model_Input_Files Input Block (required)

The Model_Input_Files input block lists each process-model input file that needs to be
changed when parameter values change and an associated template file. The two items of
the Model_Input_Files input block need to occur in pairs. If blockformat KEYWORDS is
used by default or designation, MODINFILE needs to be the first keyword and needs to
start a new line.

Keywords for the “Model_Input_Files” block include:

ModInFile - Name for a process-model input file. (Up to 2,000 characters)
Names with spaces need to be enclosed in double quotes.

TemplateFile - Name of the template file that UCODE_2005 will use to create
the associated process-model input file, MODINFILE. (Up to
2,000 characters. Case sensitivity depends on the operating system)
Names with spaces need to be enclosed in double quotes.

Numerous pairs of MODINFILE and TEMPLATEFILE may be needed depending on the
number of files associated with the process model(s) input that are affected by parameters
to be adjusted by UCODE_2005.

Default column order: ModInFile TemplateFile

Three equivalent example input blocks are shown.

Use the blockformat KEYWORDS:
BEGIN MODEL_INPUT_FILES Keywords
modinfile=..\data_Efunc\tc1-fwd.sen templatefile=tc1sen.tpl
modinfile=..\data_Efunc\tc1-fwd.mlt templatefile=tc1-fwd.mlt.tpl
END MODEL_INPUT_FILES

Use blockformat TABLE and COLUMNLABELS is specified:
BEGIN MODEL_INPUT_FILES TABLE
 NROW=2 NCOL=2 ColumnLabels
 modinfile templatefile
 ..\data_Efunc\tc1-fwd.sen tc1sen.tpl
 ..\data_Efunc\tc1-fwd.mlt tc1-fwd.mlt.tpl
END MODEL_INPUT_FILES

Use blockformat TABLE and the default column order:
BEGIN MODEL_INPUT_FILES TABLE
 NROW=2 NCOL=2
 ..\data_Efunc\tc1-fwd.sen tc1sen.tpl
 ..\data_Efunc\tc1-fwd.mlt tc1-fwd.mlt.tpl
END MODEL_INPUT_FILES

 108

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Template Files--

Template Files

A template file is derived from a model input file, as described in the following sections.

Construction

Consider the model input file shown in Figure 2. On the second line, hydraulic
conductivity (K) is defined to equal 0.01, storativity (S) is defined to equal 0.005, and
thickness (b) is defined to equal 10. For UCODE_2005 to control K, S, and b, a template
file such as that shown in Figure 3 is needed. As discussed in the following section, this
file allows UCODE_2005 a large number of spaces within which to substitute values, and
this is important in many circumstances.

numberdrawdowns Q K S b
10 0.75 0.01 0.005 10.
 20. 200.
 20. 400.
 20. 800.
 50. 200.
 50. 400.
 50. 800.
 90. 800.
 90. 1200.
 150. 800.
 150. 1200.
Figure 2. A model input file. The values to be represented by parameters are shaded.

jtf @
numberdrawdowns Q K S b
10 0.75 @K @ @S @ @b @
 20. 200.
 20. 400.
 20. 800.
 50. 200.
 50. 400.
 50. 800.
 90. 800.
 90. 1200.
 150. 800.
 150. 1200.
Figure 3. A template file corresponding to the model input file of Figure 2.

 109

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Template Files--

Substitution Delimiter

As Figure 3 shows, a template file is created from a model input file by first inserting a
line at the top. The line contains “jtf” followed by one or more spaces and the substitution
delimiter. jtf stands for JUPITER template file. Choose the substitution delimiter
carefully. It can not be any of the characters [a-z], [A-Z] and [0-9], and can not appear in
the template file except in its capacity as substitution delimiter. Commonly used
substitution delimiters are @ and !.

The substitution delimiter is used to define the field within which UCODE_2005 places a
number, as in line 3 of Figure 3. A field that is too small limits the number of significant
digits. This, in turn, can affect the accuracy of process model results, sensitivities,
regression results, and so on. If the field is so small that the number can not be printed at
all, execution stops and an error message is printed.

The substitution field is between and includes a pair of substitution delimiters. All of the
characters between and including the substitution delimiters are replaced. Characters
between the delimiters need to include one ParamName defined in the Parameter_Data or
Derived_Parameter input block. The ParamName can be placed anywhere between the
delimiters. All other characters between the delimiters need to be spaces.

The width available for substitution depends on the requirements of the process-model
input files. Generally models read numbers: (1) from fields of a specified width or (2) as
a sequence of numbers each of which may be of any width and need to be separated by at
least one space, a comma, or other character.

In circumstance 1, the substitution widths are prescribed by the process model input
instructions. In this case there need not be space or other character between substitution
fields. So, for example, the following sequence could occur:

@K @@S @

where 10 spaces are allocated for each number by the process model.

Circumstance 2 is sometimes referred to as free format. In this circumstance, the
substitution fields generally can be defined as large as desired, but they need to be
separated by a space or a comma so the program knows where one number ends and the
next number begins. The input file shown in Figure 2 and Figure 3 has free format
specified for the substituted numbers. As a result, the widths for the numbers can be
different in the two figures and spaces are placed between the substitutions fields in
Figure 3.

 110

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Model_Output Files Input Block--

Read from Process-Model Output Files

After running the process model(s), UCODE_2005 extracts (reads) values from the
output files. These values are used either directly or indirectly to produce simulated
equivalents that are compared to observed values or to produce predictions. The values
are said to be used indirectly for derived observations and derived predictions, where
derived applies to those defined using an equation (see Chapter 8).

Model_Output_Files Input Block (required)

The Model_Output_Files input block defines how UCODE_2005 obtains values from the
files produced by the process model. The three keywords of the Model_Output_Files
input block need to occur as a set, and the set needs to be repeated for each process-
model output file read. If block format is defined by default of designation as
KEYWORDS, the ModOutFile keyword needs to be listed first for each set.

ModOutFile - Name of the process-model output file from which
UCODE_2005 is to extract values. ModOutFile can be up to 2,000
characters; case sensitivity depends on the operating system.
Names with spaces need to be enclosed in double quotes.

InstructionFile - Name for the Instruction file that UCODE_2005 uses to extract
values from ModOutFile. InstructionFile can be up to 2,000
characters; case sensitivity depends on the operating system.
Names with spaces need to be enclosed in double quotes.

Instruction file construction is described in the following sections. Instruction
files can not contain any comment lines or blank lines, even at the end of the file.

ModOutFile and InstructionFile can be file names, in which case the files need to be
located in the directory where UCODE_2005 is executed, or they can be an absolute or
relative pathnames.

Category - The following options are available:

 Obs – The process-model output file is used to calculate simulated
equivalents to observations (These files are ignored when
prediction=yes in the UCODE_Control_Data input block)

 Pred –The process-model output file is used to calculate predictions
(These files are used only for modes that use predictions, and
otherwise ignored)

Default column order: ModOutFile InstructionFile Category

 111

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Model_Output Files Input Block--

Example using Blocklabel Keywords:
BEGIN MODEL_OUTPUT_FILES Keywords
 modoutfile=tc1-fwd._os instructionfile=tc1.ins category=obs
END MODEL_OUTPUT_FILES

 or, using block format TABLE to define two files:
BEGIN MODEL_OUTPUT_FILES TABLE
 nrow=2 ncol=3 columnlabels
 modoutfile instructionfile category
 tc1-fwd._os tc1-fwd._os.ins obs
 tc1-fwd.lst tc1-fwd.lst.ins obs
END MODEL_OUTPUT_FILES

 112

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Instruction Files--

Instruction Input File for a Standard Process-Model Output File

The complexity of the instruction file depends on the structure of the process-model
output file. An output file from which one column of numbers is read is called a standard
file. Standard files need a simple instruction file described in this section.

A standard file can have lines at the top that are to be skipped (the number of lines can be
zero). Subsequently, the data need to be in columns separated by spaces or commas.
Simulated values are read from each line of data, and always from the same column.

Standard files can be read using an instruction file with the following components.

jif @
StandardFile Nskip ReadColumn Nread
Names for each of the Nread values.
Place each name on a new line.

where
jif @ defines the file delimiter (see below) needed in all instruction files. It is not used

to read standard files.
StandardFile is a keyword that indicates a standard file is being read.
Nskip is the number of lines to skip at the beginning of the file and can equal 0 or any

positive integer.
ReadColumn is the column of the file from which values are to be read.
Nread is the number of values, and therefore lines, to be read.

The “Names for each of the Nread values” listed on the subsequent lines need to match
observation names specified in the Observation_Data or Derived_Observations input
blocks if Category=Obs. They need to match prediction names specified in the
Prediction_Data or Derived_Predictions input blocks if Category=Pred. Category is
defined for each instruction file in the Model_Output_Files input block.

The entries on the line with keyword StandardFile are read in free format, so they need to
be separated by a space or a comma, or end of line. Instruction files are not allowed to
contain any comment lines or blank lines, even at the end of the file.

Execution time can be reduced if the names in the process-model output file are in the
same order as they are defined in the Observation or Prediction input blocks. If the order
is unclear, execute the process model(s) and look at the files to be read.

For example, five simulated values can be read as a standard file from an _os output file
produced by MODFLOW_2000. A MODFLOW_2000 _os file and an associated

 113

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Instruction Files--

instruction file are shown below. The instruction file skips zero lines and reads five
values from the first column of the _os file:
First five lines of file tc1._os from the MODFLOW_2000
distribution1
 100.1747 101.8040 1 1.0 0.000000
 -0.9155273E-04 -0.2899933E-01 1 1.1 87163.00
 -0.8264923E-01 -0.1289978 1 1.12 0.2443906E+08
 126.9926 128.1170 1 2.0 0.000000
 -0.3369141E-01 -0.4100037E-01 1 2.1 87163.00
Instruction file
jif @
StandardFile 0 1 5
Obs1
Obs2
Obs3
Obs4
Obs5
1 The _os file produced by MODFLOW_2000 version 1.15 has no header line and has a
fifth column of real numbers that equal the observation time. An _os data exchange file
produced by UCODE_2005 has one header line with column labels and no fifth column
of real numbers.

For observations, the numbers read are compared with five observations defined in the
Observation_Data or Derived_Observations input block corresponding to the names
listed in this instruction file.

Another example shown in Figure 4 includes the output file written by the model whose
input file appears in Figure 2. Suppose that parameters in the template file of Figure 3 are
estimated by minimizing the squared differences between the drawdowns calculated by
the model (Figure 4) and those measured in the field. The simulated drawdown values
can be read using the StandardFile instruction file:
jif @
StandardFile 7 5 10
dd1
dd2
dd3
dd4
dd5
dd6
dd7
dd8
dd9
dd10

 114

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Instruction Files--

NUMBER OF OBSERVATIONS........... = 10.
 PUMPING Q....................... = 7.50000E-01
 K.AQUIFER....................... = 1.00000E-03
 STORAGE COEFFICIENT.AQUIFER = 5.00000E-03
 THICKNESS of AQUIFER............ = 1.00000E+01
 TRANSMISSIVITY.................. = 1.00000E-02
 RAD TIME u W DRAWDOWN
 20.00 200.00 0.2499999881 1.0442823072 6.2325862595
 20.00 400.00 0.1249999941 1.6234253182 9.6890833659
 20.00 800.00 0.0624999970 2.2569095812 13.4699051666
 50.00 200.00 1.5624999258 0.0911875383 0.5442342502
 50.00 400.00 0.7812499629 0.3213536892 1.9179340435
 50.00 800.00 0.3906249814 0.7183524996 4.2873405859
 90.00 800.00 1.2656249399 0.1428815143 0.8527592170
 90.00 1200.00 0.8437499599 0.2871831829 1.7139943357
 150.00 800.00 3.5156248330 0.0068363119 0.0408011353
 150.00 1200.00 2.3437498887 0.0306533241 0.1829481216

Figure 4. An example model output file in which the numbers of interest are shaded.

Instruction Input File for a Non-Standard Process-Model Output
File

More complex situations require more complex capabilities, and UCODE_2005 provides
a comprehensive set of instruction options for non-standard output files. These
instructions are identical to those provided in PEST (Doherty, 2004) due to Doherty’s
involvement in development of the JUPITER API (Appendix A). The discussion below is
derived from the discussion in the JUPITER API documentation, which is largely drawn
from the PEST documentation.

UCODE_2005 provides comprehensive instructions that permit a value in a model output
file to be found in the same way that a person would look for a number. A person would
skim down the file looking for something recognizable - a “marker” - that is near a value
of interest and place their cursor at that location, ready to do the next task. For example,
if a value of interest is the calculated flow after the first time step in the third stress
period, an instruction could identify a marker such as:

VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP 1 STRESS PERIOD 3

The value of interest may be located, for example, on the 4th line following the marker
between character columns 23 and 30; or on the 3rd line after the marker, the 5th item
from the left; and so on. Markers can be primary or secondary. Primary markers are used
to find a line in the file. Secondary markers are used to navigate within a line.

Instruction files are not allowed to contain any comment lines or blank lines, even at the
end of the file.

 115

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Instruction Files--

An Example Instruction File for a Non-Standard Input File

If the example shown in Figure 4 were read without the StandardFile option, the
instruction file required is shown in Figure 5. The details of this file as constructed are
described in the following sections of this report.

jif @
@ RAD TIME @
l1 [dd1]53:69
l1 [dd2]53:69
l1 [dd3]53:69
l1 [dd4]53:69
l1 [dd5]53:69
l1 [dd6]53:69
l1 [dd7]53:69
l1 [dd8]53:69
l1 [dd9]53:69
l1 [dd10]53:69
Figure 5. A non-standard instruction file that reads the shaded numbers in Figure 4.

Preliminaries

Three things need to be defined to begin describing non-standard input files: the marker
delimiter, extraction names, and extraction type.

Marke r De l im i t e r , j i f

The first line of an instruction file needs to begin with the three letters “jif” (stands for
JUPITER instruction file), a single space, and a single character. The character is used as
the marker delimiter, which defines the extent of a marker. A marker could also be called
a search string; it is a sequence of characters that is the object of a search. Markers need
to fit on one line of the instruction file. A marker delimiter immediately precedes the first
character of a marker and immediately follows the last character. For example, given “%”
as the delimiter, %LAYER 1% identifies the marker “LAYER 1”.

A marker delimiter can not be any of the following characters because these characters
have other roles in instruction files.
A B C D E F… Z
abcdef … z
0 - 9
!
[
]
(
)
:
&

 116

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Instruction Files--

The character chosen for a marker delimiter also cannot occur within the text of any
markers.

Usually $, @, % or ~ are good choices for a marker delimiter.

Ex t rac t i on Na mes

The name used for an extracted value may be the name of an observation or a prediction
or may be ‘dum’, which indicates that the value is not used. As illustrated below, ‘dum’
can be useful in navigating a model output file.

Except for ‘dum’, a different name needs to be used for each extracted value. This applies
to all the values extracted using all the instruction files defined for one UCODE_2005 file
set.

The Instruction Set

The instructions are listed in Table 9 and are described in detail in the following section.
In Table 9, the instructions are divided into those that need to start at the beginning of the
line and those that need to start later on the line.

UCODE_2005 uses the instructions to read a model output file from the top toward the
bottom. Instructions cannot move backward to a previous line of the model output file or
backward on a line. If there is more than one value to be extracted from one line of the
model output file, they need to be extracted from left to right.

 117

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Instruction Files--

Table 9. Instructions available in UCODE_2005.
[All instruction lines need to start with something in the first column. Each instruction
needs to be bounded by the beginning of a line, a blank space, or the end of a line. No
blank lines or comments are allowed in instructions files. #, any positive integer; name,
‘dum’ or an observation or a prediction name; a, b, column numbers. Column numbers
are obtained by counting from the left side of a line, starting at 1.]
Instruction

name
Format Description Example

Instructions that need to begin in the first column in a line of an instruction file
Primary
marker

Marker delimiter in the first
column of a line in an
instruction file, followed by a
search string, followed by a
marker delimiter.

Identifies a search string used
to find a line within the
process-model output file. The
entire search string needs to be
on one line.

%find me%

Line advance l#, where l is a lower case L Advances # lines down from
the present line. When a file is
opened the line is 0. Use l1
(line 1) to reach the first line.

l5

Continuation & positioned in the first place
in a line of an instruction file.
Markers can not be broken
across lines.

The instruction continues from
the previous line.

&

Instructions that need to begin later in a line of an instruction file
Secondary
marker

Marker delimiter not in the
first column of an instruction
file, followed by a search
string, and ending with a
marker delimiter.

Identifies a search string to
navigate within a line of the
process-model input file.
Secondary markers are
preceded on the instruction file
line by one of the instructions
above.

l5 %find me%

Whitespace w Advance in a line to the last
blank in the next set of blanks.
Repeat as needed.

l5 w w

Tab t# Advance in a line to column #. l5 t60
 Extractions
Fixed [name]a:b Read a number from a line

starting at column a and
ending at column b.

[dd1]1:10

Semi-fixed (name)a:b Read a number that may be
only partially con-tained in
the range extend-ing from a
to b, inclusive.

(dd1)2:8

Non-fixed !name! Read a number in free
format. The number needs
to be bounded by spaces,
the beginning of a line, or
the end of a line.

!dd1!

 118

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Instruction Files--

Ex t rac t i on Type

When a number is read from a file it is said to be extracted. Extractions can be
categorized into three types: fixed, semi-fixed, and non-fixed (Table 9). They are
discussed briefly here and in more detail in the section below entitled “Example
instruction files”.

Fixed extraction instructions consist of two parts. The first part consists of the extraction
name enclosed in square brackets; the second part consists of the range of columns
(inclusive) from which to extract the value. These parts cannot be separated by a space
because a space always indicates the start of a new instruction unless the space lies within
a marker.

Semi-fixed extraction instructions are similar to the instructions for fixed extractions
except that the extraction name is enclosed in parentheses instead of square brackets. In
semi-fixed extractions, the column numbers do not need to exactly locate the number to
be read. Part of the number may precede location a or continue past location b. At least
part of the number needs to be located between locations a and b, and the interval can not
include digits from any other number. In the output file, each end of the extracted number
needs to be bounded by a space, the beginning of a line, or the end of a line.

A semi-fixed instruction operates as follows. It sends the cursor to the first of the two
listed columns. If this column is occupied by a space, it searches to the right until it
reaches either a non-space, which is taken to be the first character to be extracted, or the
second listed column. If it reaches the second column without finding a non-space, an
error condition arises. If it finds a non-space, it then searches to the right for the next
blank or the end of the line, either of which would be taken to bound the right side of the
extraction. If the column identified by the first number is non-blank, the first character of
the extraction is sought to the left and the last character of the extraction is sought to the
right. The width of a number read through a semi-fixed abstraction can be longer than the
difference between the column numbers cited in the semi-fixed extraction instruction.

Non-fixed extraction instructions consist of the extraction name enclosed by
exclamation marks. The number is read using free format; methods other than column
numbers are used to locate the number within a line of the process-model output file. A
value to be extracted by non-fixed extraction needs to be bound by spaces, the beginning
of a line, or the end of a line.

Pr i ma ry Ma rke r

Primary markers are used to find a line of an output file that contains a specific string of
characters. If a marker is the first item on an instruction line, then it is a primary marker;
if it occurs later in the line, following other instruction items, it is a secondary marker.

On encountering a primary marker UCODE_2005 reads the model output file, line by
line, searching for the string between the marker delimiter characters. When it finds the
string it positions itself at the last character of the string. Any further instructions on the
instruction line are used to process the remainder of this line of the process-model output

 119

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Instruction Files--

file. If there are spaces in a primary (or secondary) marker, exactly the same number of
spaces is expected in the matching string on the model output file.

Often, a primary marker is part or all of a header or label because it precedes a list of
results and thus makes a convenient reference point.

Searching for a primary marker is time-consuming. If the values to be read are always
written to the same lines of a model output file for every model run, the line advance
instruction can be used and is more efficient. If a primary marker is needed, execution
times are faster if the marker has as many characters as possible.

Use of primary markers is shown in Figure 6. Figure 6 first shown parts of the process-
model output file and then shows two instruction files paired with the line to be read in
which the digits identified by the extractions are shaded. The instruction files shown in
Figure 6 extract the numbers comprising the third solution vector. The primary marker
“TIME PERIOD NO. 3 --->” establishes a reference point for searching for
“SOLUTION VECTOR:”; if this reference point were not established a solution vector
from an earlier time would be read.

L ine Advance , l #

The syntax for the line advance item is “l#” where # is the number of lines to advance;
note that “l” is a lower case “L”, not “one”. The line advance item needs to start in
column 1 of an instruction line (table 9). In figure 6 model-calculated solution vectors are
written on the line after the marker, so the cursor is instructed to move to the beginning of
a new line using the “l1” (line 1) line advance item.

The cursor starts on line zero. Thus if the first instruction line begins with “l1” (line1),
processing of the model output file begins on its first line; similarly, if the first instruction
line begins with “l8”, processing of the model output file begins on its 8th line.

 120

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Instruction Files--

Portion of
model
output file.
The numbers
to be
extracted are
shaded.

 .
 .
TIME PERIOD NO. 1 --->
 .
 .
SOLUTION VECTOR:
 1.43253 6.43235 7.44532 4.23443 91.3425
 .
 .
TIME PERIOD NO. 2 --->
 .
 .
SOLUTION VECTOR:
 1.34356 7.59892 8.54195 5.32094 80.9443
 .
 .
TIME PERIOD NO. 3 --->
 .
 .
SOLUTION VECTOR:
 2.09485 8.49021 9.39382 6.39920 79.9482

Instruction
file 1 using
semi-fixed
extractions

jif *
 .
 .
TIME PERIOD NO. 3 --->
SOLUTION VECTOR:
l1 (obs1)5:10 (obs2)12:17 (obs3)21:28 (obs4)32:34
& (obs5)41:45

Columns
defined by
instruction
file 1 are
shaded

 2.09485. 8.49021 9.39382. 6.39920. 79.9482
1234567890123456789012345678901234567890123456789
 10 20 30 40

Instruction
file 2 using
fixed
extractions

jif *
 .
 .
TIME PERIOD NO. 3 --->
SOLUTION VECTOR:
l1 [obs1]3:9 [obs2]12:18 [obs3]21:27 [obs4]30:36
& [obs5]39:45

Columns
defined by
instruction
file 2 are
shaded

 2.09485 8.49021 9.39382 6.39920 79.9482
1234567890123456789012345678901234567890123456789
 10 20 30 40

Figure 6. Portion of a model output file illustrating the use of multiple primary markers,
line advance, and semi-fixed reading. The numbers being read are shaded and
column numbers are shown. Dots replace one or more lines that are not shown.
Instruction file 1 uses semi-fixed reading; instruction file 2 uses fixed reading.
Both instruction files extract the same values.

 121

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Instruction Files--

Con t i nua t i on , &

An instruction line can be broken between any two instructions by using the continuation
character, “&”, to indicate that an instruction line is actually a continuation of the
previous line. Thus the instruction file line
l1 %RESULTS% %TIME (4)% %=% !obs1! !obs2! !obs3!

is equivalent to
l1
& %RESULTS%
& %TIME (4)%
& %=%
& !obs1!
& !obs2!
& !obs3!

For both, the marker delimiter is assumed to be “%”. Note that the continuation character
needs to be followed by at least one space before the next instruction.

Seconda ry Ma rke r

A secondary marker instructs the cursor to move along the current model output file line
until it finds the secondary marker string, and to place the cursor on the last character of
that string.

The first part of figure 7 shows a portion of a model output file while the second part of
figure 7 shows instructions for reading the potassium (K) concentration. A primary
marker is used to place the cursor on the line above the line where the calculated
concentrations are recorded for the distance of interest. The next instruction advances one
line and reads the number following secondary marker “K:” to extract a value named
“kc”.

A useful feature of the secondary marker is illustrated in Figure 8. If a secondary marker
is preceded only by a primary marker, the primary and secondary markers need to be
found on the same line. Thus the instruction “%TIME STEP 10%” causes the cursor to
pause on its downward journey through the model output file at the first line illustrated in
the top part of Figure 8. However, when it does not find the string “STRAIN” on the
same line it continues looking for the string “TIME STEP 10” again. Eventually it finds a
line containing both the primary and secondary markers and then begins execution of the
next instruction.

Multiple secondary markers can be specified. If they can be combined into one long
primary marker, execution time can be reduced.

If a secondary marker is unmatched and the first instruction on the line is not a primary
marker, execution is terminated with an appropriate error message. As mentioned above,
if the first instruction is a primary marker, the search continues until a match is found or
the end of the file is reached.

 122

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Instruction Files--

Portion of
model
output file

 .
 .
DISTANCE = 20.0: CATION CONCENTRATIONS:-
Na: 3.49868E-2 Mg: 5.987638E-2 K: 9.987362E-3
 .
 .

Portion of
instruction file

jif ~
 .
 .
~DISTANCE = 20.0~
l1 ~K:~ !kc!
 .
 .

Figure 7. Portion of a model output file and related lines in the instruction file illustrating
l1 (line 1) preceding a secondary marker. The number being read is shaded. Dots
replace one or more lines that are not shown.

Portion of
model
output file

 .
 .
TIME STEP 10 (13 ITERATIONS REQUIRED) STRESS --->
X = 1.05 STRESS = 4.35678E+03
X = 1.10 STRESS = 4.39532E+03
 .
 .
TIME STEP 10 (BACK SUBSTITUTION) STRAIN --->
X = 1.05 STRAIN = 2.56785E-03
X = 1.10 STRAIN = 2.34564E-03
 .
 .

Portion of
instruction file

jif %
 .
 .
%TIME STEP 10% %STRAIN%
l1 %STRAIN =% !str2!

 .
 .

Figure 8. Portion of a model output file and related lines in the instruction file illustrating
use of a primary marker and secondary marker on one instruction line. The
numbers being read are shaded. Dots replace one or more lines that are not shown.

Whi tespace , w

The whitespace instruction directs the cursor to move forward from its current position
until it encounters the next blank space, and continue until it finds a non-blank space,
finally stopping on the last blank space in the sequence of blank spaces. The whitespace
instruction is a “w”, separated from neighboring instructions by at least one blank space.

Consider the model output file line presented in Figure 9. The instruction line begins with
a primary marker. After this marker is found and processed the cursor rests on the “:”,
which is the last character of the marker string. In response to the first whitespace
instruction the cursor finds the next blank space and then moves to the last of this series
of blank spaces; that is, just before the “2” of the first number on the line. The second

 123

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Instruction Files--

whitespace instruction moves the cursor to the space preceding the first “4” of the second
number on the line; processing of the third whitespace instruction results in the cursor
moving to the space just before the negative sign. After the fourth whitespace instruction
is implemented, the cursor rests on the space preceding the last number; the latter is then
read as a non-fixed dependent.

Portion of
model
output file

 .
 .
MODEL OUTPUTS: 2.89988 4.487892 -4.59098 8.394843
 .
 .

Instruction
file

jif %
%MODEL OUTPUTS:% w w w w !obs1!

Figure 9. Portion of a model output file and instruction file illustrating use of the white
space instruction. The number being read is shaded. Dots replace one or more
lines that are not shown.

Tab , t n

The tab instruction places the cursor after a user-specified column on the model output
file line that it is currently processing. The instruction syntax is “t#” where # is a column
number. Like the whitespace instruction, the tab instruction can be used to locate a non-
fixed extraction. Use of the tab instruction is illustrated in Figure 10.

Portion of
model
output file

 .
 .
 .
TIME(1): A = 1.34564E-04, TIME(2): A = 1.45654E-04

Column
numbers

12345678901234567890123456789012345678901234567890
 10 20 30 40 50

Instruction
file

jif %
l4 t34 %=% !a2!

Figure 10. Portion of a model output file and instruction file illustrating use of the tab
instruction. The number read is shaded. Dots replace one or more lines that are
not shown.

The instructions shown in Figure 10 assume that the cursor was previously four lines
above the line shown; the marker delimiter is defined to be “%”. Implementation of the
“t34” instruction places the cursor after the “:” following the “TIME(2)” string. The
secondary search string then moves the cursor to the next “=” character. From there it
reads the next number on the line (in this example, it is the last number on the line) as a
non-fixed dependent.

 124

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Instruction Files--

Example Instruction Files

The examples are organized based on their use of fixed, semi-fixed, and non-fixed
extractions.

F i xed Read ing

The second instruction file of Figure 6 illustrates the use of fixed reading and shows how
the same numbers can be read using semi-fixed reading. Another example is shown in
Figure 11.

Line from
model
output file 1236.567 8495.000 -900.000
Column
numbers

12345678901234567890123456789012345678901234567890
 10 20 30 40 50

Instruction
line

l1 [A]1:8 [B]10:17 [C]19:26

Figure 11. Portion of an instruction line illustrating fixed reading.

Fixed reading is useful when the model writes its output in tabular form using fixed field-
widths. The range specified needs to be wide enough to accommodate the maximum
length that the number will occupy in the course of all model runs. If it is not wide
enough, the extracted number may be truncated or a negative sign may be omitted.
However, the range must not be so wide that it includes part of another number; in this
case an error occurs, and execution stops after an error message is printed.

For model results that are written as an array of numbers, the numbers may be
immediately adjacent to one another so that there are no intervening spaces and fixed
reading is required. For example, the numbers shown in Figure 12 require fixed reading.
Semi-fixed and non-fixed reading require intervening spaces or an always present non-
numeric string that can be used as a marker.

Line from
model
output file 1236.5678495.000-900.000
Column
numbers

12345678901234567890123456789012345678901234567890
 10 20 30 40 50

Instruction
line

1 [A]1:8 [B]9:16 [C]17:24

Figure 12. Portion of a model output file and instruction file illustrating use of fixed
reading. The three numbers being read are shaded; each has three digits to the
right of the decimal place. Dots replace one or more lines that are not shown.

Se mi -F i xed Read ing

Figure 6 demonstrates the use of semi-fixed reading.

 125

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Instruction Files--

Semi-fixed reading is useful if the placement of a number always occupies some spaces,
but the rest of the range depends on the magnitude of the number. The only requirement
is that part of the number will always fall between (and including) the two listed columns
and that, whenever the number is written and whatever its size, it will always be bounded
either by blanks or by the beginning or end of the model output file line. If only blanks
occur between (and including) the two listed columns, or if non-numeric characters or
two number fragments are found, an error condition will occur and the UCODE_2005
will terminate with an appropriate error message.

As for fixed dependents, it is normally not necessary to have secondary markers,
whitespace, and tabs on the same line as a semi-fixed dependent, because the column
numbers provided with the semi-fixed dependent instruction determine the location of the
dependent on the line. If more than one semi-fixed dependent instruction is provided on a
single UCODE_2005 instruction line, the column numbers pertaining to these dependents
need to increase from left to right.

It takes more computer effort to read a semi-fixed dependent than a fixed dependent, so
fixed dependents are preferable.

After a semi-fixed dependent is read, the cursor is positioned at the end of the number
extracted. Any further processing of the line must take place to the right of that column.

Non-F i xed Read ing

Figure 13 demonstrates the use of non-fixed reading.

When a non-fixed reading instruction is encountered, UCODE_2005 searches forward
from its current column until it finds a non-space; it assumes this character is the first
character read. Then it again searches to the right until it finds either a space, the end of
the line, or the first character of a secondary marker which follows the non-fixed reading
instruction in the instruction file. In this way it identifies a string of characters and tries to
read them as a number; if this is unsuccessful due to the presence of non-numeric
characters or some other problem, execution terminates with an appropriate error
message. An error condition will also arise if the end of a line is encountered while
looking for the beginning of a non-fixed reading.

Consider the portion of the model output file shown in the top part of Figure 13. The
species populations at different times cannot be read as either fixed or semi-fixed
dependents, because the numbers representing these populations do not consistently fall
within one range of column numbers on the model output file. Figure 13 shows how non-
fixed reading can be used in this situation.

 126

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Instruction Files--

Portion of
model
output file

 .
 .
SPECIES POPULATION, 1 YEAR = 1.23498E5
SPECIES POPULATION, 2 YEARS = 1.58374E5
SPECIES POPULATION, 3 YEARS (ITERATION NEEDED)= 1.78434E5
SPECIES POPULATION, 4 YEARS = 2.34563E5
 .
 .

Instruction
file

jif *
 .
 .
*SPECIES POPULATION, * * = * !sp1!
l1 * = * !sp2!
l1 * = * !sp3!
l1 * = * !sp4!
 .
 .

Figure 13. Portion of the model output file and instruction file illustrating use of primary
and secondary markers and non-fixed reading. Numbers being read are shaded.
Dots replace one or more lines that are not shown.

A primary marker is used to move the cursor to the first of the lines shown in Figure 13.
Then, the “ = ” string is used as a secondary marker. After it processes a secondary
marker, the cursor resides on the last character of that marker, in this case on the blank
following the “=”. Hence after reading the “ = ” string, the !sp1! instruction is processed
by isolating the string “1.23498E5”.

After reading the model-calculated value for “sp1”, the next instruction line is executed.
In accordance with the “l1” (line 1) instruction, the next line of the model output file is
read into memory, then searched for an “=” character and the next number is read as
“sp2”. The procedure is then repeated to read “sp3” and “sp4”.

Successful identification of a non-fixed dependent depends on the instructions preceding
it. The secondary marker, tab, and whitespace instructions will be most useful in this
regard, though fixed and semi-fixed reading may also precede a non-fixed reading; in all
these cases the cursor is placed over the last character of the string or number it identifies
on the model output file corresponding to an instruction item, before proceeding to the
next instruction.

Figure 14 further illustrates the use of non-fixed reading. To read the fourth number when
the lengths of the preceding numbers are unknown, a non-fixed reading is needed.

Here it is assumed that, prior to reading this instruction, the cursor was located on the
10th preceding line of the model output file. As long as it is known that no space will
ever precede the first number, there will always be three incidences of whitespace
preceding the number that must be read. However, if it happens that one or more spaces
may sometimes precede the first number, then the first number can be read as a dummy
reading as shown in instruction file 2 in Figure 14.

A third alternative for locating the value to be read for “obs1” in Figure 14 is to use the
dummy read more than once. Had the numbers been separated by commas instead of
spaces, the commas would need to be used as secondary markers to find “obs1”.

 127

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Instruction Files--

Portion of
model
output file

 .
 .
4.33 -20.3 23.392093 3.394382
 .
 .

Instruction
file 1 l10 w w w !obs1!

Instruction
file 2 l10 !dum! w w w !obs1!

Instruction
file 3 l10 !dum! !dum! !dum! !obs1!

Figure 14. Portion of a model output file and instruction file illustrating use of white
space for non-fixed reading. The number being read is shaded. Dots replace one
or more lines that are not shown. Instruction file 1 works if the line never begins
with a space. Instruction files 2 and 3 work whether or not the line begins with a
space.

A number not bounded by blanks or the beginning or end of a line can still be read as a
non-fixed dependent with the proper choice of secondary markers. Consider the model
output file line shown in Figure 15

Portion of
model
output file

 .
 .
SOIL WATER CONTENT (NO CORRECTION)=21.345634%
 .

Instruction
file

jif *
.
.
l5 *=* !sws! *%*

Figure 15. Portion of a model output file and instruction file illustrating use of a
secondary marker to define the end of a non-fixed reading. The number being
read is shaded. Dots replace one or more lines that are not shown.

It is not possible to read the soil water content as a fixed dependent because the “(NO
CORRECTION)” string may or may not be present after any particular model run.
Without the secondary marker the extracted string would include the “%” character and a
run-time error would occur. Secondary markers that are used to terminate the reading of a
number can not begin with a number.

The lack of a space between the “=” character and the number that must be read is not
problematic. After processing of the “=” character as a secondary marker, the cursor falls
on the “=” character itself. The search for the first non-space initiated by the !sws!
instruction terminates on the very next character after the “=”, that is, the “2” character.
Then this character is accepted as the left boundary of the extracted number and search
proceeds forward for the right boundary of the string in the usual manner.

 128

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Instruction Files--

After a non-fixed reading, the cursor is placed on the last extracted character. It can then
undertake further processing of the model output file line to read further non-fixed, fixed,
or semi-fixed dependents, or process navigational instructions as directed.

Making an Instruction File

An instruction file is easily built using a text editor. Normally two windows should be
open – one to write the instructions, and the other to view the model output file.

Performance of an instruction file needs to be checked thoroughly before proceeding.

Some errors are obvious. For example, if no number is found or a letter is read instead of
a number, a run-time error occurs and an error message is written that identifies the
problematic command.

Some errors are not obvious. For example, if a number is read but it is wrong. Indeed, it
may only be apparent if the UCODE_2005 appears to be malfunctioning, for example if
it reports an unusually high objective function that cannot be lowered. The problem may
be difficult to identify through consideration of the simulated equivalents printed in tables
that compare simulated equivalents to observed values, because those simulated values
may be a function of one or more extracted values. To help find these kind of errors set
verbose=3 or 4 in the UCODE_CONTROL_DATA input block so that the extracted
values are printed in the main output file.

 129

Chapter 11: Input to Interact with the Process model Input and Output Files
 --Instruction Files--

 130

Chapter 12: Input to Execute the Process Model(s) in Parallel

Chapter 12: INPUT FOR PARALLEL EXECUTION
UCODE_2005 can take advantage of parallel execution at two levels: (1) the process
model(s) can be programmed and set up to use multiple processors and (2)
UCODE_2005 can be set up to send runs of the command line defined in the
Model_Command_Lines input block to different processors.

The first type of parallelization generally is advantageous if sensitivities are produced
within a run of the process model(s), and is discussed by process models that support the
use of multiple processors, such as MODFLOW-2000.

The second type of parallelization is advantageous if sensitivities are calculated by
UCODE_2005 using perturbation methods. In this chapter we use this situation to explain
how parallel processing can be used to reduce execution time.

In some circumstances some of the sensitivities may be calculated by the process model
while others are calculated by UCODE_2005 using perturbation methods. Such
calculation can be parallelized easily by sending the process model runs that calculate
sensitivities to one computer while the other runs of the process model are sent to other
computers.

Using Multiple Processors to Calculate Perturbation Sensitivities

The computation time attained using multiple processors depends on the number of
parameters for which sensitivities are calculated (equivalent to the number of parameters
being estimated if performing parameter estimation), the type of sensitivities calculated,
and the number of processors used. To help users approximate execution times, here we
consider the situation in which perturbation sensitivities are calculated using the forward-
difference method. In this situation, the number of process-model solutions required for
each parameter-estimation iteration equals the number of parameters plus one for the base
run. On one processor, execution time is approximately (Hill and Tiedeman, 2007,
Chapter 15.1; Hill, 1998, 66):

[the time required for a forward solution] [1 + the number of parameters]. (9)

If enough processors are available, execution time can be reduced to:

2 × [the time required for a forward solution]. (10)

The factor of 2 results because the base run is run first and by itself. Though this is not
required for forward-perturbation sensitivities, it is how many programs, including
UCODE_2005, perform the calculations. For twenty parameters, execution times would
be reduced by about a factor of 10 if 20 or more processors of about equal speed were
available.

131

Chapter 12: Input to Execute the Process Model(s) in Parallel

If fewer processors are available and one processor is used only for the base run and to
coordinate other processors, execution times are approximately proportional to

[the time required for a forward solution] ×

[1 + (number of parameters)/(number of processors - 1)],
(11)

Any fraction in the division results in the number being equal to the next larger integer. If
all processors have the same execution speed, they are used most efficiently if the number of
processors minus one divides evenly into the number of parameters. For example, if four
processors are used and nine parameters are defined, the number in parentheses will be three and
all processors will be used nearly continuously. For the same nine parameters and five processors,
the number in parentheses will still be three so that the expected time of solution will be the same;
three of the processors will be idle while one performs calculations for the eighth parameter. The
situation is shown in Table 10.

Table 10: The sequence of calculations performed by UCODE_2005 given nine

parameters and (A) four or (B) five computer processors of about equal speed.
(A)
Processor
Number

The process model is run with the base set of parameter values and then with
the value of the indicated parameter perturbed using four processors.

1 Base run. Coordinate the other processors
2 Parameter 1 Parameter 4 Parameter 7
3 Parameter 2 Parameter 5 Parameter 8
4 Parameter 3 Parameter 6 Parameter 9

(B)
Processor
Number

The process model is run with the base set of parameter values and then with
the value of the indicated parameter perturbed using five processors.

1 Base run. Coordinates the other processors
2 Parameter 1 Parameter 5 Parameter 9
3 Parameter 2 Parameter 6 (idle)
4 Parameter 3 Parameter 7 (idle)
5 Parameter 4 Parameter 8 (idle)

If the processor speeds differ or some of the runs take more execution time than others,
UCODE_2005 adjusts the runs assigned to the different processors.

If a run fails on any processor, a message to that effect is printed to the main
UCODE_2005 output file and the processor is taken off the list of processors to use. The
run then gets assigned to the next available processor. If the failure is caused by model
input (for example, unrealistic parameter values), successive processors will fail as a
result of trying to make the run with the problematic model input. Eventually, all
processors will fail, and execution of UCODE_2005 will stop.

132

Chapter 12: Input to Execute the Process Model(s) in Parallel

Execution time can be improved by also using processor 1 for model runs. This works
best when, on processor 1, the priority of UCODE_2005 is set to something less than the
default priority. On windows operating systems, this can be accomplished as follows.
Start UCODE_2005. Press cntl-alt-delete to get a menu and then click on “Task
Manager.” Click the tab “Processes”. Click on the column header “Image Name” twice
so that UCODE_2005 is listed toward the top. Along the top of the window, click on
“View” to get a drop-down menu, and click “Select Columns”. In the right column, make
sure the box to the left of “Base Priority” has a check in it. Click “OK” to get back to the
list of processes. Enlarge the window as needed to view the column labeled “Base
Priority” Locate UCODE_2005 and right click on it. Click “Set Priority” and choose
“BelowNormal”.

Parallel Processing Using the Dispatcher-Runner Protocol
The dispatcher-runner protocol used here is a version of what is sometimes called the
master-slave protocol. The dispatcher-runner protocol can be used to implement parallel
processing using multiple processors. In practice the multiple processors often are in
multiple networked computers, but can also be on one multi-processor computer.

To set up parallel processing, identify a directory to use on each processor (if the
dispatcher and a runner are to be on one processor, two directories are needed there).
Select the directory from which to run the dispatcher program (here, UCODE_2005).
Directories to be used for process model runs are called runner directories.
UCODE_2005 needs to be able to write and read files in each runner directory. For each
runner directory and the dispatcher directory, copy in all the files and directories needed
to run the process model(s). The runner directories also need the program JRUNNER.
Start at least one JRUNNER before stating UCODE_2005. Additional instances of
JRUNNER may be started after UCODE_2005 is started.

Communication between UCODE_2005 and the runner programs is implemented by
creating, writing, reading, and deleting signal files. Table 11 lists the signal files and how
they are used. A conflict exists if a runner directory contains a file with the same name
as a signal file, so the file names listed in Table 11 can not be used for other purposes.

The performance of the dispatcher-runner parallel processing protocol is described in the
following paragraphs. In this description UCODE_2005 is the dispatcher program.

When JRUNNER starts, it writes signal file “jrunner.rdy” to indicate its active status to
the dispatcher program. It then begins looking in its directory for signal files written by
the dispatcher program. The dispatcher program executes the overall logic of the
program, as in the case without the parallel-processing capability. The dispatcher
program writes a signal file named “jdispatcher.rdy” in each runner directory to
communicate initialization information, which is then read by JRUNNER.

At a point in the dispatcher program where a set of model runs is required that can be
executed in parallel, a signal file named “jdispar.rdy” is written to the directory of each
active runner. Each copy of “jdispar.rdy” contains a set of parameter values and other
data needed for a single model run. When JRUNNER detects the existence of a

133

Chapter 12: Input to Execute the Process Model(s) in Parallel

jdispar.rdy file in its directory, it reads the parameter values and other data from the file.
JRUNNER uses the parameter values and template files to prepare one or more model-
input files and then sends a command to the operating system to initiate a model run.
When the model run is complete, JRUNNER extracts model-calculated values from one
or more model-output files and writes the values to a signal file named “jrundep.rdy”.

The dispatcher program iteratively checks the directory of each of the active runners for
the presence of a file named “jrundep.rdy”; when it finds this file it reads the model-
calculated values from it.

Table 11. Signal files for parallel processing

File name Program that
writes file

Purpose

jrunner.rdy JRUNNER Inform dispatcher that runner is active and ready to make a model
run.

jdispatcher.rdy Dispatcher Communicate to runner data needed to start model runs.

jdispar.rdy Dispatcher
Communicate to runner: command to be used to start a model run,
parameter values to be used, and that runner should initiate a model
run.

jrundep.rdy JRUNNER Communicate model-calculated dependent values from runner to
dispatcher.

jdispatcher.fin Dispatcher Stop execution of runner.

jrunner.fin JRUNNER Communicate to dispatcher that signal to stop execution has been
received, and that runner is stopping.

jrunfail.fin JRUNNER Communicate to dispatcher that runner has encountered an error and
is stopping.

All instances of JRUNNER prepare model-input files and extract model-calculated values
from model-output files in the same way. For this approach to work correctly, the
following requirements need to be met:

1. Avoid file-access conflicts. Set up the runner directories and all directories containing
files used by JRUNNER and the model to be independent of each other.

2. The runner directories need to be accessible from the directory where the dispatcher
program runs using pathnames, on a computer or within a network. The pathnames
can be absolute or relative. In computing environments that support it, the Universal
Naming Convention (UNC) may be used to construct pathnames.

3. For assured results, run the dispatcher program and all instances of JRUNNER under a
common operating system. It may be possible to obtain successful results using a
combination of closely related operating systems, such as different versions of
UNIX, or a combination of UNIX and Linux. Experimentation is needed to
determine if a particular combination of operating systems can be successfully used
in parallel processing. The critical issue that determines if operating systems can be
used in combination is that text files written by the dispatcher program need to be
readable by all of the runner programs, and vice versa. This restriction, for example,
likely would prevent a dispatcher program to run on a Windows computer with

134

Chapter 12: Input to Execute the Process Model(s) in Parallel

JRUNNERs running on UNIX computers, because the line-ending conventions used
by the two systems are different.

When JRUNNER encounters an error that it is designed to handle, it communicates an
error message to the dispatcher program in the “jrunfail.fin” file and stops execution.
When this situation arises, UCODE_2005 writes the error message to the screen.

The methodology used by the parallel-processing capability implemented in the current
version of the Parallel-Processing Module has both positive and negative attributes. It is
straightforward to set up parallel processing because no additional software is needed.
The method is fairly robust in that failure of individual runners can be tolerated, failed
runners can be restarted without restarting the dispatcher program, and new runners can
be added after the dispatcher program has started.

A major drawback of the method is that both the dispatcher program and JRUNNER use
the central processing unit (CPU) of the computer virtually constantly while they are
running, because they continually are either running the model or testing for the existence
of signal files. This attribute makes the use of the parallel-processing capability
unwelcome in a computing environment shared by multiple users. However, given
exclusive use of multiple computers, the savings in execution times can be substantial.

In the simplest case, instances of JRUNNER are started manually, by typing
“JRUNNER” at the command prompt or by invoking JRUNNER from a script or batch
file. Alternatively, utilities for starting a program remotely could be used to make the
starting of JRUNNER instances more convenient. However, the issue of starting
programs remotely is outside the scope of UCODE_2005 and the JUPITER API.

In some circumstances better performance can be achieved by reducing the priority of the
JRUNNER relative to the process model. On Windows operating systems, this can be
accomplished using the method described at the end of the previous section because
JRUNNER runs continuously after it is started until the end of the UCODE_2005 run.

 135

Chapter 12: Input to Execute the Process Model(s) in Parallel
 --Parallel_Control Input Block--

Parallel_Control Input Block (Optional)

The Parallel_Control input block defines how parallel processing is accomplished.

The keywords are:

Parallel - yes: Activate parallel processing. no: one computer is used for the
computations. Default=no.

Wait - Time delay, in seconds, used in file management. Default=0.001.
Increase if the message “Warning: WAIT time may be too small”
is printed to the screen of any of the computers being used.

Opening, writing, reading, and closing of disk files are processes that require a
finite amount of time. The current parallel-processing capability of the Parallel-
Processing Module communicates through disk files, and a certain amount of
delay time is built into the sections of code that deal with these files. The WAIT
variable of the Parallel_Runners input block provides the user with a way to
control the increment of time used in these sections of code. Generally, a small
fraction of a second is sufficient—the default value of WAIT is 0.001 second.
WAIT needs to be set to a larger value if the message “Warning: WAIT time may
be too small” appears on the screen running either the dispatcher program or
JRUNNER. Little is gained by setting WAIT smaller than the default value.

VerboseRunner - Flag that controls printing by the runner. Problems with parallel
processing often can be diagnosed using messages written by
JRUNNER. Default=3.

VerboseRunner Output
0 No extraneous output.
1 Warnings.
2 Warnings, notes.
3 Warnings, notes, echo selected input.
4 All optional messages are printed.

AutoStopRunners - yes: execution of runners will be stopped when execution of
UCODE_2005 stops. no: when execution of UCODE_2005 stops,
runners will reset themselves in preparation for another execution
of UCODE_2005. Default=yes.

OperatingSystem - String identifying the operating system. All computers need to
use the same operating system. OperatingSystem may be
‘Windows’, ‘DOS’, ‘Unix’, or ‘Linux’. This variable affects the
operating-system command used to rename files in the runner
directories. Default=Windows.

TimeoutFactor - Factor that multiplies RUNTIME to determine if a model run is
overdue. Default=3.0.

 136

Chapter 12: Input to Execute the Process Model(s) in Parallel
 --Parallel_Control Input Block--

If Blockformat TABLE format is selected, COLUMNLABELS are needed because there
is no default column order for the Parallel_Control input block.

Example Parallel_Control input block:
BEGIN PARALLEL_CONTROL
 OPERATINGSYSTEM=Linux
 Parallel=yes
 Wait=.001
 VerboseRunner=3
 AutoStopRunners=yes
END PARALLEL_CONTROL

137

Chapter 12: Input to Execute the Process Model(s) in Parallel
 --Parallel_Runners Input Block--

Parallel_Runners Input Block (Optional)

The Parallel_Runners input block defines how parallel processing is accomplished. This
input block is expected to include the following items for each runner.

The keywords are:

RunnerName - Name by which runner is identified. If the name includes spaces
it needs to be enclosed in single quotes. The name can be up to 20
characters long.

RunnerDir - Pathname of directory where the runner program runs. The path
needs to end with a backward or forward slash (\ or /), depending
on the convention used by the operating system.

RunTime - Expected model runtime, in seconds. Default=10.

If JRUNNER encounters an unrecognized error, or stops due to an external
problem such as a power interruption or network failure, no signal file is
generated by JRUNNER to communicate the problem to the dispatcher program.
The Parallel-Processing Module handles situations like this by comparing the
elapsed time since writing the jdispar.rdy file to an expected run time. If the
elapsed time exceeds the expected run time by a factor of TimeOutFactor (from
the Parallel_Control input block), the model run is assumed to have failed, that
instance of JRUNNER is assumed to be inactive, and the Dispatcher stops
checking for results. The model run that failed is then assigned to the next
available, active runner. The RunTime variable of the Parallel_Runners input
block allows the user to specify an initial expected run time. As model runs are
completed by each active runner, the expected run time is adjusted, so that the
expected run time will approach the actual run time on each runner. Because the
expected run times are continually being adjusted and a run is not assumed to
have failed until the elapsed time exceeds TimeoutFactor (default equals 3) times
the expected run time, RunTime does not need to be an accurate estimate of the
model run time.

If Blockformat KEYWORDS is selected by designation or default, keywords defining a
Runner in the Parallel_Runners input block need to be grouped together and follow the
related RunnerName. The RunnerName keyword needs to be the first keyword on a new
line. RunnerName and associated keywords are repeated to define multiple runners.

If blockformat TABLE is selected without indicating ColumnLabels, the default column
order is used. No columns are ignored and a column for each keyword is needed. If
ColumnLabels are indicated, the column labels can appear in any order; the RunnerName
keyword need not be first, though it often is first.

Default Column Order:
RUNNERNAME RUNNERDIR RUNTIME

138

Chapter 12: Input to Execute the Process Model(s) in Parallel
 --Parallel_Runners Input Block--

Example Parallel_Runners input block:
BEGIN PARALLEL_RUNNERS TABLE
RUNNERDIR must end with the correct directory separator for
the OS -- "\" for Windows and "/" for Unix and Linux.
NROW=6 NCOL=4 COLUMNLABELS
RUNNERNAME RUNNERDIR RUNTIME
runner1 \dir\runner1\ 8000
runner2 \dir\runner2\ 8000
runner3 \dir\runner3\ 8000
runner4 \dir\runner4\ 8000
runner5 \dir\runner5\ 8000
runner6 \dir\runner6\ 8000
END PARALLEL_RUNNERS

139

Chapter 12: Input to Execute the Process Model(s) in Parallel
 --Parallel_Runners Input Block--

140

Chapter 13: Equation Protocols and Two Additional Input Files
 --Equation Protocols--

Chapter 13: EQUATION PROTOCOLS AND TWO
ADDITIONAL INPUT FILES

Equation Protocols for the UCODE_2005 Main Input File

In UCODE_2005, equations can be defined in the following input blocks:
For parameters: Derived_Parameters,
For observations: Observation_Data, Derived_Observations,
For predictions: Prediction_Data, and Derived_Predictions.

Equations are given a name and a mathematical expression which represents the right
side of the “=” sign. The equal sign is not included in the expression. The expression can
consist of the arithmetic operator and functions listed in Table 12 and variable names (for
example, parameter names or observation names). Equations that include spaces need to
be surrounded by single or double quotes.

The order in which mathematical operations are carried out to evaluate a mathematical
expression is the same as that used in normal mathematical operations. That is, raise to a
power, followed by multiplication and division, followed by unary addition and
subtraction, followed by binary addition and subtraction. Parentheses can be used to
override or clarify this order.

Example Equations

The following are some examples of acceptable equations. It is assumed that values are
available for variables parname1, parname2, obsname1, and obsname2.

 “parname1 + sqrt(parname2*parname1)”

 sqrt(abs(sin(obsname1/57.29)))

 “exp(3.0 * sqrt(obsname1/obsname2))”

 parname1

 1.0

These examples demonstrate the following:

1. Spaces can be left between operators, variable names, brackets, and so on if the
equation is enclosed in double or single quotes. However, a variable name can not
include a space.

141

Chapter 13: Equation Protocols and Two Additional Input Files
 --Equation Protocols--

2. An equation entity that is not an operator or a function is first treated as a number.
If it cannot be read as a number, it is assumed to be a variable. To avoid
confusion, variable names can not begin with a number.

3. If an illegal argument is supplied to any function (for example if a negative
number is provided as the argument to a log or sqrt function), an error condition
arises, the error is reported, and UCODE_2005 execution stops.

Table 12. Arithmetic operators and functions available for equations.
Arithmetic Operator Operation

** or ^ Power. a**b or a^b is interpreted as “a raised to the power b”.
/ Division. a/b is interpreted as “a divided by b”.
* Multiplication. a*b is interpreted as “a multiplied by b”.
- Subtraction. This can be a unary or binary operator. a-b is interpreted

as “a minus b”; -a is interpreted as “negative a”.
+ Addition. This can be a unary or binary operator. a+b is interpreted as

“a plus b”; +a or a is interpreted as “positive a”.
() Parentheses. Terms in parentheses are evaluated first. For example:

5 + 4 * 3 is evaluated as 17. However (5 + 4) * 3 is evaluated as 27.
 Function Definition

abs() Absolute value. Argument can be any floating-point number.

cos() Cosine. Argument can be any floating-point number supplied in
radians.

acos() Inverse cosine. Absolute value of argument must be less than or equal
to one. Value is returned in radians.

sin() Sine. Argument can be any floating-point number supplied in radians.
asin() Inverse sine. Absolute value of argument must be less than or equal to

one. Value is returned in radians.
tan() Tan. Argument can be any floating-point number supplied in radians.
atan() Inverse tan. Argument can be any floating-point number. Value is

returned in radians.
cosh() Hyperbolic cosine. Argument can be any floating-point number.
sinh() Hyperbolic sine. Argument can be any floating-point number.
tanh() Hyperbolic tan. Argument can be any floating-point number.
exp() Exponential. Argument can be any floating-point number.
log() Log to base e. Argument must be a positive floating-point number.

log10() Log to base 10. Argument must be a positive floating-point number.
sqrt() Square root. Argument must be non-negative.

min(, ,) Minimum of a series of numbers. Arguments can be any floating-point
numbers.

max(, ,) Maximum of a series of numbers. Arguments can be any floating-
point numbers.

mod(,) Remainder. mod(a,b) is the remainder after a is divided by b.

142

Chapter 13: Equation Protocols and Two Additional Input Files
 --Derivatives Interface Input File--

Derivatives Interface Input File

A Derivatives Interface input file provides UCODE_2005 with information needed to
obtain model-calculated sensitivities (derivatives of simulated values with respect to
parameters) from a model-output file rather than calculating them by perturbation.

The Derivatives Interface file does not provide as much flexibility as calculating
sensitivities by perturbation. The following restrictions apply:

1. Sensitivities can only be read for observations and predictions with UseFlag=yes.
In some circumstances, lines or columns of sensitivities for other simulated values
can be omitted using DERFORMAT of the Derivatives Interface input file.

2. Sensitivities can only be read for adjustable parameters – that is, parameters with
Adjustable=yes in the Parameter_Groups or Parameter_Data input block. In some
circumstances, lines or columns of sensitivities for other parameters can be
omitted using DerFormat of the Derivatives Interface input file.

3. No equations can be applied to derivatives read using the Derivatives Interface
file. This includes equations related to parameters, observations, and predictions.
This is because equations are applied by UCODE_2005 to simulated values, not
sensitivities. Sensitivities for parameters, observations, and predictions that are
calculated using equations and referred to as being derived in this work need to be
calculated using perturbation.

4. For a single parameter, sensitivities for all observations or predictions need to
either be read using a Derivatives Interface file or to be calculated by perturbation
by UCODE_2005. Calculating sensitivities for the same parameter using different
methods is not supported because it increases execution time and is rarely
advantageous.

To use a Derivatives Interface input file, the following are needed in the main input file
for UCODE_2005:

1. In the Options input block, name a Derivatives Interface input file using the
Derivatives_Interface keyword.

2. In the Model_Command_Lines input block, the keyword Purpose needs to be
Derivatives or Forward&Der for at least one occurrence of the Command
keyword.

3. In the Parameter_Data input block, SenMethod needs to equal -1 or 0 for
parameters for which sensitivities are read using the Derivatives Interface input
block. SenMethod=-1 indicates that sensitivities for log-transformed parameters
are read as transformed sensitivities. SenMethod=0 indicates that sensitivities for

143

Chapter 13: Equation Protocols and Two Additional Input Files
 --Derivatives Interface Input File--

log-transformed parameters are read as native parameter sensitivities and are
transformed by UCODE_2005.

In addition, the Derivatives Interface input file needs to be constructed as described in
Table 13.

Table 13. Derivatives Interface file input instructions.
[The items need to be in the order shown. All items are read in free format. Sensitivities
can be for native parameter values or log-transformed as in the regression; see point 3 preceding
table 13.]

Item Variable Name
(bold) or content Explanation

0 # Text Zero or more comment lines allowed only at the top of the file.
Comments are identified by # in column 1. Comments may be
inserted on data lines following the required data, except not on
the lines containing names of parameters or dependents.

1 DERFILE Name or path of the model-generated file containing derivatives
2 NSKIP Number of lines to skip at the top of DERFILE before reading

derivatives
3 NDEP NPAR Number of simulated values and parameters for which

sensitivities are to be read from DERFILE.
4 ORIENTATION Either "ROW/DEP" or "ROW/PAR", with or without quotes. 1
5 DERFORMAT Fortran format for reading derivative values, or "(FREE)".2
6 “PARAMETERS” Enter the word “PARAMETERS”, with or without quotes.

Interpretation is not case-sensitive.
7 Parameter names NPAR parameter names. The names need to correspond to and

be in the same order as the parameters for which model-
calculated derivatives are provided in file DERFILE.3

8 “DEPENDENTS” 4 Enter the word “DEPENDENTS”4, with or without quotes.
Interpretation is not case-sensitive.

9 Any combination of
Obsname Predname

NDEP names of simulated values for which sensitivities are
listed. The names need to correspond to and be in the same
order as the dependents for which model-calculated derivatives
are provided in file DERFILE.3

1 ORIENTATION: "ROW/DEP" indicates that each row in file DERFILE contains derivatives
for one simulated (dependent) value. "ROW/PAR" indicates that each row contains
derivatives for one parameter.

2 DERFORMAT: The format string needs to include the parentheses. Single or double quotes
may be used to include embedded spaces or commas. Length limit: 200 characters. The
format is executed once for each row of data.

3 Parameter names and Obsname or Predname: Names are read until NPAR (or NDEP) names
are read, the names should be in the order used in the model-generated derivatives file.
Multiple names may be listed on each line. The names need to correspond to parameter or
dependent names defined elsewhere in program input.

144

Chapter 13: Equation Protocols and Two Additional Input Files
 --Derivatives Interface Input File--
4 The term ‘dependent’ refers to values simulated by the model. They may be identified as

observations or predictions elsewhere in UCODE_2005, but the distinction is not needed here
when reading the derivatives interface file.

Example of a derivatives interface file:
Derivatives Interface File for u_test model
Parameter and dependent names can be listed in a row or as a
column of labels
ex._su (DERFILE)
1 (NSKIP)
11 5 (NDEP NPAR)
row/dep (ORIENTATION)
'(21x,5f15.0)' (DERFORMAT)
PARAMETERS
k1 KC k2m RCH1 RCH2
DEPENDENTS
A1 B1 C1 D1 E1 A2 B2 C2 D2 E2 flow

145

Chapter 13: Equation Protocols and Two Additional Input Files
 --fn.xyzt file--

fn.xyzt Input File

The fn.xyzt input file can be used in the forward, sensitivity analysis, and parameter –
estimation modes to facilitate plotting of weighted residuals and residuals. The plots may
be spatial and(or) temporal and may be maps, cross-sections, hydrographs, and so on.
The filename begins with the filename prefix defined on the command line, which is
referred to as fn in this document. UCODE_2005 searches for a file with this name and if
it is found UCODE_2005 produces a data-exchange file with file extension _xyztwr.

The first line of the xyzt input file is ignored and can be used to list column headings,
projection information, or other information. The rest of the file needs to be composed of
lines containing five columns of data:

OBSERVATION NAME X Y Z TIME

As long as at least one space or a comma follows the time, additional data or comments
to the right are ignored.

Typically all possible observations are listed in the fn.xyzt input file. For any single
execution of UCODE_2005, all observations with UseFlag=yes need to be included in
the file with the ObsName correctly typed for the _xyztwr file to be produced. If there are
observations with UseFlag=yes that are not listed in the fn.xyzt file the following occurs:
(1) an error message is written to both the screen and the output file and (2) the _xyztwr
data-exchange file is not printed. Execution of UCODE_2005 continues.

Observations listed in the fn.xyzt file are ignored if they are not used in the run of
UCODE_2005. This is intended to allow users to investigate regressions with different
sets of observations without having to modify the fn.xyzt file.

The fn.xyzt input file is used only to create the fn._xyztwr file; the data are not used in
the UCODE_2005 calculations. The fn.xyzt file is intended to provide plotting positions
to assist in evaluating model fit. For features that do not occur at a point, such as long
well screens and stream reaches, enter the location at which values associated with the
observation or prediction are to be printed.

UCODE_2005 produces the _xyztwr file because plotting of weighted and unweighted
residuals in relation to space and time is so fundamental to model calibration. The fn.xyzt
file can be used with other types of information such as sensitivities to produce graphics.
For predictions, a file similar to the xyzt file may be constructed for use with the data-
exchange file that lists simulated predictions. These other types of graphs can easily be
produced by reading the xyzt file and other file of interest into a plotting routine.

146

Chapter 14: UCODE_2005 Output Files

Chapter 14: UCODE_2005 OUTPUT FILES
All UCODE_2005 output files are named using the filename prefix defined on the
command line and referred to in this documentation as fn.

If DataExchange=yes in the UCODE_Control_Data input block, then extensive
information is printed to data-exchange files. Data-exchange file names are of the form:
fn._xxx, where _xxx is called a filename extension and xxx is replaced by one or more
characters. For UCODE_2005, the options for _xxx and the contents of the resulting files
are described in Table 15 through Table 21.

The primary output file for UCODE_2005 is named fn.#xxx, where #xxx is called the
filename extension and xxx is replaced by a label that depends on the mode, as mentioned
in Table 3 and in table 20. There are a variety of opportunities to choose more or less
information to be printed to this file, as listed in Table 14.

Output files and data-exchange files with similar naming conventions also are produced
by the post-processing programs documented in this report. To help the user readily
identify these files, a complete list of files is presented alphabetically by file extension in
Appendix B.

An example of the UCODE_2005 main output file for parameter-estimation mode and
selected data-exchange files are shown in Appendix C.

Table 14. Input variables available to control UCODE_2005 output.
[Except for DataExchange, the variables affect the UCODE_2005 main output file.]
Input Block Keyword Output controlled
Options Verbose Warnings, echoed input, and other. Set to 4 or 5 to

check the numbers read using the instructions of the
Model_Output_Files input block.

DataExchange Data-exchange files
StartRes
IntermedRes
FinalRes

Controls printing of observed and simulated values
and residuals calculated using starting, intermediate1,
and final parameter values. UCODE_Control_Data

StartSens
IntermedSens
FinalSens

Controls the types of sensitivity tables printed using
starting, intermediate1, and final parameter values.

1 Intermediate parameter values are calculated for each parameter-estimation iteration.

147

Chapter 14: UCODE_2005 Output Files

Main UCODE_2005 Output File

The name of the UCODE_2005 main output file always begins with the filename prefix
defined on the command line and referred to in this document as fn. The file extension
used for the main output file depends on the mode (Table 3); it always begins with the
character “#”. For modes Forward, Sensitivity Analysis, and Parameter Estimation, the
main UCODE_2005 output file is fn.#uout. For prediction mode, the main output file is
fn.#upred. For test-model-linearity mode, the main output file is fn.#umodlin. The main
output files from other modes are discussed in Chapter 17.

The main output file contains an echo of the input data, followed by selected results
depending in the mode (Table 3) and the chosen options (Table 14).

Data-Exchange Files Produced by UCODE_2005

Data-exchange files are printed when DataExchange=yes in the UCODE_Control_Data
input block. Data-exchange files produced by UCODE_2005 are listed in Table 15 and
B-1. Their connection to the JUPITER API is discussed in Appendix A.

As mentioned in the introduction of this report, the filenames of data-exchange files are
created using the filename prefix defined on the command line and an extension that
begins with an underscore. Often the underscore is followed by two letters, with one
letter indicating a quantity in the file that commonly would be plotted on the y-axis
followed by one letter indicating a quantity that commonly would be plotted on the x-
axis. This order is consistent with how the contents of a graph are often described. In
such cases, the columns in the file are ordered with the x-axis first because that is the
order expected by most plotting programs. For example, the data-exchange file with
extension _os is generally used to create a graph of observed and simulated values and
contains a column of simulated values followed by a column of observations and prior
information. Alternatively, the names are descriptive. For example, the file with
extension _sd contains dimensionless scaled sensitivities. An s follows the underscore for
all files containing sensitivities.

Also as mentioned in the introduction, data-exchange files are designed to facilitate the
exchange of data among computer codes and post-processing software. For most of these
files the only explanatory text are labels on the first line that identify subsequent columns
of data. Each label is enclosed in double quotes. Two files contain more than one table of
data; these have filename extensions _pa and _pasub. Two files contain matrices listed in
the compressed format described in Chapter 10; these have filename extensions _wt and
_wtpri.

The contents of the data-exchange files produced by UCODE_2005 are described in
tables 16 through 21.

148

Chapter 14: UCODE_2005 Output Files

Table 15. Brief description of data-exchange files produced by UCODE_2005.
[Modes that produce the files are listed. SEN, Sensitivity Analysis; PE, Parameter Estimation.]

File
Extension Content (also see tables 16-21)

Files used for model development and testing
_dm Information related to model structure, fit and parsimony.
_gm Defines observation groups.
_pr Prior information equations.

Information from each parameter-estimation iteration [Mode: Sen1, PE]
_pa All defined parameters: values formatted in columns.

_pasub All defined parameters: formatted to substitute in Parameter_Values input block.
_ss Sum of squared weighted residuals.

Final results [Mode: Sen1, PE]
_paopt All defined parameters: See table 19 for content.

_pc Adjusted parameters: See table 19 for content
Graphical analysis of model fit to observations and prior information [Mode: Forward, Sen, PE]

_nm Weighted residuals and probability plotting positions.
_os Unweighted simulated equivalents and observed or prior values.
_r Unweighted residuals.

_sos Parameter values and resulting value of sum-of-squares objective function.
_w Weighted residuals for observations and prior information.
_ws Simulated equivalents and weighted residuals.
_ww Weighted simulated equivalents and weighted observations or prior information.

_xyztwr Merger of _r and _w data-exchange files with the optional xyzt input file.
Commonly used for sensitivity analysis [Mode: Sen, PE]

_pcc Large parameter correlation coefficients (≥0.85) formatted for presentation.2
_sc Composite scaled sensitivities for each parameter.
_sd Dimensionless scaled sensitivities for each observation and each parameter.
_so Leverage statistics with observations and, if defined, prior information.
_s1 One-percent scaled sensitivities. (applicable in limited circumstances)

Used by other programs; rarely by users [Mode: Sen, PE, and as noted]
_b1 Parameter sets for calculating Beale’s measure of linearity. 3
_b2 Simulated equivalents for Beale parameter sets of _b1. 3
_init Like _paopt but for a non-optimal parameter set. 4

init.** ** is replaced by dm, mv, su, or supri. 4
_mc Parameter correlation coefficient matrix.2
_mv Parameter variance-covariance matrix.5
_su Unscaled sensitivities for observations.

_supri Unscaled sensitivities for prior information.
_wt Weighting for observations. [Mode: also Forward]

_wtpri Weighting for prior information. [Mode: also Forward]
Files for prediction analysis [Mode: Prediction]

_dmp Number of predictions.
_gmp Defines prediction groups.

_p Predicted values. 5
_pv Prediction variances. 5,6
_spu Unscaled sensitivities for predictions.5

149

Chapter 14: UCODE_2005 Output Files

Table 15.-- Continued
File

Extension Content (also see tables 16-21)

Prediction scaled sensitivities. For each, one value is printed for each prediction and parameter.
_sppp Scaled using parameter values and predicted values.
_sppr Scaled using parameter values and reference values. 7
_spsp Scaled using parameter standard deviations and predicted values.
_spsr Scaled using parameter standard deviations and reference values. 7

1 Includes the results for the parameter values listed using keyword StartValue in the
UCODE_2005 main input file.
2 File contents are meaningful for (a) sensitivity-analysis mode or (b) parameter-estimation mode
if convergence is reached or the maximum number of iterations is reached and the
Reg_GN_Controls input block Stats_On_Nonconverge=yes by designation or default.
3 Used by post-processing program MODEL_LINEARITY. The _b2 file is produced by test-
model-linearity mode.
4 The _init._** file is like the _** file but contents are calculated using a non-optimal parameter
set. The _init and _init._** data-exchange files are not listed in tables 16 to 21. They have the
same header lines as the associated files listed here. These files are used by the UCODE_2005
nonlinear-uncertainty mode. See Chapter 17.
5 Used by post-processing program LINEAR_UNCERTAINTY.
6 Calculated using MeasStatistic defined in the Prediction_Data input block instructions.
7 If the reference value equals 0.0, the scaled sensitivities are set to zero.

150

Chapter 14: UCODE_2005 Output Files

Table 16. Contents of data-exchange files for analysis of model fit.
[Number of data lines = number of observations + number of prior information equations, except
as follows. The _gm file has one line for each observation. The _pr file has one line for each prior
information equation. The _xyztwr file has one line for each observation.]

File1

Exten-
sion

Brief
Description “Column Tags” – Surrounded by double quotes in header

_gm Defines ob-
servation and
prediction
groups

GROUP
NAME

MEMBER
NAME

PLOT
SYMBOL

_nm Normality of
weighted
residuals

WEIGHTED
RESIDUAL

STANDARD
NORMAL
STATIS-
TIC

PLOT
SYMBOL

OBSERVATION or
PRIOR NAME

_os Observed and
Simulated
values

SIMULATED
EQUIVA-
LENT

OBSERVED
or PRIOR
VALUE

PLOT
SYMBOL

OBSERVATION or
PRIOR NAME

_pr Prior
information

PRIOR NAME PLOT SYMBOL
EQUATION

NATIVE SPACE PRIOR
VALUE

_r Residuals RESIDUAL PLOT
SYMBOL

OBSERVATION or
PRIOR NAME

_w Weighted
residuals

WEIGHTED
RESIDUAL

PLOT
SYMBOL

OBSERVATION or
PRIOR NAME

_ws Weighted
residual,
Simulated
equivalent

SIMULATED
EQUIVA-
LENT

WEIGHTED
RESIDUAL

PLOT
SYMBOL

OBSERVATION or
PRIOR NAME

_ww Weighted
observed,
Weighted
simulated

WEIGHTED
SIMULATED
EQUIVA-
LENT

WEIGHTED
OBSERVED
or PRIOR
VALUE

PLOT
SYMBOL

OBSERVATION or
PRIOR NAME

_xyztwr Coordinates,
residuals,
weighted
residuals

X Y Z T WEIGHTED
RESIDUAL

RESIDUAL PLOT
SYMBOL

OBSERVA-
TION
NAME

1files _wt and _wtpri are listed in table 17 rather than here because they have a compressed matrix
format as described in Chapter 10.

151

Chapter 14: UCODE_2005 Output Files

Table 17. Contents of the data-exchange file with extensions _wt and _wtpri, which
contain the weighting for observations and prior information, respectively. Each
file contains a weight matrix and the square-root of a weight matrix.

[The matrices are stored in the compressed format described in Chapter 10.]
Sequentially listed

lines
Data

One line The number of matrices in the file. The number equals 2 for
UCODE_2005.

One line Label: COMPRESSEDMATRIX

One line Three numbers: Number of non-zero values, the number of rows in
the weight matrix1, and the second number repeated.

One line for each non-
zero element of the
weight matrix

Two numbers on each line, an integer followed by a real number,
which equal the matrix position and a non-zero element of the
matrix.

One line Label: COMPRESSEDMATRIX

One line Three numbers: Number of non-zero values, the number of rows in
the weight matrix1, and the second number repeated.

One line for each non-
zero element of the
square-root of the
weight matrix

Two numbers on each line, an integer followed by a real number:
Matrix position, non-zero element of the square-root of the weight
matrix

1 For the _wt file, the number of rows equals the number of observations. For the _wtpri file, the
number of rows equals the number or prior information equations.

Example _wt data-exchange file including a diagonal weight matrix and its square root.
The weight matrix has diagonal terms equal to 4.0, 9.0, and 1.0; the square-root of the
weight matrix has diagonal terms equal to 2.0, 3.0, and 1.0.
2
COMPRESSED MATRIX
3 3 3
1 4.0
5 9.0
9 1.0
COMPRESSED MATRIX
3 3 3
1 2.0
5 3.0
9 1.0

152

Chapter 14: UCODE_2005 Output Files

Table 18. Contents of the sensitivity analysis data-exchange files, ordered from most to least
commonly used to construct graphs or tables.

[DSS, dimensionless scaled sensitivities; %, percent. Number of data rows equals number of
observations, except as follows: for _sc, the number of data rows equals the number of
parameters; for _pcc, the number of data rows equals the number of parameter pairs with
correlations equal to or greater than 0.85. Numbers are added to the end of ParamName to
emphasize when they are listed in order.]

File
Exten-

sion

Brief
Descrip-

tion

Column Tags Surrounded by double quotes in header.
Capitalized COLUMN TAGS are used literally.
ParamName is replaced by user defined names.

_sc1 Composite
scaled
sensitivities

PARAMETER
NAME

COMPOSITE
SCALED
SENSITI-
VITY

LARGEST
DSS FOR
THE PARA-
METER

OBSERVA-
TION WITH
LARGEST
DSS

Two more
columns with
second largest
DSS

_so Leverage OBSERVA-
TION or
PRIOR NAME

PLOT
SYMBOL

LEVERAGE LARGEST
DSS

PARAMETER
WITH
LARGEST
DSS

_sd1 Dimension-
less scaled
sensitivities

OBSERVA-
TION

PLOT
SYMBOL

Param-
Name1

Param-
Name2

Total number
of columns:
number of
parameters +2

_pcc Parameter
correlation
coefficients

ParamName ParamName CORRELATION

_s11 One percent
scaled
sensitivities

OBSERVA-
TION NAME

PLOT
SYMBOL

Param-
Name1

Param-
Name2

Total number
of columns:
number of
parameters +2

_su1 Unscaled
sensitivities

OBSERVA-
TION NAME

PLOT
SYMBOL

Param-
Name1

Param-
Name2

Total number
of columns:
number of
parameters +2

_supri1,2 Unscaled
sensitivities

PRIOR NAME PLOT
SYMBOL

Param-
Name1

Param-
Name2

Total number
of columns:
number of
parameters +2

1 Values for up to 500 parameters are printed as a set using long lines in the output file. Additional
parameters are printed in subsequent additional sets in the same file. Each set has the headers shown
and the observation name and plot symbol in the first two columns.
2 Only produced when prior information is defined.

153

Chapter 14: UCODE_2005 Output Files

Table 19. Contents of parameter-analysis data-exchange files.
[iteration, parameter-estimation iteration; #, a positive integer is printed; NP, the number of
adjustable or estimated parameters. Numbers are added to the end of ParamName and
ObsName to emphasize when they are listed in order.]

File
Exten-

sion

Description Column Tags Surrounded by double quotes in header.
Capitalized N TAGS are used literally. COLUM

ParamName and Obsname are replaced by user defined names.
PARAMETER:ParamName _pa Parameter

values, in
columns.

ITERATION ESTIMATE

Repeated for each parameter.

ITERATION: # _pasub Parameter
values for
substitution

PARAMETER ESTIMATE
Repeated for each iteration.
Formatted for the Parameter_Values input
block.

_paopt All defined
parameters

PARAMETER OPTIMAL
VALUE

LOG TRANSFORM
Native= 0 Log=1

PINC2

_pc Estimated
parameters

Fourteen column tags 3

_ss Sum-of-
squared
weighted
residuals

ITERATION SSWR-
(OBSERVA-
TIONS
ONLY)

SSWR-
(PRIOR
INFORMA-
TION ONLY)

SSWR-
(TOTAL)

OBSERVA-
TIONS
INCLUDED

_sos 1 Objective-
function
values

SUM-OF-
SQUARED
WEIGHTED
RESIDUALS

Param-
Name1

Param-
Name2

Param-
Name3

Number of
columns =
NP+1.

_b1 1 Parameter
sets for _b2

ParamName1 ParamName2 ParamName3 ..
Number of data rows = 2 × number of estimated parameters

_b2 1 From Model
Linearity
Mode

ObsName1 ObsName2 …
Number of data rows = 2 × number of estimated parameters

_mc 1 Parameter
correlation
matrix

ParamName1 ParamName2 ParamName3 ...
Row 1 of parameter correlation matrix
Row 2 …

The matrix has
NP rows and
NP columns

_mv 1 Parameter
covariance
matrix

ParamName1 ParamName2 ParamName3 ...
Row 1 of parameter variance-covariance matrix
Row 2 …

The matrix has
NP rows and
NP columns

1 Up to 500 parameter values or simulated values are printed as a set using long lines in the output
file. Additional values are printed in subsequent additional sets in the same file. Each set has the
headers shown and the observation name and plot symbol in the first two columns.
2 Options for PINC: -1, adjustable=no; 0, not estimated because of dynamic omission of insensitive
parameters or imposed constraints; 1, estimated.
3 Column Tags: (1) PARAMETER NAME, (2) OPTIMAL VALUE, (3) LOWER LIMIT (NATIVE), (4)
UPPER LIMIT (NATIVE), (5) LOG TRANSFORM Native= 0 Log=1, (6) OPTIMAL VALUE
(REGRESSION) (7) STANDARD DEVIATION (REGRESSION) (8) COEFFICIENT OF VARIATION
(REGRESSION) (9) STANDARD DEVIATION (NATIVE) (10) COEFFICIENT OF VARIATION
(NATIVE) (11) REASONABLE RANGE MINIMUM, (12) REASONABLE RANGE MAXIMUM (13) IN
REASONABLE RANGE? (Yes=1, No=0), (14) CONFIDENCE INTERVAL INCLUDES REASONABLE

154

Chapter 14: UCODE_2005 Output Files

VALUES? (Yes=1 No=0). The values in columns 3 and 4 are the lower and upper limit of a linear
individual 95-percent confidence interval. For log-transformed parameters, item 9 is calculated as
sb

2=exp[2.3(slogb)2+2.0×logb][exp(2.3(slogb)2)-1.0] where b is item 2 and slogb is item 7.

Table 20. Contents of prediction analysis files produced by UCODE_2005.
[PSD, Parameter standard deviation; RefValue, Reference value; PredValue, Predicted value;
Param, Parameter Value. Numbers are added to the end of ParamName and ObsName to
emphasize when they are listed in order.]

File
Extension Contents

UCODE_2005 main output files for prediction runs
#upred Summary of UCODE_2005 run with Prediction=yes in the UCODE_Control_Data

input block.

 Description
Column Tags Surrounded by double quotes in header.

Capitalized COLUMN TAGS are used literally.
ParamName and Obsname are replaced by

user defined names.
Prediction data-exchange files produced by UCODE_2005. Can be used in many ways, including
as input files for LINEAR_UNCERTAINTY
_gmp Prediction groups GROUP

NAME
MEMBER
NAME

PLOT
SYMBOL

_p Predictions PREDICTED
VALUE

PLOT
SYMBOL

PREDIC-
TION
NAME

_pv Prediction
variances

PREDIC-
TION
VARIANCE

PREDIC-
TION
NAME

PREDIC-
TION
GROUP

_spu1,2
_spsr1,2,3

_spsp1,2,3
_sppr1,2,3
_sppp1,2,3

Scaling:
[unscaled]
[×PSD/RefValue]
[×PSD/PredValue]
[×Param/RefValue]
[×Param/PredValue]

PREDIC-
TION
NAME

PLOT
SYMBOL

Param-
Name1

Param-
Name2

Number of
columns is
number of
parame-
ters +2

1 These data-exchange files contain prediction scaled sensitivities and differ only in how the
sensitivities are scaled. The first two letters of the file extensions are an s for sensitivity and a p for
prediction. The third letter is a u for unscaled, an s if the parameter standard deviation is used in the
scaling, and a p if the parameter value is used in the scaling. When present, the fourth letter is r if the
reference value is used in the scaling and p if the predicted value is used in the scaling. The scaling is
described in the brackets of the second column of the table.
2 Values for up to 500 parameters are printed as a set using long lines in the output file. Additional
parameters are printed in subsequent additional sets in the same file. Each set has the headers shown
and the observation name and plot symbol in the first two columns.
3 If the scaling in the denominator equals 0.0, the scaled sensitivities are set to zero.

155

Chapter 14: UCODE_2005 Output Files

Table 21. Format of data-exchange files with basic data from the model (_dm, _dm_init

and, for predictions, _dmp). Each line is composed of a label followed by data.

Label Example Data

_dm
"MODEL NAME:" "ex1fullprior"
“MODEL LENGTH UNITS:” “M”
“MODEL MASS UNITS:” “NA”
“MODEL TIME UNITS:” “D”
"NUMBER ESTIMATED PARAMETERS:" 1 5
"ORIGINAL NUMBER ESTIMATED PARAMETERS:"1 6
"TOTAL NUMBER PARAMETERS:" 1 9
"NUMBER OBSERVATIONS INCLUDED:" 2 35
"NUMBER OBSERVATIONS PROVIDED:" 2 35
"NUMBER PRIOR:" 3
"CALCULATED ERROR VARIANCE (FINAL):" 3 1.74556582272
"STANDARD ERROR OF THE REGRESSION:" 3 1.32119863106
"MAXIMUM LIKELIHOOD OBJECTIVE FUNCTION (MLOF):" -29.52974
"AIC (MLOF + AIC PENALTY): " -17.65474
"BIC (MLOF + BIC PENALTY): " -11.34181
"HQ (MLOF + HQ PENALTY): " -16.61653
"KASHYAP (MLOF + KASHYAP PENALTY): " 11.96280
"LOG DETERMINANT OF FISHER INFORMATION MATRIX:" 32.49399
"RN2 DEPENDENTS:" 0.9756259
"RN2 DEPENDENTS AND PRIOR:" 0.9783053
"NUMBER OF ITERATIONS” 4

_dm_init
"CALCULATED ERROR VARIANCE (INITIAL): " 100002953.094

_dmp
"NUMBER OF PREDICTION GROUPS: " 2

1 "NUMBER ESTIMATED PARAMETERS" is less than "ORIGINAL NUMBER ESTIMATED
PARAMETERS" if adjustable parameters are excluded from the regression during the parameter-
estimation iteration. This can occur because of dynamic omission of insensitive parameters or
the imposition of constraints, as controlled by keywords on the input blocks used to define
parameters. "ORIGINAL NUMBER ESTIMATED PARAMETERS" is less than "TOTAL NUMBER
PARAMETERS" if for any parameters the keyword Adjustable=no.
2 "NUMBER OBSERVATIONS INCLUDED" is less than "NUMBER OBSERVATIONS
PROVIDED" if simulated values could not be obtained for some observations.
3 If regression does not converge and reaches the maximum number of iterations, these
are assigned the value 0.100000000000E+31.

156

Chapter 15. Evaluation of Residuals, Nonlinearity, and Uncertainty

Chapter 15: EVALUATION OF RESIDUALS,
NONLINEARITY, AND UNCERTAINTY

Thorough analysis of a calibrated model requires that the match of the simulated values
to the observations be evaluated and presented. In addition, often it is useful to evaluate
the relative dominance of the different observations in parameter estimation. Finally,
when model predictions are to be used for resource management, remediation planning,
and so on, the uncertainty of the predictions needs to be communicated along with the
predictions themselves. To address these issues, six codes are provided as part of
UCODE_2005; three are presented in this chapter and another three are presented in
Chapter 17. Their use is described in this chapter, Chapters 16 and 17, and in Hill and
Tiedeman (2007).

This chapter discusses RESIDUAL_ANALYSIS, LINEAR_UNCERTAINTY, AND
MODEL_LINEARITY. Flowcharts showing how these codes coordinate with runs of
UCODE_2005 are shown in figure 16. The descriptions provided here include short
statements of the purpose of the code, descriptions of the input files, and a listing of the
steps that need to be followed to execute the program. All of the required input files are
produced by UCODE_2005; instructions for optional user-prepared input files are
provided. Use of the output files produced by UCODE_2005, including the three codes
described in this chapter, is discussed in Chapter 16.

157

Chapter 15. Evaluation of Residuals, Nonlinearity, and Uncertainty

A

_dm, _mv, _paopt, _su,
[_supri], _w, _wt, [_wtpri]

rs
(optional)

RESIDUAL_ANALYSIS

#resan
_rb, _rc, _rd, _rg

UCODE_2005 PE or SA
mode (calibration)

B

_b1, _dm, _paopt

MODEL_LINEARITY

#modlin

UCODE_2005 PE or SA
mode (calibration)

UCODE_2005 TML mode (calibration)

_b2

_os

C

#linunc, _linp

UCODE_2005 prediction mode (prediction)

_paopt, _pc

#upred, _p, _pv, _spu

LINEAR_UNCERTAINTY

_dm, _mv

UCODE_2005 PE or SA
mode (calibration)

Figure 16. Flow charts with UCODE_2005 runs for (A) RESIDUAL_ANALYSIS, (B)
MODEL_LINEARITY, and (C) LINEAR_UNCERTAINTY. Shaded boxes
identify code executions. For the UCODE_2005 runs, only output files needed by
the included codes are listed. UCODE_2005 modes are indicated as PE,
parameter-estimation; SA sensitivity-analysis; and TML, test-model-linearity.
(calibration) indicates that calibration conditions need to be simulated;
(prediction) indicates that prediction conditions need to be simulated.

158

Chapter 15. Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- RESIDUAL ANALYSIS--

RESIDUAL_ANALYSIS: Test Weighted Residuals and Identify
Influential Observations

RESIDUAL_ANALYSIS performs two functions that are described in the following
paragraphs. RESIDUAL_ANALYSIS is the most commonly used of the post-processing
programs. Often it is included in the script, batch file, or macro being used to execute
UCODE_2005 so that the results are always available.

The first function performed by RESIDUAL_ANALYSIS is to test the weighted
residuals for acceptable deviations from being independent (lacking any correlation) and
normally distributed, as suggested by Draper and Smith (1998), Cooley and Naff (1990),
Hill (1998, p. 24), and Hill and Tiedeman (2007, Chapter 6.3.6). Deviations are
characterized using normal probability graphs of the weighted residuals (produced using
the _nm file of table 16) and of generated random numbers (produced using the files with
extensions _rd and _rg generated by RESIDUAL_ANALYSIS). The generated numbers
are from a normal distribution with a mean of 0.0. Two types of generated random
numbers are considered: (1) independent with a variance of 1.0 and (2) correlated as
expected for the weighted residuals considering the regression performed. Correlated
weighted residuals can result from the fitting process of the regression.

The weighted-residual test needs to be conducted if the normal probability graph of the
weighted residuals, produced using the _nm file, does not approximate a straight line.
Greater deviation from a straight line indicates a greater chance that the weighted
residuals cannot be considered as random and normally distributed. A statistic, RN

2 (Hill
and Tiedeman, 2007, Chapter 6.3.5, with critical values in their Appendix D) is printed in
the fn.#uout file. Values of RN

2 that are too much less than 1.0 indicate that the weighted
residuals are less likely to be independent and normally distributed. A message printed in
the fn.#uout file compares the calculated value of RN

2 to the appropriate critical values
and states the conclusion to be drawn from this comparison. To test the weighted
residuals, RESIDUAL_ANALYSIS needs to be executed only if the weighted residuals
deviate significantly from being normally and independently distributed, as indicated by
small values of RN

2 and normal probability graphs (_nm) for which the points do not fall
on a straight line.

The second function of RESIDUAL_ANALYSIS is to calculate statistics that can be used
to identify observations that are influential in the regression. The statistics calculated are
Cook’s D (fn._rc) and DFBetas (fn._rb), which are described by Belsley and others
(1980) and Cook and Weisberg (1982), and applied to the development of a ground-water
model by Yager (1998).

To produce the input files used by RESIDUAL_ANALYSIS, UCODE_2005 needs to be
run in the sensitivity-analysis or parameter-estimation mode (Table 3; Fig. 16A) with
DataExchange=yes in the UCODE_Control_Data input block. As noted in Table 3,
sensitivity-analysis mode requires that SenMethod = -1, 0, or 2. The underscore file
contents are described in tables 17 through 20 and table 22.

159

Chapter 15. Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- RESIDUAL ANALYSIS--

RESIDUAL_ANALYSIS is then executed using the same filename prefix, fn, on the
command line used by UCODE_2005, which it will use to find the fn._xx files. For
example, the following command would find the executable up two directories and down
in the bin directory, and execute residual_analysis.exe using underscore file with the
filename prefix “ex1”:

..\..\bin\residual_analysis ex1

More information about executing RESIDUAL_ANALYSIS is provided in Chapter 4.

An optional input file can be created to override the RESIDUAL_ANALYSIS defaults.
The file needs to be stored in the directory with the UCODE_2005 underscore files and to
be named fn.rs, where fn is the filename prefix defined in the run command.
RESIDUAL_ANALYSIS checks to see if such a file is present, and if so uses the items
specified by the user in that file.

The default number of sets of random numbers is four, which should be sufficient in most
circumstances. Additional sets are occasionally needed to conclusively test a set of
residuals. In such circumstances, an fn.rs file needs to be created before executing
RESIDUAL_ANALYSIS.

Change the random number seed to generate a different set of random numbers.

160

Chapter 15. Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- RESIDUAL ANALYSIS--

Table 22. Keywords that can occur in the optional RESIDUAL_ANALYSIS input file
fn.rs, where fn is the filename prefix defined on the command line of
UCODE_2005 and RESIDUAL_ANALYSIS.

[The keywords are placed in the RESIDUAL_ANALYSIS_Control_Data input block. The
input block format is defined in Chapter 5.]

Keyword Description Default Options

NSETS Number of sets of random
numbers to be generated 4 A positive

integer.1

SEED Seed used to generate random
numbers 104857 A positive

integer.2
CALC_

RANDOMNUMBERS
Calculate random numbers.
Create fn._rd and fn._rg files Yes Yes/No

CALC_COOKSD

Calculate Cook’s D statistics
for each observation, print
summary in fn.#rs file, and
create fn._rc file

Yes Yes/No

CALC_DFBETAS

Calculate DFBetas statistics for
each observation for each
parameter. Print summary in
fn.#rs file. Create fn._rb file

Yes Yes/No

The following keywords control printing to the fn.#rs output file. Specify Yes to print
the data described; No not to print the data. These keywords do not affect production
of the data-exchange files listed in Table 23.

PRINT_PAR_VAR_
COV_MATRIX

Print parameter variance-
covariance matrix No No/Yes

PRINT_SQRT_WT
Print the square root of the
weight matrix as a second
matrix

No No/Yes

PRINT_UNSCALED_SENS
Print unscaled sensitivities
calculated for the optimized
parameter values

No No/Yes

PRINT_COOKSD Print Cook’s D statistics for
each observation No No/Yes

PRINT_RB Print DFBetas statistics for each
observation for each parameter No No/Yes

PRINT_RD
Print the sets of random
numbers, if NSETS is greater
than 0

No No/Yes

PRINT_RG
Print the sets of correlated
random numbers, if NSETS is
greater than 0

No No/Yes

PRINT_RES_VAR_
COV_MATRIX

Print residual variance-
covariance matrix No No/Yes

PRINT_RES_
CORRELATION_

MATRIX
Print residual correlation matrix No No/Yes

1 Commonly between 4 and 10. If NSETS=0, no sets are generated.
2 Needs to be between 1 and 1,048,575.

161

Chapter 15. Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- RESIDUAL ANALYSIS--

Example of the optional fn.rs file:
Omitted keywords use default values.
Keywords are case insensitive
Begin RESIDUAL_ANALYSIS_Control_Data
 NSETS=5
 PRINT_RD=True
 Print_rg=true
End RESIDUAL_ANALYSIS_Control_Data

Table 23. Brief description of RESIDUAL_ANALYSIS input and output files.

File
Extension Brief description Analyzed quantity

RESIDUAL_ANALYSIS input files produced by UCODE_2005 (content described with
UCODE_2005 output files)

_dm Model name, units, and summary statistics Model fit

_mv Parameter variance-covariance matrix Parameter

_su Unscaled sensitivities for observations Sensitivity

_supri Unscaled sensitivities for prior information Sensitivity

_w Weighted residuals for observations and prior
information, and scaled differences between
predictions and reference values

Model fit

_wt Weights for observations --

_wtpri Weights for prior information --
RESIDUAL_ANALYSIS input file created by the user (optional)

.rs Number of sets of random numbers, seed for random
number generator, output control variables

RESIDUAL_ANALYSIS output files

#rs Runtime information for RESIDUAL_ANALYSIS.
This file is useful only for debugging.

--

_rb DFBetas statistics for each observation for each
parameter

Model fit; Sensitivity

_rc Cook’s D statistic for each observation Model fit; Sensitivity

_rd Ordered uncorrelated numbers vs. probability plotting
positions for each observation.

Model fit

_rg Ordered correlated numbers vs. probability plotting
positions for each observation.

Model fit

162

Chapter 15. Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- RESIDUAL ANALYSIS--

Table 24. Contents of RESIDUAL_ANALYSIS output files.
[ParamName is replaced by user-defined names. Numbers are added to the end of
ParamName to emphasize when they are listed in order.]

File
Exten-

sion

Description

#resan Summary of a RESIDUAL_ANALYSIS run
 Description “Column Tags” – Surrounded by double quotes in header

Data-Exchange files
_rb1 DFBetas for each

parameter for
each observation.
Extreme values
are listed in the
#rs file.

OBSERVA-
TION
OR PRIOR
INFOR-
MATION
NAME

PLOT
SYMBOL

ParamName1

ParamName2

…

_rc Cook’s D for each
observation.
Observations with
extreme values
are listed in the
#rs file.

COOK'S D OBSERVA-
TION OR
PRIOR
INFOR-
MATION
NAME

PLOT
SYMBOL

_rd Uncorrelated
normal random
numbers.

ORDERED
INDE-
PENDENT
DEVIATE

STANDARD
NORMAL
STATIS-
TIC

PLOT
SYMBOL

OBSERVA-
TION or
PRIOR
INFOR-
MATION
NAME

RANDOM
NUMBER
SET
NO.2

_rg Correlated normal
random numbers.

ORDERED
CORRE-
LATED
DEVIATE

STAN-
DARD
NORMAL
STATIS-
TIC

PLOT
SYMBOL

OBSERVA-
TION or
PRIOR
INFOR-
MATION
NAME

RANDOM
NUMBER
SET
NO.2

1 Values for up to 500 parameters are printed as a set using long lines in the output file.
Additional parameters are printed in subsequent additional sets in the same file. Each set has the
headers shown and the observation name and plot symbol in the first two columns.
2 The header line is repeated for each set of random numbers.

163

Chapter 15. Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- LINEAR_UNCERTAINTY--

LINEAR_UNCERTAINTY: Calculate Linear Confidence and
Prediction Intervals on Predictions Simulated with Estimated

Parameter Values

Predictions produced by a calibrated model are much more useful when they are reported
with an evaluation of prediction uncertainty. Use of regression in model calibration, as
supported by UCODE_2005, provides clear methods by which measures of the parameter
uncertainty can be propagated into measures of prediction uncertainty. The parameters
included can be those estimated by regression as well as those which, because of
insensitivity, parameter correlation, or both, could not be estimated by regression.
Inclusion of the unestimated parameters in the evaluation of prediction uncertainty was
mentioned in Chapter 3 and is discussed further by Hill and Tiedeman (2007). An
example is provided in Appendix C. The uncertainty in predictions is usually represented
using confidence and prediction intervals, which were defined in Chapter 3.

LINEAR_UNCERTAINTY calculates 95-percent linear confidence and prediction
intervals on predictions. Two issues of concern when using these intervals are as follows.
First, the uncertainty propagated from parameters generally underestimates the total
prediction uncertainty because it does not fully account for what is often called
conceptual model error. Second, the linearity of the method may produce intervals that
are too small or too large for predictions simulated with nonlinear models. These issues
are discussed briefly in the following paragraphs.

The uncertainty associated with alternative models can be incorporated into the analysis
with methods such as those used in the computer program MMRI (published as MMA)
discussed by Poeter and Anderson (2005) and documented by Poeter and Hill (2007). In
MMA, intervals calculated using different conceptual models are integrated to create an
interval for each prediction that reflects the conceptual model uncertainty. The alternative
models can be developed based on deterministic or stochastic arguments.

Conceptual model error is likely to be smaller if the model is designed such that the
defined parameters include those aspects of the system that are poorly constrained by the
observations but are important to predictions. Suggestions for defining parameters are
discussed in guideline 3 of Hill and Tiedeman (2007) and Hill (1998).

The use of linear intervals to quantify model uncertainty and the advantages and
disadvantages of nonlinear intervals are analyzed by Christensen and Cooley (1999),
Cooley (2004), and Christensen and Cooley (2005), and discussed by Hill (1998, p. 29-
31), Hill and Tiedeman (2007, Chapter 8.3), and in Chapters 3, 16, and 17 of this report.

LINEAR_UNCERTAINTY calculates linear individual and simultaneous intervals,
which were discussed in Chapter 3. For simultaneous intervals, all predictions to be
considered simultaneously need to be produced in a single execution of
LINEAR_UNCERTAINTY. This is needed because the number of predictions being
considered affects the critical value used to calculate the simultaneous intervals.

164

Chapter 15. Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- LINEAR_UNCERTAINTY--

The predictions and their sensitivities needed by LINEAR_UNCERTAINTY are
calculated using the prediction mode of UCODE_2005, generally using a model
calibrated with the parameter-estimation mode (Table 3). The process model run(s) used
to generate the predictions may simulate, for example, potential future pumpage, a
climate-change scenario, and so on.

LINEAR_UNCERTAINTY only requires input files that are produced by two runs of
UCODE_2005 (Fig. 16C). There are no optional, user provided input files.

To obtain linear measures of uncertainty, first, of course, the model to be used to
calculate predictions needs to be developed. If this is achieved using the parameter-
estimation capabilities of UCODE_2005 and no parameter modifications are needed,
steps 1 and 2 below can be skipped.

Parameter modifications are needed when calculating confidence and prediction intervals
if, during calibration, the following occur.

(a) One or more parameters are held constant because

(i) Adjustable=no was specified in the Parameter_Data input block or

(ii) They were insensitive and dynamic omission of insensitive parameters was
activated using the OmitInsensitive keyword of the Reg_GN_Controls input block or

(iii) The parameter values varied such that constraints were applied, as controlled by
the Constrain keyword in the Parameter_Groups or Parameter_Data input block.

(b) One or more parameters were assigned prior information with smaller statistics than
supportable by independent measurements. While these methods can be valid ways to
obtain estimated parameter values during model calibration, it is important that the actual
uncertainty in the parameters be included in the calculation of confidence and prediction
intervals (Hill and Tiedeman, 2007, Chapter 8.1; Hill, 1998, p. 25). Parameter
modifications also can be needed to include parameters important to predictions that were
not important to model calibration. For example, in Appendix C the advective-transport
prediction is sensitive to porosity, which was irrelevant to model calibration with
hydraulic heads and flow observations. To modify defined parameters, use steps 1 and 2.

1. If any parameters were held constant or given unrealistic prior information
during regression, or if parameters are added, do the following:

a. Consider creating a new directory because the run in step 2 will overwrite
the files created by the parameter-estimation mode.

b. Change the parameter definitions as needed. Possibilities include:

i. Activate parameters that were held constant during calibration and
apply appropriately weighted prior information to them as
warranted by independently available data.

165

Chapter 15. Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- LINEAR_UNCERTAINTY--

ii. For estimated parameters assigned prior information with statistics
that were smaller than supportable by independent data, assign
statistics that are consistent with the independent data.

iii. Add parameters important to predictions that were not included in
model calibration. Add prior information as warranted by
independent data. (An example is presented in Appendix C)

c. Update the parameter values in the Parameter_Data input block or use the
Parameter_Values input block. Estimated parameters need to be assigned
the optimal values achieved through regression.

2. Execute UCODE_2005 in the sensitivity-analysis mode with SenMethod=-1, 0,
or 2 (Table 3).

To simulate predictions, follow steps 3 through 5.
3. Prediction conditions often are different than calibration conditions. For example,

changes in pumpage and changes in areal recharge caused by climate change can
be imposed. The prediction conditions are imposed through input files of the
process model(s). It is often useful for the calibration and prediction simulations
to be placed in separate directories, as in the example files distributed with
UCODE_2005 for the problem in Appendix C. Uncertainty in parameters
characterizing such stresses can be included in the calculation of confidence and
prediction intervals. For example, the uncertainty in areal recharge caused by
climate change can be included by defining one or more parameters used to
calculate the areal recharge and then assigning prior information that expresses
the uncertainty in the parameter values. If differences are of concern, two model
runs can be defined – one for the base case and one for the predictive conditions.
Equations can be used in the Prediction_Data or Derived_Prediction input blocks
to calculate predicted differences of interest.

4. Execute UCODE_2005 in prediction mode with Prediction=yes. Output is in
fn.#upred. Data-exchange files with file extensions _p and _spu are produced for
use by LINEAR_UNCERTAINTY. Generally these input files are not accessed
by the user. Prediction scaled sensitivities are printed in the following data-
exchange files: _spsr, _spsp, _sppr, _sppp (table 21).

5. Execute LINEAR_UNCERTAINTY as discussed in Chapter 4 to calculate linear
confidence intervals for the defined predictions. Output is to files with extensions
#linunc, and _linp (table 26).

166

Chapter 15. Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- LINEAR_UNCERTAINTY--

Table 25. Brief description of input and output files for predictions.
[Files produced by UCODE_2005 are described in Table 20.]

File
Extension Brief description

UCODE_2005 prediction mode main output file
#upred Report from UCODE_2005 prediction mode run creating _p and _spu
LINEAR_UNCERTAINTY input files generated by UCODE_2005’s Sensitivity Analysis
or Parameter-Estimation mode
_dm Model data
_mv Parameter variance-covariance matrix
LINEAR_UNCERTAINTY input files generated by UCODE_2005’s Prediction mode
_p Predicted values
_spu Unscaled sensitivities for predictions
LINEAR_UNCERTAINTY output files
#linunc Runtime information for LINEAR_UNCERTAINTY
_linp Predicted values and their linear confidence intervals

Table 26. Contents of LINEAR_UNCERTAINTY output files.

File
Extension Graph / Information

#linunc Summary of run generating _linp.
Six types of confidence intervals labeled as follows. Each label is in double
quotes and is followed by columns of data with the labels listed below.
INDIVIDUAL 95% CONFIDENCE INTERVALS
SIMULTANEOUS 95% CONFIDENCE INTERVALS
UNDEFINED NUMBER OF SIMULTANEOUS 95% CONFIDENCE INTERVALS
INDIVIDUAL 95% PREDICTION INTERVALS
SIMULTANEOUS 95% PREDICTION INTERVALS
UNDEFINED NUMBER OF SIMULTANEOUS 95% PREDICTION INTERVALS
Columns labels – Surrounded by double quotes

_linp

PREDIC-
TION
NAME

PREDICTED
VALUE

LOWER
LIMIT

UPPER
LIMIT

STANDARD
DEVIATION

PLOT
SYMBOL

167

Chapter 15. Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- MODEL_LINEARITY--

MODEL_LINEARITY: Test Model Linearity

The linear intervals produced by LINEAR_UNCERTAINTY can accurately reflect the
uncertainty of the simulated values only if the model is sufficiently linear (Seber and
Wild, 1989; Cooley and Naff, 1990; Hill, 1994; Hill, 1998, p. 31-32; Hill and Tiedeman,
2007, Chapter 8.3.1). Model nonlinearity can be tested using the modified Beale’s
measure presented by Cooley and Naff (1990) and also discussed by Hill and Tiedeman
(2007) and Hill (1994). Ground-water models are nearly always nonlinear with respect to
estimated parameter values, as discussed in Chapter 2 of this report. Although the
modified Gauss-Newton optimization method and the statistical methods calculated by
UCODE_2005 are useful even for problems which are quite nonlinear, more stringent
requirements on linearity are needed for the linear confidence and prediction intervals
produced by LINEAR_UNCERTAINTY (discussed in the last section of this chapter) to
adequately represent uncertainty. The modified Beale’s measure indicates the possible
severity of the problem.

The modified Beale’s measure indicates nonlinearity of the confidence region of the
parameters and does not directly measure nonlinearity of the confidence and prediction
intervals. One consequence of this is that it can be misleading if the predictive quantities
are substantially different from the observed quantities used in the regression, or if
predictive ground-water flow conditions are substantially different than calibration
conditions. The more recent combined intrinsic model nonlinearity measure produced by
MODEL_LINEARITY_ADV and discussed in Chapter 17 addresses this problem, and
may be used in place of the modified Beale’s measure.

The modified Beale’s measure is calculated using two data-exchange files produced by
UCODE_2005 and the post-processing program MODEL_LINEARITY (Fig. 16B). The
two data-exchange files are the _b1 and _b2 files of tables 2, 15 and 19; Table 19
describes the file contents. The main output file produced by MODEL_LINEARITY is
called fn.#modlin. The input and output files are listed in Table 27. The modified Beale’s
measure is printed near the bottom of the fn.#modlin file along with critical values. This
information can be used to determine whether the calibrated model is roughly linear,
intermediate, or nonlinear, with respect to the observations used for model calibration.
The rest of the information in the #modlin file can be used to detect which observations
and parameters contribute most to the nonlinearity.

Table 27. Brief description of MODEL_LINEARITY input and output files.

File
Extension Content

MODEL_LINEARITY input files produced by UCODE_2005 (contents described with
UCODE_2005 output files)
_b1 Parameter sets for calculating Beale’s measure of linearity
_b2 Simulated equivalents for Beale parameter sets of _b1
MODEL_LINEARITY output file

#modlin Results of Beale’s analysis by MODEL_LINEARITY, using b1 and b2 from
UCODE_2005

168

Chapter 15. Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- MODEL_LINEARITY--

As for LINEAR_UNCERTAINTY, parameter modifications are needed when calculating
the modified Beale’s measure if, during calibration, the parameters were (a) held constant
or (b) assigned prior information with smaller statistics than supportable by independent
measurements. While these methods are valid ways to constrain the estimated parameter
values sufficiently to attain a stable regression during model calibration, it is important
that the uncertainty in the parameters considered when calculating linear intervals be
considered when evaluating model linearity (Hill and Tiedeman, 2007, Chapter 8.1; Hill,
1998, p. 25). If this was done for the LINEAR_UNCERTAINTY code, the _b1 file will
have already been created. If not, use steps 1 to 2 described for the
LINEAR_UNCERTAINTY code to modify defined parameters and then proceed with
steps 3 and 4 listed here to evaluate model linearity.

3. Execute UCODE_2005 with linearity=yes. This will generate an _b2 file.

4. Execute MODEL_LINEARITY with the filename prefix of the UCODE_2005
files on the command line. This will generate the fn.#modlin file.

169

Chapter 15. Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- MODEL_LINEARITY--

170

Chapter 16: Use of Output from UCODE_2005, RESIDUAL_ANALYSIS,
MODEL_LINEARITY, and LINEAR_UNCERTAINTY

Chapter 16: USE OF OUTPUT FROM UCODE_2005,
RESIDUAL_ANALYSIS, MODEL_LINEARITY, AND

LINEAR_UNCERTAINTY
UCODE_2005 provides substantial flexibility in performance, as indicated by the modes
listed in Table 3. A large number of output files can be produced, as shown in table B-1.
The following sections describe how these files commonly are used given different
modes of UCODE_2005 execution.

Output Files from UCODE_2005 Forward Mode

For a forward simulation, UCODE_2005 runs the process model(s) once using the
specified parameter values. The main UCODE_2005 output file is fn.#uout. If
DataExchange=yes in the UCODE_Control_Data input block, the graphical analysis files
listed in Table 15 are all produced except for the _sos file. In addition, if prior
information is used the _pr file is produced. The main output file fn.#uout needs to be
used to check for errors in the forward simulation and the definition of observations.

The weighted residuals included in several of the files listed in Table 15 reflect (1) the
model fit given the expected accuracy of the observations, (2) the existing model
configuration, (3) the parameter values used, and (4) the procedure used to calculate the
equivalent simulated values that are compared with the observations. Large discrepancies
between simulated and observed values need to be investigated and may indicate, for
example, that there is a data input error, or a conceptual error in the model configuration
or in the calculation of the simulated values. Inspection of these values and correction of
obvious problems can eliminate many hours of frustration. Use of the _ws file to graph
weighted residuals and simulated values will clearly show whether there are large
discrepancies between observed and simulated values. If there are large discrepancies, it
is important to investigate whether they are caused by errors in the process-model input
files, the input of observations, or in the production of the simulated values. It is essential
for UCODE_2005 to perform correctly in this mode. Proceeding with errors will result in
an invalid regression and wasted time.

Output Files from the UCODE_2005 Sensitivity-Analysis Mode

This mode is achieved as described in Table 3. The unique benefit of this mode is that
scaled sensitivities and parameter correlation coefficients, which are the primary statistics
needed for the sensitivity analysis described by Hill and Tiedeman (2007) and Hill
(1998), are calculated using the starting parameter values. These statistics are calculated
for parameters with keyword Adjustable=yes in the Parameter_Data input block, without
proceeding on to a series of parameter-estimation iterations. The statistics are printed in
the main output file if requested by user-specified flags in the UCODE_Control_Data
input block.

171

Chapter 16: Use of Output from UCODE_2005, RESIDUAL_ANALYSIS,
MODEL_LINEARITY, and LINEAR_UNCERTAINTY

The scaled sensitivities produced by the sensitivity-analysis mode are discussed in the
preceding section. The parameter correlation coefficients that are produced can be used to
identify highly correlated parameter pairs. The presence of highly correlated parameters
can be problematic during parameter estimation because of the difficulty of determining
unique values for highly correlated parameters. The utility of the parameter correlation
coefficients depends on the accuracy of the sensitivities, as discussed by Hill and Østerby
(2003). The parameter correlation coefficients calculated using more accurate sensitivity-
equation sensitivities tend to be more useful. Parameter correlation coefficients produced
using perturbation sensitivities are not as reliable. Parameter correlation coefficients can
change substantially as the parameter values change, and should be reevaluated often
during model calibration if non-unique parameters are suspected.

Maps from UCODE_2005 Sensitivity Analysis Mode

If SenMethod=0 or -1 in the Parameter_Data input block, the process model may produce
files that can be used to produce maps of scaled sensitivities or adjoint states. Such maps
are generally discussed in the documentation of the process models.

Though not often used quantitatively, these maps can be used to better understand the
influence of different parameters on the calculation of simulated values such as hydraulic
head in ground-water models. As the number of parameters, model layers, and time steps
increases, the number of possible maps can be overwhelming, but judicious map
production can produce important insights into system dynamics.

Tables of Scaled Sensitivities Produced for the UCODE_2005
Sensitivity-Analysis, Parameter-Estimation, and Prediction

Modes

Depending on the designations of keywords StartSens, IntermedSens, FinalSens, and
DataExchange in the UCODE_Control_Data input block, tables of dimensionless and
composite scaled sensitivities and (or) one percent scaled sensitivities are printed in the
main UCODE_2005 output file (fn.#uout) and in the _sc, _sd, and _s1 files (Table 15).
For the parameter-estimation mode, in which nonlinear regression is performed, the main
output file can include tables of scaled sensitivities calculated using the starting,
intermediate, and final parameter values, or any combination. The _sc, _sd, and _s1 files
always contain scaled sensitivities calculated using the final parameter values. The _so
file summarizes the leverage of each observation on the regression. The use of
dimensionless, composite, and one-percent scaled sensitivities, and leverage is discussed
in Hill and Tiedeman (2007) and Hill (1998), and briefly summarized in the following
paragraphs.

Dimensionless scaled sensitivities can be used to determine which observations are likely
to be most important to the estimation of each parameter. They often do not, however,
identify observations that reduce parameter correlation because these observations may
not have large dimensionless scaled sensitivities. Bar charts can be used to readily
indicate the observations with the largest dimensionless scaled sensitivities.

172

Chapter 16: Use of Output from UCODE_2005, RESIDUAL_ANALYSIS,
MODEL_LINEARITY, and LINEAR_UNCERTAINTY

Composite scaled sensitivities can be used to evaluate whether the available observations
are likely to provide enough information to allow estimation of defined parameters.
Generally it is difficult to estimate parameters with composite scaled sensitivities that are
more than a factor of 100 less than the maximum composite scaled sensitivity for a set of
estimated parameters. Insensitive parameters can cause poor regression performance.
UCODE_2005 can dynamically omit insensitive parameters as described for the
Reg_GN_Controls input block of Chapter 6, or reduced execution times can be achieved
by assigning insensitive parameters Adjustable=no as described in Chapter 7.

Composite scaled sensitivities are generally plotted using a bar chart. Plotting of such bar
charts routinely during model calibration is important because both the nonlinearity of the
sensitivities and the scaling will cause composite scaled sensitivities to change. These
changes become important if they indicate that a parameter included in the estimation can
no longer be supported by the observations, or a previously excluded parameter probably
can be estimated given the updated version of the model, but experience suggests that
such dramatic changes are rare. It is important to include both estimated and unestimated
parameters in bar charts of composite scaled sensitivities when the modeling results are
published.

Prediction scaled sensitivities are provided in the underscore files: spsr, spsp, sppr, sppp.
The first of the four letters indicates that the file contains sensitivities. The second
indicates that the sensitivities are for predictions. The third and fourth letters indicate how
the sensitivities are scaled. The third letter is s for multiplication of the sensitivity by the
parameter standard deviation or p for multiplication by the parameter value. The fourth
letter is r for division by the reference value provided by the user, or p for division by the
predicted value. The different scalings are provided because in different circumstances
different scalings are useful. For example, meaningful reference values are not always
available, so these scalings are not useful in some circumstances, while in other
circumstances they are very useful. Prediction scaled sensitivities are often presented on
bar charts, as shown in Tiedeman and others (2004) and Hill and Tiedeman (2007).

Output Files from the UCODE_2005 Parameter-Estimation Mode

UCODE_2005 performs nonlinear regression under the circumstances listed in Table 3.
The main output file is fn.#uout. If keyword DataExchange=yes in the
UCODE_Control_Data input block, many of the files of Table 15 are produced by
UCODE_2005. If executed, RESIDUAL_ANALYSIS produces additional output files
listed in Table 23. Often it is useful to set up batch files to execute
RESIDUAL_ANALYSIS immediately after UCODE_2005 so that these files are
routinely produced.

Four data-exchange files contain parameter values: _pa, _pasub, _paopt, and _pc (Table
19). Native parameter values are reported for log-transformed parameters.

The _pa file contains parameter values for each parameter-estimation iteration in a form
suitable for plotting. This file can be used to produce graphs of parameter values for each

173

Chapter 16: Use of Output from UCODE_2005, RESIDUAL_ANALYSIS,
MODEL_LINEARITY, and LINEAR_UNCERTAINTY

iteration number using, for example, GW_CHART (Winston, 2000) or Microsoft Excel.
Such graphs are useful in evaluating regression performance and problems.

The _pasub file contains parameter values from each parameter-estimation iteration in a
format suitable for substitution into the Parameter_Values input block. These parameters
are used to (1) investigate simulated equivalents to the observations and observations
sensitivities calculated with parameter values from intermediate parameter-estimation
iterations, (2) restart the regression using values from the final or intermediate parameter-
estimation iterations, which is useful if the regression has deviated from reasonable
values or if long run times limit how many parameter-estimation iterations are pursued in
a single run.

The _paopt file contains information from the end of the run for all defined parameter
values. This information includes the status of each parameter. This is important because
these parameters with keyword Adjustable=yes may not be adjustable at the end of a
UCODE_2005 parameter-estimation mode run because of imposed constraints or
dynamic omission of insensitive parameters (see instructions for the Parameter_Data
input block).

The _pc data-exchange file reports statistics about the final parameter estimates,
including individual 95-percent linear confidence intervals, the standard deviations and
coefficients of variation of the estimates, and an analysis of whether the estimate
contradicts the reasonable range specified in the Parameter_Data input block. Two issues
are of concern.

First, parameter values, standard deviations and coefficients of variation for both the
native and regression parameters are reported (table 19). For log-transformed parameters,
the native and regression values are different. Standard deviations for the native values
are calculated from the parameter variances (the diagonal of the _mv data-exchange file)
using an equation presented by Hill and Tiedeman (2007, Chapter 7.2.4) or Hill (1998, p.
27). The native and regression coefficients of variation are calculated as the ratio of the
appropriate standard deviations and parameter values. To indicate how well the estimates
are determined, the native coefficients of variation are most informative. The linear
confidence intervals listed are for the native parameter values. For log-transformed
parameters they plot symmetrically about the estimate on a log axis. On an arithmetic
axis the interval is asymmetric about the estimate.

Second, the _pc file reports the results of comparing the estimates and their confidence
intervals to reasonable ranges. Two questions are addressed. (1) Does the estimate fall
within the reasonable range? (2) If not, does the confidence interval on the estimate
include any reasonable values? As discussed by Hill and Tiedeman (2007, Guideline 10)
and Hill (1998, Guideline 9), this analysis can be used to detect model error.

The main output file includes information about the regression and indicates whether or
not the regression converged. The main output file lists the statistics described in tables
29 through 31 on convergence. If convergence is not reached and
Stats_On_Nonconverge=no in the Reg_GN_Controls input block, then UCODE_2005

174

Chapter 16: Use of Output from UCODE_2005, RESIDUAL_ANALYSIS,
MODEL_LINEARITY, and LINEAR_UNCERTAINTY

does not calculate more accurate sensitivity for the latest parameter updates and does not
print the typical statistics for the final parameter values. A sample main output file from a
regression is included in Appendix C of this report. The best way to become familiar with
the file is to review that example and the comments in tables 29 through 31.

Residual analysis can be accomplished using the statistics listed in Table 28 and the files
listed in table 31. Examples of the files with their contents labeled are shown in Appendix
C. File names listed in table 31 with two letters in the extension include two columns of
values and generally are used to create x-y plots. File names listed in table 31 with a
single letter in the extension contain only one column of values and generally are used to
create maps, temporal plots, or higher-dimensional images of residuals. Each line
includes the information related to one observation or piece of prior information. In all
files, each line lists the observation name or, for prior information, the prior information
name. Each line also lists their plot symbols. Comments about how to use the generated
graphs are presented in table 31. Additional discussion can be found in Hill and
Tiedeman (2007), Hill (1998), and references cited therein.

The quality and progress of the regression is evaluated using the information summarized
in table 30. The information is printed throughout the fn.#uout file and is summarized in
tables at the end of that file. If progress is reasonable and convergence is achieved,
information in table 31 is used to evaluate the optimal parameter values.

During most model calibrations, UCODE_2005 regression runs are executed many times
as various aspects of the model are changed to test hypotheses about the system. During
calibration and after calibration is completed, predictions can be calculated, linear
confidence and prediction intervals can be calculated to provide an indication of the
prediction uncertainty, and the linearity of the model can be evaluated. The model output
related to these capabilities is described in subsequent sections on the post-processing
programs LINEAR_UNCERTAINTY and MODEL_LINEARITY.

175

Chapter 16: Use of Output from UCODE_2005, RESIDUAL_ANALYSIS,
MODEL_LINEARITY, and LINEAR_UNCERTAINTY

Table 28. Residuals and model-fit statistics printed in the main UCODE_2005 output
files for Sensitivity Analysis and Parameter Estimation modes.

[See example output file in appendix C of this report.]
Statistic as labeled in the

main UCODE_2005 output
file1

Comments

Table of data, group name,
simulated values, residuals,
and weighted residuals

Residuals are calculated as observations or prior information
minus the simulated values. Use this table or data-exchange
files to evaluate model fit.

MAXIMUM/ MINIMUM
WEIGHTED RESIDUAL

The maximum and minimum weighted residuals indicate
where the worst fit occurs, and often reveals gross errors.

AVERAGE WEIGHTED
 RESIDUAL

An average weighted residual near zero is needed for an
unbiased model fit (usually satisfied if regression converges).

RESIDUALS >= 0.
RESIDUALS < 0.

The number of positive and negative residuals indicates
whether the model fit is consistently high or low. Preferably,
the two values are about equal.

NUMBER OF RUNS Number of sequences of residuals with the same sign (+ or -).
Too few or too many runs can indicate model bias. The related
statistic is printed and interpreted. Hill and Tiedeman (2007,
Chapter 6.3.4) explain the test.

The following are printed in the main UCODE_2005 output file for parameter-
estimation mode.
LEAST-SQUARES OBJ FUNC
(OBS. ONLY)
(W/PARAMETERS)

Weighted least-squares objective function value. Given
randomly distributed residuals and the same observations and
weight matrix, a lower value of the least-squares objective
function indicates a closer model fit to the data.2

NUMBER OF INCLUDED
OBSERVATIONS = # OF #

An observation is omitted if a simulated value can not be
calculated. For example, dry cells can result in omitted
observations.

CALCULATED ERROR

VARIANCE
Given randomly distributed residuals, smaller values are
desirable. For values less than 1.0: model fit to data is better
than is consistent with the statistics used to weight
observations and prior information; for values greater than 1.0:
fit is worse. See Hill and Tiedeman (2007, Guideline 6).

STANDARD ERROR OF THE
REGRESSION

The square root of the calculated error variance. For utility, see
Hill and Tiedeman (2007, Guideline 6).

CORRELATION COEFFICIENT
 W/PARAMETERS

R of Hill and Tiedeman (2007, Chapter 6.3.3). Values below
about 0.9 indicate poor model fit.2

MAX LIKE OBJ FUNC (MLOF)
AIC HANNAN
BIC KASHYAP

The maximum likelihood objective function, and four other
criteria for evaluating appropriate models.3 Given randomly
distributed residuals, lower values indicate better model fit.

LOG DETERMINANT OF
FISHER INFORMATION
MATRIX

Measure of the information provided by observations and prior
information for the parameters included in the analysis. Larger
values: more information.

SMALLEST AND LARGEST
WEIGHTED RESIDUALS

The five smallest and five largest weighted residuals are
printed. Weighted residuals for observations and prior
information are considered.

176

Chapter 16: Use of Output from UCODE_2005, RESIDUAL_ANALYSIS,
MODEL_LINEARITY, and LINEAR_UNCERTAINTY

Statistic as labeled in the
main UCODE_2005 output

file1
Comments

CORRELATION BETWEEN
ORDERED WEIGHTED
RESIDUALS AND NORMAL
ORDER STATISTICS

RN
2 of Hill and Tiedeman (2007, Chapter 6.3.5, Appendix D).

Values above critical value indicate independent, normal
weighted residuals, and that the points listed in the _nm file are
likely to fall on a straight line.2

1THIS FONT is used for labels taken directly from the output
2To allow detection of poor fit to one type of regression data, these statistics are calculated both
for (a) the observations and (b) the observations and prior information.
3The statistics are calculated two ways: adding to MLOF and adding to n[log σ2]. They are
discussed in the MMA documentation of Poeter and Hill (2007).

177

Chapter 16: Use of Output from UCODE_2005, RESIDUAL_ANALYSIS,
MODEL_LINEARITY, and LINEAR_UNCERTAINTY

Table 29. Regression performance measures printed in the main UCODE_2005 output
file for parameter-estimation mode.

[These measures are printed for each parameter-estimation iteration; see example file in
Appendix C of this report]

Performance measure as
labeled in the GLOBAL

file 1

Comments

MARQUARDT PARAMETER Used as described in Hill and Tiedeman (2007). Non-zero
values indicate an ill-conditioned problem.

MAX. FRAC. CHANGE
OCCURRED FOR PAR.
“PARNAME ”

The parameter for which the maximum fractional change
occurs. If the regression does not converge, the parameters
listed here are likely to be contributing to the problem.

MAX. FRACTIONAL
PARAMETER CHANGE

Maximum fractional change calculated for any parameter in
the parameter-estimation iteration. Used to determine
convergence of parameter estimation as described for keyword
TolPar in the Reg_GN_Controls input block.

CONVERGENCE TOLERANCE
FOR THIS PARAMETER

Input by user as TolPar in the Reg_GN_Controls input block,
or as tolerance in the Parameter_Data block.

MAXIMUM FRACTIONAL
CHANGE ALLOWED FOR THIS
PARAMETER

Input by user as MaxChange in the Reg_GN_Controls input
block.

One of the following two is printed
(1) If the maximum fractional change is less than allowed, the following is printed:
ADJUSTMENTS TO PARAMETER CHANGE VECTOR WERE NOT REQUIRED
(2) When damping control is active, the following five items are printed:
CONTROLLING PARAMETER : Parameter that results in the smallest value of the damping

parameter.
CHANGE CALCULATED FOR
CONTROLLING PARAM:
USED:

The fractional change calculated for the controlling parameter
and the change that is used after damping is applied.

OSCILL. CONTROL FACTOR
(1 is NO EFFECT) =

If the solution is oscillating further damping may be imposed.

DAMPING PARAMETER
(RANGE 0 TO 1) =

Values less than 1.0 indicate that the maximum fractional
parameter change exceeded the MaxChange value, or that
oscillation control was active. (Hill and Tiedeman, 2007,
Chapter 5.1.1, Appendix A).

UPDATED ESTIMATED
PARAMETERS

Parameter values calculated as a result of this parameter
estimation iteration.

1
THIS FONT is used for labels taken directly from the output

178

Chapter 16: Use of Output from UCODE_2005, RESIDUAL_ANALYSIS,
MODEL_LINEARITY, and LINEAR_UNCERTAINTY

Table 30. Parameter statistics printed in the main UCODE_2005 output file for the

Sensitivity-Analysis and Parameter-Estimation modes.
[See example file in Appendix C. %, percent.]

Parameter statistic or
characteristic1 Function of item in interpreting results

2 DIMENSIONLESS SCALED
SENSITIVITIES (SCALED
BY B*(WT**.5))
(_sd, _so)

Indicates the importance of an observation to the estimation of a
parameter or, conversely, the sensitivity of the simulated
equivalent of the observation to the parameter. These values are
listed in a table with a row for each observation and a column for
each parameter.

2 COMPOSITE SCALED
SENSITIVITIES
((SUM OF THE SQUARED
VALUES)/ND)**.5
(_sc)

Indicates the information content of all observations toward
estimation of a parameter. Values less than 1.0 indicate little
information. Values less than 0.01 times the largest value indicate
parameters with relatively little information. For such parameters,
regression is likely to have trouble converging, and estimating that
parameter value will be difficult with the available observations.

ONE-PERCENT SCALED
SENSITIVITIES (SCALED

BY B/100) (_s1)

These scaled sensitivities have the dimensions of the observations,
which can sometimes be useful.

Parameter covariance
matrix (_mv)

Diagonal contains variances; off-diagonal terms are covariances.
These values are used to calculate the statistics listed below.

Parameter correlation
coefficients
(_mc, _pcc)

For any set of parameter values, absolute values larger than about
0.95 may indicate that the parameters cannot be uniquely
estimated. To explore uniqueness, vary starting parameter values
and checking for changes in optimized parameter values.

Ranking of correlation
coefficients (_pcc)

Ranked from largest to smallest in the ranges ≥0.95, between 0.90
and 0.95, and between 0.85 and 0.90.

Statistics printed in tables labeled “PARAMETER SUMMARY”.3
Parameter values
(_pa, _pasub, _paopt, _pc)

When parameter estimation converges, optimized parameter
values and the next four items in this table constitute a linear
uncertainty analysis of the parameter values. Unreasonable values
may indicate problems with observations or the model.

Parameter standard
deviations (_pc)

Standard deviations on optimized parameter values indicate the
precision with which the values are estimated.

Parameter coefficients of
variation (_pc)

Provides a dimensionless measure of the precision with which the
parameters are estimated which can be used to compare the
precision of parameters with different dimensions.

Parameter 95% linear
individual confidence
intervals4
(_pc)

Given normally distributed residuals, reasonable parameter
values, a satisfactory model fit, and a linear model, linear
confidence intervals reflect the uncertainty of optimal parameter
values. Test linearity with the MODEL_LINEARITY code.

Reasonable limits
(_pc)

Parameter values and their linear confidence intervals are
compared against reasonable ranges supplied by the user.

1 THIS FONT indicates labels used in the output. _xx is the relevant data-exchange file extension
2 Printing controlled from the UCODE_Control_Data input block (see Table 14).
3 If there are log-transformed parameters, parameter values and confidence intervals are printed
first transformed as in the regression in a table labeled “PARAMETER SUMMARY”, and then as all
native values with label “PARAMETER SUMMARY NATIVE”. The latter generally is of most interest.
4 Calculated as usual. For example, see Hill and Tiedeman (2007, eq. 7-8).

179

Chapter 16: Use of Output from UCODE_2005, RESIDUAL_ANALYSIS,
MODEL_LINEARITY, and LINEAR_UNCERTAINTY

Table 31. Using the data-exchange files created by UCODE_2005 that contain data sets

for graphical residual analysis of model fit and sensitivity analysis.
[The files are produced when DataExchange=yes in the UCODE_Control_Data input
block. See example files presented in Appendix C. x axis, horizontal axis; dss, dimensionless
scaled sensitivity; css, composite scaled sensitivity.]

File-
name1

Intended graph or analysis Comments2

Model Fit
_os Observed in relation to

simulated values
Ideally, points lie along a line with a slope of 1.0.
Uneven spreading along the line may not indicate
problems because the values are not weighted.

_ww Weighted observed in relation
to weighted simulated values.

Ideally, points lie along a line with a slope of 1.0.
Uneven spreading may indicate problems.

_ws Weighted residuals in relation
to weighted simulated values.
Usually, plot weighted sim-
ulated values on the x axis.

Ideally, points are evenly distributed above and below
the weighted residual zero axis, which indicates
random weighted residuals. Uneven spreading along
the zero axis may indicate problems.3

_r The residuals listed in this file
can be plotted using any
independent variable.

Plot residuals on maps, on hydrographs in relation to
time, on three-dimensional images of a contaminant
plume... Displays model fit, but with unweighted
residuals large values may not indicate problems.3

_w Plot the weighted residuals as
suggested for the _r file.

As for _r. Non-random plots suggest model bias.
Extreme values and groups of negative or positive
values suggest problems.3 Test with a runs test.

_xyztwr As for _r and _w. Convenient listing of information together in one file.
_nm Normal probability graph of

the weighted residuals. The
probability values are
transformed so that they plot
on an arithmetic scale.

Ideally, the weighted residuals fall randomly along a
straight line. If not, possibilities include: (1) limited
number of values or expected fitting by the regression
(test using the _rd and _rg files of table 32, (2)
problems are indicated.3

Sensitivity analysis
_ss Plot sum of squared,

weighted residuals
Plot for each iteration. Evaluate performance of the
regression.

_so Bar chart of leverage and dss
for each observation

Determine whether a few observations dominate the
regression.

_sc Bar chart of css with
ParamName on x axis.

Large values = better support by the regression data.
Aspects of the system associated with large values
perhaps can be represented with more parameters.

_sd Bar charts of dss for each
parameter with the sequential
observation number on the x
axis.

Usually, a parameter with large css and many large
dss is more reliably estimated than a parameter with a
large css and one large dss: the error of one important
observation is propagated directly to the estimate.

_s1 Use to compare observations
with the same units.

Use to compare the importance of different parameters
to simulated values.

1File names are formed using the second argument on the command line when running
UCODE_2005, followed by a period and the extensions listed here.
2The phrase “indicate problems” means that the circumstance described indicates that the
processes represented by the data may not be adequately modeled or the data may be biased.

180

Chapter 16: Use of Output from UCODE_2005, RESIDUAL_ANALYSIS,
MODEL_LINEARITY, and LINEAR_UNCERTAINTY
3For examples, see Hill and Tiedeman (2007) and references cited therein.

Output Files from RESIDUAL_ANALYSIS for Evaluating Model
Fit and Identifying Influential Observations

The RESIDUAL_ANALYSIS program produces five files with extensions #rs, _rd, _rg,
_rc, and _rb. The fn.#rs file details some intermediate steps of the program and is
primarily accessed for the summary of influential observations based on the Cook’s D
and DFBetas statistics. If the optional fn.rs input file is not used, these summary tables
are the only output in the fn.#rs file other than echoed input.

The _rd and _rg files contain sets of generated random numbers. The number of values in
each set equals the number of weighted residuals (including values for all observations
and prior information). The _rd file contains uncorrelated values; the _rg file contains
values correlated to match the correlations produced through the regression. The _rd and
_rg files are comprised of lines that contain the generated random number followed by a
normal probability plotting position that is adjusted so that it can be plotted on an
arithmetic axis (Hill and Tiedeman, 2007, Chapter 6.3.6; Hill, 1994); the lines are ordered
from the largest to smallest generated value within each of the four sets. On each line the
generated random numbers and plotting positions are followed by the “OBSERVATION
NAME” and “PLOT SYMBOL” from the associated observation. The values from the
_rd and _rg files typically are presented as normal probability graphs along with normal
probability graphs produced using the _nm file.

One Cook’s D statistic is calculated for each observation and these are contained in the
_rc file (table 23, 24, and 32). The Cook’s D statistics can be conveniently presented in a
bar chart with the sequential observation number on the horizontal axis, or plotted on a
map. Large values identify observations that, if omitted, would cause the greatest changes
in the estimated parameter values.

DFBetas statistics are calculated for every observation, for every parameter, and are listed
in the _rb file (table 23, 24, and 32). Large values identify observations that are
influential in the estimation of the parameter. Values for each parameter can be presented
in a bar chart or on a map.

Output Files from UCODE_2005 Prediction Mode

UCODE_2005 can be used to generate predictions and prediction sensitivities using
optimal parameter values from a previous regression by specifying prediction=yes and
sensitivities=yes in the UCODE_Control_Data input block (Chapter 6). Use the same
filename prefix, fn; the main output file is fn.#upred. The underscore files listed in table
20 are produced, and include files containing the predictions and their sensitivities at the
optimal parameter values used as input to LINEAR_UNCERTAINTY. Summary
statistics printed in fn.#upred for user-defined groups of predictions are listed in Table
33.

181

Chapter 16: Use of Output from UCODE_2005, RESIDUAL_ANALYSIS,
MODEL_LINEARITY, and LINEAR_UNCERTAINTY

Table 32. Use of the files created by RESIDUAL_ANALYSIS that contain data sets for graphical
residual analysis.
 [Summarized from Hill and Tiedeman (2007, Chapters 6.3.6, and 7.5.2).]

File-
name1

Intended graph or analysis Comments

_rd Normal probability graph of random
numbers.

Demonstrates the deviation from a straight
line caused by a small number of weighted
residuals. 2

_rg Normal probability graph of correlated
random numbers.

Demonstrates the deviation from a straight
line caused by a small number of weighted
residuals and(or) by an inappropriate
conceptual or constructed model. 2

_rc Bar chart of the Cook’s D statistics
with the sequential observation number
of the horizontal axis, or maps of the
study area with the statistic plotted at
the observation location.

Large values identify observations that, if
omitted, would result in greater changes to
the estimated parameter values than if other
observation were omitted.

_rb Bar charts of DFBetas statistics for
each parameter with the sequential
observation number of the horizontal
axis, or maps of the study area with the
statistic plotted at the observation
location.

Large values identify observations with the
most influence on each parameter estimate.

1 File names are formed using the second argument on the command line when running
UCODE_2005 and RESIDUAL_ANALYSIS, followed by a period and the extensions listed here
and in Table 15.
2For examples, see Hill and Tiedeman (2007) and references cited therein.

182

Chapter 16: Use of Output from UCODE_2005, RESIDUAL_ANALYSIS,
MODEL_LINEARITY, and LINEAR_UNCERTAINTY

Table 33. Summary statistics for groups of predictions (after Tonkin and others, 2003).
[predi, prediction number i in the group; refi, reference value for prediction number i in the group;
n, the number of predictions in the set; Σ, sum for all predictions in the group; %, percent.]

Statistic name
Column Heading

for this Statistic in
“fn.#upred”

Equation

Summarize predictions
Maximum predicted value LARGEST Max(predi)
Minimum predicted value SMALLEST Min(predi)
Average predicted value AVERAGE1 Σ (predi)/n
Compare to reference values
Maximum difference between reference values

and predictions
DIFF-MAX Max(refi-predi)

Minimum difference between reference values
and predictions

DIFF-MIN Min(refi-predi)

Mean difference between reference values and
predictions

DIFF-AVG1 Σ(refi-predi)/n

Compare to reference values as percent
Maximum percent difference between reference

values and predictions
%-DIFF-MAX Max[(refi-predi)/refi]

×100
Minimum percent difference between reference

values and predictions
%-DIFF-MIN Min[(refi-predi)/refi]

×100
Mean percent difference between reference

values and predictions
%-DIFF-AVG Σ[(refi-predi)/refi]/n

×100
Other comparison to reference values
Number of predictions less than their reference

value
< REF

Number of predictions greater than their
reference value

> REF

1 Meaningful only if all predictions involved have the same units.

183

Chapter 16: Use of Output from UCODE_2005, RESIDUAL_ANALYSIS,
MODEL_LINEARITY, and LINEAR_UNCERTAINTY

Output Files from LINEAR_UNCERTAINTY for Predictions

LINEAR_UNCERTAINTY prints predictions and 95-percent linear confidence and
prediction intervals on the predictions. The sequence of runs needed is described in
Chapter 13. The LINEAR_UNCERTAINTY output files are named fn.#linunc and
fn._linp, where filename prefix fn is replaced by a label defined on the command line.
Sections of the _linp output file are labeled, indicating the type of confidence or
prediction interval that follows in tabular format (as described in Table 26). Six labels
are used. The first three are for confidence intervals and are:

 (1) INDIVIDUAL 95% CONFIDENCE INTERVALS

(2) SIMULTANEOUS 95% CONFIDENCE INTERVALS,

and

(3) UNDEFINED NUMBER OF SIMULTANEOUS 95% CONFIDENCE INTERVALS

The first label is followed by individual confidence intervals.

For the second label, the subsequent interval limits depend on the number of intervals
calculated. The intervals get wider as more intervals are calculated until the number of
intervals exceeds the number of parameters involved in the calculation. At that point the
intervals do not increase in size regardless of how many intervals are calculated and the
intervals listed under the second and third heading are the same. Under the second
heading, the intervals are calculated using either the Bonferroni or Scheffé d=k equations
(Hill and Tiedeman, 2007, section 8.4.2); both produce conservative (large) intervals so
the smallest of the two is most accurate and therefore listed. Bonferroni equations are
used when they are equal.

The third label is followed by Scheffé d=NP confidence intervals.

Labels 4, 5, and 6 are for prediction intervals. The labels are the same as labels 1, 2, and 3
except that the word “confidence” is replaced by the word “prediction”.

The theory for calculating confidence and prediction intervals is discussed by Hill (1994)
and Hill and Tiedeman (2007, Chapter 8). The linearity assumption of these confidence
and prediction intervals needs to be evaluated using MODEL_LINEARITY.

184

Chapter 16: Use of Output from UCODE_2005, RESIDUAL_ANALYSIS,
MODEL_LINEARITY, and LINEAR_UNCERTAINTY

Output Files from MODEL_LINEARITY for Testing Linearity

MODEL_LINEARITY calculates the modified Beale’s measure of model linearity
(Cooley and Naff, 1990; Hill, 1994, p. 47; Hill and Tiedeman, 2007) and statistics that
indicate the magnitude of the nonlinearity of each parameter. When regression is
performed and DataExchange=yes, UCODE_2005 produces an _b1 output file, which is
then used by UCODE_2005 in a separate run with linearity=yes to produce an _b2 file.
Generally, the user does not access either of these files. MODEL_LINEARITY uses
these files to produce the MODEL_LINEARITY output file fn.#modlin, an example of
which is distributed electronically with UCODE_2005. Information related to
interpretation of the output is included at the end of the file. Hill (1994) or Hill and
Tiedeman (2007) explain the modified Beale’s measure and the information printed in the
MODEL_LINEARITY output file.

185

Chapter 16: Use of Output from UCODE_2005, RESIDUAL_ANALYSIS,
MODEL_LINEARITY, and LINEAR_UNCERTAINTY

186

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty

Chapter 17: NONLINEAR CONFIDENCE INTERVALS AND
ADVANCED EVALUATION OF RESIDUALS AND

NONLINEARITY
Christensen and Cooley (2005) present a set of capabilities for MODFLOW-2000 that
include advanced methods for evaluating residuals, nonlinearity, and uncertainty based
largely on Cooley (2004). Advanced evaluation of uncertainty uses nonlinear confidence
intervals. Christensen and Cooley (2005) call this set of capabilities the UNC Process of
MODFLOW-2000. These capabilities are accessed in the MODFLOW-2000 framework
through three post-processing codes executed externally to MODFLOW-2000. These
codes are called RESAN2-2K, CORFAC-2K, and BEALE2-2K.

The methods of Christensen and Cooley (2005) have been adapted for use with
UCODE_2005 through the addition of two modes of UCODE_2005 and the development
of three codes. The two modes are advanced-test-model-linearity mode and nonlinear-
uncertainty mode. The three codes are modified from the three programs listed above,
and are called, respectively, RESIDUAL_ANALYSIS_ADV, CORFAC_PLUS, and
MODEL_LINEARITY_ADV.

In this chapter, we describe how to obtain results using the new capabilities. For further
information about the methods, including the equations being solved, readers are referred
to Christensen and Cooley (2005). In addition, nonlinear intervals without correction
factors are described by Hill and Tiedeman (2007). As experience with these methods
evolves, their utility and limitations will become better understood and likely will be the
topic of a variety of publications. We include them here in UCODE_2005 so that this
experience can evolve more quickly.

A fundamental assumption of the methods documented by Christensen and Cooley
(2005) is that the weighting on the prior information correctly reflects its true error. In
general, this means that the methods are not applicable to underdetermined
parameterizations in which the weighting on the prior is assigned to produce a tractable
regression problem and is inconsistent with an analysis of errors in the prior information.

Two capabilities described by Christensen and Cooley (2005) are not included here:

(1) The approximate procedure governed by IMAN (as described on their p. 40).

(2) The ability to have correction factors calculated with different values specified for
input variables WG and VP (as described on their p. 59). Here, WG=VP is used.

Omission (1) means that nonlinear confidence intervals for some poorly posed problems
that could be solved using the UNC Process of MODLOW-2000 may not be able to be
solved using UCODE_2005. It was omitted from this version of UCODE_2005 due to
time constraints. Omission (2) is not expected to affect many users.

187

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- Project Flow Using the Advanced Capabilities--

What Christensen and Cooley (2005) refer to as Scheffé intervals are called Scheffé
d=NP intervals in this document.

This chapter first describes the project flow in terms of the sequence of runs required. It
then lists the new data-exchange files in a table for quick reference. The remainder of the
chapter is spent documenting the three new codes – RESIDUAL_ANALYSIS_ADV,
CORFAC_PLUS, and MODEL_LINEARITY_ADV – and the two additional modes of
UCODE_2005.

Project Flow Using the Advanced Capabilities
Project flow using the advanced capabilities is best understood by considering the files
produced and used by the UCODE_2005 modes and the computer programs involved.
Table 34 and figure 17 provide this information. The new data-exchange files listed in
table 34 are described briefly in table 35.

As discussed for the LINEAR_UNCERTAINTY post-processing code in Chapter 15, the
parameters defined for the UCODE_2005 nonlinear-uncertainty mode listed in table 34
may differ from the parameters defined for the calibration. To use the modified parameter
definitions, the parameter definitions need to be changed and the first run listed in table
34 needs to be the sensitivity-analysis mode of UCODE_2005. See steps 1 and 2 for
execution of LINEAR_UNCERTAINTY in Chapter 15 for additional information.

Another circumstance that requires an initial sensitivity-analysis run is when parameters
have become inactive during the regression. Parameters can become inactive through
dynamic omission of insensitive parameters activated by the OmitInsensitive keyword of
the Reg_GN_Controls input block or constraints activated using the Constrain keyword
in the Parameter_Groups or Parameter_Data input block. If parameters have become
inactive, the user needs to replace this parameter-estimation mode run with a sensitivity-
analysis mode run. In the Parameter_Data input block, for the inactivated parameters two
choices are possible: (a) set Adjustable=no to omit these parameters from further
consideration or (b) set Adjustable=yes to include them. In either circumstance, assign
these parameters values from the end of the parameter-estimation run or assign them
what are thought to be more reasonable values.

As far as the authors know, no one has attempted to calculate nonlinear intervals using
parameters that were not estimated in the regression. Considering that each limit of each
interval is obtained by regression, it is likely that including such parameters will cause
convergence problems. Yet if these parameters are important to predictions of interest,
their inclusion may be important to obtaining meaningful prediction uncertainty. It is
easy to include the effect of such parameters using the linear intervals produced using the
code LINEAR_UNCERTAINTY, as described in Chapter 15. An example is shown in
Appendix C.

The results of the program RESIDUAL_ANALYSIS_ADV are not used by other
programs (table 34), but are used to evaluate model fit and, thus, the validity of the
results produced by the other programs.

188

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- Project Flow Using the Advanced Capabilities--

The second sensitivity-analysis mode run listed in table 34 is only needed if the _init and
init.** files were created using optimized parameter values. This occurs under the
following circumstances:

(a) The first run listed in table 34 is a UCODE_2005 parameter-estimation mode run,
and starting parameter values are close to final parameter values.

(b) The first run listed in this table is a UCODE_2005 sensitivity-analysis run.

If the sensitivity-analysis run to create init files is needed, the following are required:

(i) In the UCODE_Control_Data input file, set keywords Sensitivity=yes,
Optimize=no, and CreateInitFiles=yes.

(ii) Use the Parameter_Data or Parameter_Values input block to define a set
values for the estimated parameters that are different than the estimated
values, but not so different that the sum of squared, weighted residuals
exceeds the sum-of-squared, weighted residuals value of the nonlinear
intervals. The latter are printed in the _int* data-exchange files, where the * is
replaced by “conf” for confidence intervals and “pred” for prediction
intervals. Generally a set of values from the _pasub file created by the
UCODE_2005 parameter-estimation mode can be used. Add values for added
parameters.

Some of the UCODE_2005 runs shown in table 34 need process model results for
calibration conditions, some need process model results for prediction conditions, and
some need both. Comments for setting up runs for both are presented in the section on the
advanced-test-model-linearity mode in this chapter.

189

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- Project Flow Using the Advanced Capabilities--

Table 34. Project flow for the advanced analyses and nonlinear confidence intervals
documented in Chapter 17, as illustrated through input and output files.

[Shading identifies runs other than UCODE_2005. *, replaced by ‘conf’ for confidence intervals
or ‘pred’ for prediction intervals. In _init._** the ** represents dm, mv, su, and, when prior
information is defined, supri. (calibration), UCODE_2005 mode needs calibration conditions;
(prediction), the mode needs prediction conditions; (calibration and prediction), the mode needs
calibration and prediction conditions.]

UCODE_2005 Mode or
CODE NAME 1 Input files 2,3 Output files 2,4

UCODE_2005
Parameter-Estimation or
Sensitivity-Analysis5 Mode
(calibration)

--

#uout
_b1, _dm, _init, _init._**,
_mv, _os, _paopt, [_pr], _su,
[_supri], _w, _ws, _wt,
[_wtpri], _ww

RESIDUAL_ANALYSIS
rs (optional)
_dm, _mv, _paopt, _su,
[_supri], _w, _wt, [_wtpri]

#resan
_rb, _rc, _rd, _rg

UCODE_2005
Sensitivity-Analysis Mode with
CreateInitFiles=yes6
(calibration)

--

#ucreateinitfiles
_init, _init._**

RESIDUAL_ANALYSIS_ADV
rsadv (optional)
_init, _init._**, _paopt,
_ws, _wt, _wtpri, _ww

#resanadv
_rdadv 7

UCODE_2005
Test-Model-Linearity Mode
(calibration)

-- _b2

MODEL_LINEARITY _b1, _b2 #modlin
UCODE_2005 Prediction
Mode8 (prediction) _paopt, _dm, _pc, _mv #upred

_p, _pv, _spu

LINEAR_UNCERTAINTY _dm, _mv, _p, _pv, _spu #linunc
_linp

CORFAC_PLUS
corfac
_mv, [_p, _spu], _su,
[_supri], _wt, [_wtpri]

#corfac_*
_b1adv*, _b3*,
_cf* , _cfsu

UCODE_2005 Advanced-
Test-Model-Linearity Mode
(calibration and prediction)

_b1adv*, _b3*, _cfsu #umodlinadv_*
_b2adv*, _b4*

MODEL_LINEARITY_ADV

_b1adv*, _b2adv*, _b3,
_b4*, _cf*, _cfsu , _dm,
_init, _os, _paopt, [_pr],
_su, [_supri], _wt,
[_wtpri]

#modlinadv_*

UCODE_2005 Nonlinear-
Uncertainty Mode
(calibration and prediction)9

_init , _init._**,
_cf*, _cfsu, _paopt, _pv

#unonlinint_*
_int*, _int*par, _intwr

1 UCODE_2005 modes are described in table 3. Other capitalized names identify other computer
codes documented in this report.

190

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- Project Flow Using the Advanced Capabilities--
2 The file-name extensions are listed. Main output file extensions begin with #; main input file
extensions are composed only of letters; data-exchange file extensions begin with _. The file-
name prefix is fn., where fn is defined on the command line. fn needs to be the same for the entire
sequence of runs listed in this table. Bracketed file extensions, such as [_pr], identify data-
exchange files that may not be needed or produced; the files involve prior information (_pr,
_supri, _wtpri, _init._supri) or predictions (_p, _spu).
3 For UCODE_2005 mode input files, the data-exchange files included are those produced by a
previous model run listed in this table.
4 The output files listed are the main output files and, for UCODE_2005 modes, data-exchange
files used by one or more subsequently listed modes or programs. For the other runs, all output
files are listed.
5 This sensitivity-analysis mode run needs to have the optimized parameter values listed in the
UCODE_2005 main input file. In the UCODE_Control_Data input block keyword
CreateInitFiles=no is needed by default or designation. See table 3 for other sensitivity-analysis
mode requirements.
6 CreateInitFiles is a keyword in the UCODE_Control_Data input block. Often this run is not
needed. See the text for an explanation of this run.
7 _rdadv is used to plot ordered weighted residuals and their confidence intervals. An example is
shown in Appendix C.
8 This run is only needed if there are predictions. If intervals are only to be calculated on
parameters, this run can be skipped.
9 Prediction conditions need not be simulated if intervals are to be calculated only on parameter
values.

191

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- Project Flow Using the Advanced Capabilities--

A

‘init’ files produced with optimal parameter values? no

#ucreateinitfiles, _init, _init._**

yes
UCODE_2005 SA mode (calibration)

_paopt, _ws, _wt, _ww, _wtpri

#resanadv, _rdadv

_init, _init._**

RESIDUAL_ANALYSIS_ADV

UCODE_2005 PE or SA
mode (calibration)

rsadv (optional)

B

_p,
_spu

CORFAC_PLUS

UCODE_2005 ATML mode (calibration and prediction)

UCODE_2005
prediction mode

(prediction)

corfac

_b1adv*, _b3*, _cfsu _cf*

#umodlinadv._*
_b2adv*, _b4*

MODEL_LINEARITY_ADV

#modlinadv._*

_mv, _su, [_supri],
_wt, [_wtpri]

_dm, _init, _os,
_paopt, _pr,

_su, [_supir],
[wtpri]

_paopt

UCODE_2005 PE or SA
mode (calibration)

Figure 17. Flowcharts with UCODE_2005 and CORFAC_PLUS runs for

(A) RESIDUAL_ANALYSIS_ADV, (B) MODEL_LINEARITY_ADV, and
(C) nonlinear intervals. Shaded boxes identify code executions. Only output files
needed by subsequent codes are listed. UCODE_2005 modes are indicated as PE,
parameter-estimation; SA sensitivity-analysis; ATML, advanced-test-model-
linearity; NU, nonlinear-uncertainty. (calibration) indicates that calibration
conditions need to be simulated; (prediction) indicates that prediction conditions
need to be simulated; (calibration and prediction) indicates both are needed. * and
** are replaced as described for table 34.

192

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- Project Flow Using the Advanced Capabilities--

C

_p,
_spu

_pv

CORFAC_PLUS

Nonlinear intervals: UCODE_2005 NU (calibration and prediction)

Files produced with
optimal parameter values?

UCODE_2005
prediction mode

(prediction)

no

#ucreateinitfiles
_init, _init._**

yes
UCODE_2005 SA mode

(calibration)

_paopt

corfac

#unonlinint_*, _int*, _int*par, _int*sum, _int*wr

_init, _init._**

#corfac_*
_cf*, _cfsu

_paopt

_mv, _ss _su,
[_supri], _wt,

[_wtpri]

UCODE_2005 PE or SA
mode (calibration)

Figure 17 -- continued

193

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- Data-Exchange Files for Advanced Capabilities--

Data-Exchange Files for Advanced Capabilities

The new capabilities described in this chapter produce the data-exchange files listed in
table 35.

Table 35. Contents of data-exchange files produced and used by the UCODE_2005 and

the codes discussed in Chapter 17.
[* is replaced by ‘conf’ for confidence intervals, ‘pred’ for prediction intervals.]

File
Extension

Description Column Tags. Surrounded by double quotes in header.
Most Column Tags are used literally.

ParamName and ObsName are replaced by user defined
names. Numbers are added to emphasize the order.

The following is produced by RESIDUAL_ANALYSIS_ADV
rdadv RESIDUAL

ANALYSIS_
ADV results

Eight column tags1
Number of data rows = Number of observations

The following are produced by CORFAC_PLUS
_b1adv 2 Parameter

sets for
_b2adv.

ParamName1 ParamName2 ParamName3 ...
Number of data rows = 2 × number of estimated parameters

_b3* 2 Parameter
sets for _b4*

ParamName1 ParamName2 ParamName3 ...
Number of data rows = number of intervals

_cf*

Correction
factors

Six column tags.3

Number of data rows = Number of intervals
_cfsu2 Sensitivities Item Name Pred=1,Par=2 ParamName1 ParamName2 …

Sensitivities for each quantity for which intervals are calculated.
The following are produced by the UCODE_2005 Advanced-Test-Model-Linearity Mode
_b2adv* 2 Values

simulated
using
_b1adv.

Number of columns = number of observations + 1
Number of data rows = 2 × number of estimated parameters

_b4* 2 Values
simulated
using _b3

ObsName1 ObsName2 … PREDICTION4
Number of data rows = Number of intervals

The following are produced by the UCODE_2005 Nonlinear-Uncertainty Mode
_int*

Nonlinear
interval
limits

Eight column tags5
Number of data rows = one for each interval limit

_int*wr Weighted
residuals at
interval
limits

6Number of column tags = 2 + one for each interval limit
Number of data rows = Number of observations +
 Number of Prior Information

_int*par 2 Parameter
values for the
limits in
_int*

INTERVAL LIMIT ParamName1 ParamName2 …
NAME FLAG
Number of data rows = one for each interval limit

1 The _rdadv column tags are (1) ORDERED WEIGHTED RESIDUALS, (2) ORDERED SIMULATED
WEIGHTED RESIDUALS (OSWR), (3) STD DEV OF OSRW, (4) 2*(STD DEV), (5) CUMULATIVE

194

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 -- Data-Exchange Files for Advanced Capabilities--

PROBABILITY, (6) PROBABILITY PLOTTING POSITION, (7) OBSERVATION or PRIOR
NAME, (8) PLOT-SYMBOL. See additional comments in the section “Output Files for
RESIDUAL_ANALYSIS_ADV”.
2 Up to 500 values are printed as a set using long lines in the output file. Additional values are
printed in subsequent additional sets in the same file. Each set has the headers shown and the
observation name and plot symbol in the first two columns.
3 The _cf* file columns tags are (1) INTERVAL NAME, (2) Pred=1 Par=2, (3) PRED VALUE, (4)
MEAS VAR, (5) CF INDIVID, (6) CF SIMULT.
4 For _b4* the column headers are the observation names followed by the header “PREDICTION”.
5 The _int* file columns tags are (1) INTERVAL NAME, (2) PLOT SYMBOL, (3) LIMIT
IDENTIFIER, (4) CONFIDENCE LIMIT, (5) SUM OF SQUARED RESIDUALS,
(5) OBJECTIVE-FUNCTION GOAL, (6) PERCENT DEVIATION FROM GOAL,
(7) INDIVIDUALorSIMULTANEOUS, (8) ITERATIONS. Under “LIMIT IDENTIFIER”,
negative and positive integers identify lower and upper limits, respectively. The absolute value is
the same for limits calculated for each interval. The absolute values increase incrementally for
each interval such that for the first interval the values are -1 and 1, for the second they are -2 and
2, and so on.
6 The _int*wr files columns tags are (1) OBSERVATION or PRIOR INFORMATION NAME (2)
PLOT SYMBOL. These are followed by one or two columns for each interval, depending on how
many limits are calculated for each interval. If there are two (WhichLimits=Both in the
Reg_GN_NonLinInt input block), the first is labeled –Name and the second is labeled +Name.
“Name” is replaced by an interval name. If the first character is –, the column is comprised of
lower limits; if the first character is +, the column is comprised of upper limits. If
WhichLimits=Lower, only columns of lower limits are printed and the first character of each of
the labels is –. If WhichLimits=Upper, only columns of upper limits are printed and the first
character of each of the labels is +.

195

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --RESIDUAL_ANALYSIS_ADV--

RESIDUAL_ANALYSIS_ADV: Advanced Residual Analysis

The RESIDUAL_ANALYSIS_ADV program can be executed after successfully running
UCODE_2005 in parameter-estimation or sensitivity-analysis mode (table 34).

RESIDUAL_ANALYSIS_ADV results can be used to conduct an analysis that addresses
the issues of concern addressed by the _rd and _rg files produced by the
RESIDUAL_ANALYSIS program (Chapter 15) and the _nm file produced by UCODE-
2005 in some modes (see tables 3 and 15). However, the analysis provided by
RESIDUAL_ANALYSIS_ADV differs in how problems are identified – weighted
residuals that fall outside calculated intervals indicate significant lack of model fit. An
example of the type of graph that can be produced using the results of
RESIDUAL_ANALYSIS_ADV is shown by Christensen and Cooley (2005, p. 44) and
in Appendix C.

RESIDUAL_ANALYSIS_ADV also calculates an intrinsic model nonlinearity measure.

RESIDUAL_ANALYSIS_ADV does not completely replace RESIDUAL_ANALYSIS,
and in general it is advantageous to run both programs. Specifically, the DFBETAS and
Cook’s D statistics provided in the _rb and _rc files produced by
RESIDIAL_ANALYSIS remain useful. In addition, the _ws, _ww, and _r files produced
by UCODE_2005 remain useful.

Execution

The RESIDUAL_ANALYSIS_ADV run command is of the form:

path:\ RESIDUAL_ANALYSIS_ADV.exe fn

where:

path:\ = the relative or absolute path to the RESIDUAL_ANALYSIS_ADV.exe on your
computer (alternatively you could specify this in your system path
variable)

fn = filename prefix for data-exchange files that were generated by the regression and
prediction executions of UCODE_2005 and the execution of
CORFAC_PLUS (spaces are not allowed in fn, even on operating
systems that allow spaces in filenames)

Most input files for RESIDUAL_ANALYSIS_ADV are produced by running
UCODE_2005 in parameter-estimation or sensitivity mode, as shown in table 34 and
figure 17A. In addition, some circumstances require the second UCODE_2005
sensitivity-analysis mode that creates init files.

RESIDUAL_ANALYSIS_ADV produces files fn.#resanadv and fn._rdadv.

196

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --RESIDUAL_ANALYSIS_ADV--

User-Prepared Input File (Optional)

Input for RESIDUAL_ANALYSIS_ADV includes the previously generated data-
exchange files listed in table 34. It also includes an optional user-created file with
filename fn.rsadv, where fn is the filename prefix specified on the command line. This
file includes up to four input blocks described in the following sections:

 Options
 RESIDUAL_ANALYSIS_ADV_Control_Data
 Mean_True_Error
 Matrix_Files

All of the input blocks are optional.

Options Input Block (Optional)

The Options input block controls the information written to the main
RESIDUAL_ANALYSIS_ADV output file. It has a single keyword:

Verbose - Flag that controls what is written to the
RESIDUAL_ANALYSIS_ADV main output file as follows. The
default is Verbose=3 to provide information for new applications
and users, but Verbose=0 is suggested for most circumstances.

Verbose Output
0 No extraneous output.
1 Warnings.
2 Warnings, notes.
3 (default) Warnings, notes, echo selected input.
4 Warnings, notes, echo all input. Includes all values read from

model output files.
5 Warnings, notes, echo all input, plus some miscellaneous

information. Includes all values read from model output files.

Example of an Options Input Block for the RESIDUAL_ANALYSIS_ADV program:
BEGIN Options Keywords
Verbose=0
END Options

RESIDUAL_ANALYSIS_ADV_Control_Data Input Block (Optional)

The RESIDUAL_ANALYSIS_ADV_Control_Data input block provides control of
several features of the RESIDUAL_ANALYSIS_ADV program. The need for the last
two input blocks of the fn.rsadv depend on keywords defined in this input block. The
keywords of the RESIDUAL_ANALYSIS_ADV_Control_Data input block are listed in
table 36.

197

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --RESIDUAL_ANALYSIS_ADV--

Table 36. Keywords of the RESIDUAL_ANALYSIS_ADV_Control_Data input block.
[Input block format is defined in Chapter 5.]

Keyword Description Default Options

NSETS Number of sets of random
numbers to be generated 1000 A positive

integer.1

SEED Seed used to generate random
numbers 104857 A positive

integer.2

TVAR

Theoretical error variance.
When not equal to zero, this
value is used instead of the
calculated error variance.3

0.0 A positive real
number.

READ_ET

If READ_ET=yes, read the
Mean_True_Error input block. 4
If READ_ET=no, the values are
set to 0.0.

No Yes/No

READ_COV
If READ_COV=yes, read one
matrix from the
MATRIX_FILES block.5

No Yes/No

The following keywords control printing to the fn.#resanadv output file. Specify Yes to
print the data described; No not to print the data. These keywords do not affect
production of the data-exchange file _rdadv.

PRINT_IRMATRIX Print the (I-R) matrix.6 No No/Yes
PRINT_

SIMWGTRESIDUALS
Print all sets of the generated
weighted residuals No No/Yes

PRINT_PAR_
VAR_COV_MATRIX

Print the variance-covariance
matrix of the estimated
parameters

No No/Yes

PRINT_SQRT_WT
Print the square root of the
weight matrix as a second
matrix.

No No/Yes

PRINT_
UNSCALED_SENS

Print unscaled sensitivities for
the observations No No/Yes

1 Commonly in the 100’s or 1000’s.
2 Needs to be between 1 and 1,048,575.
3 For more information, see Christensen and Cooley (2005, p. 46). Used to calculate NSETS
realizations of random numbers with the theoretical distribution of the weighted residuals. These
are then used to calculate intervals with which weighted residuals are compared.
4 The ET values of Christensen and Cooley (2005, p. 47), which are defined by Cooley (2004, p.
21, eq. 3-31) and represent the errors produced because the model is a simplified representation
of the system in that small-scale variability is not represented. These values tend toward zero as
more small-scale variability is represented. If READ_ET=no, ET values for all observations are
set to 0.0
5 If the statistics specified in the observation input blocks are not based on an analysis of the
observation errors, statistics that reflect the observation errors need to be specified here in the
form of a variance-covariance matrix. That is, if the statistics specified in the observation input
blocks do not result in weighting that is proportional to the inverse of the variance-covariance
matrix of the true errors, then variance-covariance matrix needs to be specified in the
MATRIX_FILES input block. (Christensen and Cooley, 2005, p. 15)

198

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --RESIDUAL_ANALYSIS_ADV--
6 This matrix times a multiplicative constant equals the variance-covariance matrix of the
weighted residuals of the observations (Christensen and Cooley, 2005, p. 15)

Example of a RESIDUAL_ANALYSIS_ADV_Control_Data input block:
#For keywords not listed, default values are assigned.
BEGIN RESIDUAL_ANALYSIS_ADV_CONTROL_DATA KEYWORDS
NSETS = 1000
SEED = 10059
STDDEV = 0.01000000
END RESIDUAL_ANALYSIS_ADV_CONTROL_DATA

Mean_True_Error Input Block (Optional)

Mean true errors can be specified for any of the observations and reflect the errors
produced because the model does not represent small-scale variations in the actual
system. They are not provided for prior information because it is assumed that the
weighting on the prior correctly reflects the true error in the prior information. See the
comment at the beginning of this chapter.

Mean true errors can be determined using Monte Carlo simulations with small grid
spacing that allows explicit representation of the small-scale variations. Computational
constraints may require these simulations to represent only a portion of the full system
being simulated.

The Mean_True_Error input block has two keywords.

MTEName - ObsName from the Observation_Data or the
Derived_Observations input blocks used in the regression.
Default=0.0.

MTEValue - The ET values of Christensen and Cooley (2005, p. 47), which
are defined by Cooley (2004, p. 21, eq. 3-31) and represent the
errors produced because the model does not represent small-scale
variations present in the actual system. Default=0.0.

These values tend toward zero as the model represents more small-scale features.
The values are set to zero if the RESIDUAL_ANALYSIS_ADV_Control_Data
input block specifies READ_ET=no.

Example of a Mean_True_Error input block:
BEGIN MEAN_TRUE_ERROR TABLE
NROW=5 NCOL=2 COLUMNLABELS
mtename mtevalue
F1 0.66151
F2 0.57163
F3 0.57791
F4 0.65444
F5 0.70896
END MEAN_TRUE_ERROR

199

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --RESIDUAL_ANALYSIS_ADV--

Matrix_Files Input Block (Optional)

If the weighting of observations is not defined as being proportional to the variance-
covariance matrix of the true errors, the variance-covariance matrix of the true errors
needs to be defined here. This is communicated to the program using the keyword
READ_COV=yes in the RESIDUAL_ANALYSIS_ADV_Control_Data.

The Matrix_Files input block is as described in Chapter 10. Here some brief instructions
and some restrictions on this use of the Matrix_Files capability are provided.

There are two keywords in the Matrix_Files input block.

MatrixFile - Name or path of the file from which one matrix is read. (Up to
2,000 characters; case sensitivity depends on the operating
system).

NMatrices - Number of matrices to be read from MatrixFile. For the
RESIDUAL_ANALYSIS_ADV_Control_Data input block,
NMatrices=1 is needed.

Example of a Matrix_Files input block:

BEGIN MATRIX_FILES
matrixfile=Vmatrix NMATRICES=1
END MATRIX_FILES

Output Files for RESIDUAL_ANALYSIS_ADV

RESIDUAL_ANALYSIS_ADV produces two output files, as listed in table 34: the main
output file and the data-exchange file with file extensions #resanadv and _rsadv,
respectively.

The main output file contains quantities described by Christensen and Cooley (2005, p.
43-45) that can be used to test for intrinsic nonlinearity (mean weighted residual, slope of
weighted residual, and an intrinsic nonlinearity measure) and to test weighted residuals
for indications of non-normality (correlation and probability of correlation). The output
printed for the test case described in Appendix C without the porosity parameter defined
is shown below
.
. lines of output file not listed
.
MEAN WEIGHTED RESIDUAL (EM) --------- = 0.99833E-01 (SHOULD ~ 0.00)
SLOPE (SLP) ------------------------- = 6.1693E-05 (SHOULD ~ 0.00)
(SLOPE OF THE PLOT OF WEIGHTED RESIDUALS
VS WEIGHTED SIMULATED EQUIVALENTS)
INTRINSIC NONLINEARITY MEASURE (QINT) = 0.63002 (SHOULD BE << 23.910)
.
. lines of output file not listed

200

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --RESIDUAL_ANALYSIS_ADV--

.
CORRELATION (CED) --------------- = 0.98549
PROBABILITY OF CORRELATION (PROB) = 0.44100
99% CONFIDENCE LIMIT (CL99) ----- = 0.99563
95% CONFIDENCE LIMIT (CL95) ----- = 0.99389
90% CONFIDENCE LIMIT (CL90) ----- = 0.99304

The mean weighted residual (EM) and slope (SLP) should be close to zero; no critical
values are defined by Cooley and Naff (2005). The intrinsic nonlinearity measure should
be much less than the sum-of-squared weighted residuals calculated for the optimal
parameter values, which is listed in parentheses following the statistic. This statistic is
used to indicate whether the intrinsic model nonlinearity is large enough to make the
correction factors calculated by CORFAC_PLUS inaccurate.

The correlation (CED) is between the weighted residuals and the means of the synthetic
residuals and is described by Christensen and Cooley (2005, p. 17) as a generalization of
the RN

2 statistic described by Hill and Tiedeman (2007) and Hill (1998). RN
2 is printed in

the output file of MODEL_LINEARITY. The correlation printed by
RESIDUAL_ANALYSIS_ADV should be close to 1.00.

The probability of correlation (PROB) is the probability that the correlation is equal to or
smaller than CED given that the weighted residuals are normally distributed as described
by Christensen and Cooley (2005, eq. 30 or 31). The smaller the value of PROB, the
greater the indication that the weighted residuals are affected by model bias and intrinsic
nonlinearity. The confidence limits listed are the values that the correlation would need to
exceed to achieve a probability of the stated amount or higher. The 95-percent confidence
limit for the correlation equals CL95. In the example, the correlation would need to be
larger than or equal to 0.99389 to achieve a probability of 0.95 or higher that the
weighted residuals are consistent with the theoretical distribution.

The correlation is the correlation between the weighted residuals and the weighted
simulated values. It is obtained using the UCODE_2005 produced data-exchange files
_ws and _ww, respectively. Ideally the correlation is close to 1.00. The intrinsic
nonlinearity measure is different that the intrinsic model nonlinearity produced by
MODEL_LINEARITY_ADV; both should be considered and reported.

The data-exchange file with file extension _rsadv contains eight columns of numbers.
The labels printed on the first line of the file are listed in table 35, and listed below with
additional comments as needed.

(1) ORDERED WEIGHTED RESIDUALS,
(2) ORDERED SIMULATED WEIGHTED RESIDUALS (OSWR), the mean of many

realizations of random numbers correlated as expected based on the fitting process of
the regression,

(3) STD DEV OF OSRW, the standard deviation of the realizations for each observation,
(4) 2*(STD DEV), two times the standard deviations of the realizations,
(5) CUMULATIVE PROBABILITY, for plotting on a normal probability axis,
(6) PROBABILITY PLOTTING POSITION, for plotting on an arithmetic axis,

201

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --RESIDUAL_ANALYSIS_ADV--

(7) OBSERVATION or PRIOR NAME, name of the observation or prior information, and
(8) PLOT-SYMBOL, an integer that can be used to control the symbol used for plotting.

This file can be used to create the plots similar to that shown in figure 1 of Christensen
and Cooley (2005, p. 44). An example is shown in Appendix C.

202

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --CORFAC_PLUS--

CORFAC_PLUS: Correction Factors and Data for Analysis of
Linearity

Program CORFAC_PLUS can be used to calculate the correction factors of Cooley
(2004) and Christensen and Cooley (2005), and prepares files used by the UCODE_2005
advanced-test-model-linearity mode, the program MODEL_LINEARITY_ADV, and the
UCODE_2005 nonlinear-uncertainty mode. Thus, it accomplishes the calculations
performed by CORFAC-2K of Christensen and Cooley (2005), and produces some files
for analysis of model linearity. This functionality is reflected in the name
CORFAC_PLUS. Table 34 shows how CORFAC_PLUS fits into a sequence of runs.

It is common to calculate nonlinear intervals on predictions without correction factors.
For example, such intervals are calculated by PEST’s Predictive Analyzer capability
(Doherty, 2004). To obtain such results, the input blocks needed by CORFAC_PLUS are
the Correction_Factor_Data input block (where the only keyword that needs to be
included is IntervalType), and the Prediction_List or input block to define the predictions
for which nonlinear confidence intervals are to be calculated.

Correction factors are intended to quantify the effects on measures of uncertainty such as
confidence or prediction intervals of (1) intrinsic nonlinearity and (2) small-scale
variability of system characteristics not represented in the model. As explained by Cooley
(2004) and Christensen and Cooley (2005), it is assumed that the model correctly
represents the spatial and temporal average of all system characteristics. Neglecting the
small-scale variability adds uncertainty to parameters and predictions. The correction
factors account for at least part of this added uncertainty.

The types of intervals and equations used to calculate the correction factors calculated by
CORFAC_PLUS are shown in table 37.

The correction factors are derived assuming that the intrinsic nonlinearity and combined
intrinsic nonlinearity are both negligible (Cooley, 2004; Christensen and Cooley, 2005, p.
55). The correction factors are used by MODEL_LINEARITY_ADV to check that these
assumptions are adhered to, and, if they are not, to indicate the severity of the departure
from these assumptions.

203

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --CORFAC_PLUS--

Table 37. Equations from Christensen and Cooley (2005) used to calculate correction
factors for different types of intervals.

Is the variance-covariance matrix of the true
errors available?1

Type of interval Yes: Used in
regression

Yes: Read in
Matrix_Files
input block

No

Individual Confidence Interval 21.0 Eq. 68 Eq. 83
Individual Prediction Interval Eq. 70 Eq. 70 Eq. 84
Scheffé d=NP Simultaneous
Confidence Interval Eq. 66 Eq. 66 Eq. 82

Scheffé d=NP Simultaneous
Prediction Interval Not available3 Not available3 Not available3
1 It can be available either because (i) the weighting used in the regression accounts for errors in
observations, so that the weight matrix equals or is proportional to the inverse of the variance-
covariance matrix of the true errors, or (ii) the variance-covariance of the true errors is read in the
Matrix_Files input block.
2 The correction factor equals 1.0.
3 No theory has been developed for simultaneous prediction intervals.

Execution

The CORFAC_PLUS run command is of the form:

path:\ CORFAC_PLUS.exe fn

where:

path:\ = the relative or absolute path to the CORFAC_PLUS.exe on your computer
(alternatively you could specify this in your system path variable)

fn = filename prefix for data-exchange files that were generated by the regression and
prediction executions of UCODE_2005 (spaces are not allowed in
fn, even on operating systems that allow spaces in filenames).

Input for CORFAC_PLUS includes previously generated files listed in table 34 and
figure 17B and C, and a user created file fn.corfac. CORFAC_PLUS produces a main
output file with file extension #corfac and the data-exchange files listed in table 34.

204

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --CORFAC_PLUS--

 User-Prepared Input File (Required)

CORFAC_PLUS user-prepared input file needs to be named fn.corfac, where fn is
defined on the command line. This file includes up to five input blocks, some of which
are optional. The input blocks are described below and need to appear in the following
order:

Input block name Comment
Options Optional
Correction_Factor_Data Required to define IntervalType
Prediction_List
Parameter_List At least one of these input blocks is needed

Matrix_Files Optional

Options Input Block (Optional)

The Options input block controls the information written to the main CORFAC_PLUS
output file. It has a single keyword:

Verbose - Flag that controls what is written to the CORFAC_PLUS main
output file as follows. The default is Verbose=3 to provide
information for new applications and users, but Verbose=0 is
suggested for most circumstances.

Verbose Output
0 No extraneous output.
1 Warnings.
2 Warnings, notes.
3 (default) Warnings, notes, echo selected input.

4 Warnings, notes, echo all input. Includes all values read from the
process-model output files.

5
Warnings, notes, echo all input, plus some miscellaneous
information. Includes all values read from the process-model
output files.

Example of an Options Input Block for the CORFAC_PLUS program:
BEGIN Options Keywords
Verbose=5
END Options

205

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --CORFAC_PLUS: Correction_Factor_Data Input Block--

Correction_Factor_Data Input Block (Optional)

The Correction_Factor_Data input block is composed of five keywords.

ConfidenceOrPrediction - confidence: confidence intervals are calculated. prediction:
prediction intervals are calculated. Confidence and prediction
intervals are defined in Chapter 3. In a single run of
CORFAC_PLUS, correction factors are calculated for one type of
interval. No default

RegressionUsedTrueCov – yes: In the preceding UCODE_2005 parameter-estimation or
sensitivity-analysis mode run (the first run listed in table 34), the
statistics specified in the observation input blocks are consistent
with an analysis of the observation errors (see table 37). no: The
statistics are not representative of the observation errors.
Default=no.

Read_Cov - yes: Read a matrix from the Matrix_Files input block. no: Do not
read a matrix. Default=no

If the statistics specified for the observations are not based on an analysis of the
observation errors, statistics can be specified here in the form of a variance-
covariance matrix using the Matrx_Files input block. That is, if the statistics
specified in the observation input blocks do not result in weighting that is
intended to be proportional to the inverse of the variance-covariance matrix of the
true errors, that variance-covariance matrix needs to be specified in the
Matrix_Files input block. (Christensen and Cooley, 2005, p. 15). If
RegressionUsedTrueCov=yes and Read_Cov=yes, an error message is returned
and execution is stopped.

EffectiveCorrelation - The upper limit of the spatial correlation. Default=0.8.

The value of EffectiveCorrelation only is used if Read_Cov=no and
RegressionUsedTrueCov=no. The spatial correlation is defined as C by Cooley
(2004, p. 48-49) and Christensen and Cooley (2005, p. 26-28). When needed, the
upper limit of the spatial correlation (EffectiveCorrelation) is used to calculate the
variable ‘a’ in equation 76 of Christensen and Cooley (2005, p. 27) and to
approximate correction factors (Christensen and Cooley, 2005, p. 26-28).

Read_ObsPredCov - yes: Read a matrix of covariances between observations and
predictions (C of Christensen and Cooley, 2005, p. 12, eq. 18)
using the Matrix_Files input block. no: Do not read a matrix; the
second moments are set to 0.0. Default=no.

Example of a Correction_Factor_Data input block:
BEGIN CORRECTION_FACTOR_DATA KEYWORDS
 IntervalType = CONFIDENCE
 RegressionUsedTrueCov = yes
END CORRECTION_FACTOR_DATA

206

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --CORFAC_PLUS: Prediction_List Input Block--

Prediction_List Input Block (this block, the next block, or both are needed)

The Prediction_List input block lists the predictions for which correction factors are
calculated by CORFAC_PLUS and for which nonlinear intervals can be calculated in a
subsequent execution of the nonlinear-uncertainty mode of UCODE_2005. Either the
Prediction_List input block or the Parameter_List input block described in the next
section, or both, need to be provided.

Predictions listed in the Prediction_List input block need to also be listed in the preceding
prediction mode run of UCODE_2005. However, not all of the predictions need to be
listed here -- only the ones for which correction factors are to be calculated. The
prediction names listed here are checked against the prediction names listed for the
prediction mode; the comparison is case-insensitive.

The Prediction_List input block has three keywords.

PredName - Prediction name for which a correction factor is to be calculated.
Each name needs to be one of the names listed in the
Prediction_Data input block of the associated UCODE_2005 run.

The following two keywords define the statistic needed to calculate prediction intervals.
If ConfidenceOrPrediction=Confidence in the Correction_Factor_Data input block, the
following two keywords are not used to calculate correction factors.

MeasStatistic - A statistic used to calculate the variance with which the predicted
quantity could be measured. Used by the nonlinear-uncertainty
mode of UCODE_2005 to calculate prediction intervals. Default =
variance printed in the _pv file. (see below)

MeasStatFlag - Character string that defines how the corresponding MeasStatistic
is used to calculate the measurement error for the prediction.
Default=VAR. Options are:

MeasStatFlag Variance is calculated as
VAR MeasStatistic
SD (MeasStatistic)2

If Blockformat KEYWORDS is selected by designation or default, keywords related to a
prediction need to be grouped together and follow the related PredictionName. The
PredictionName keyword needs to be the first keyword on a new line. PredictionName
and associated keywords are repeated to list multiple predictions.

For ConfidenceOrPrediction=Prediction in the Correction_Factor_Data input block, by
default the MeasStatistic for the predictions listed are obtained from the _pv file as
variances (this file contains variances calculated using the values of MeasStatistic
specified in the Prediction_Data input block from the Prediction mode). Values for
MeasStatistic and MeasStatFlag specified in this Prediction_List input block replace

207

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --CORFAC_PLUS: Prediction_List Input Block--

values from the _pv file. Only the predictions for which variances are to be changed need
to have values assigned for MeasStatistic and MeasStatFlag.

To obtain results for a combination of confidence and prediction intervals, set
ConfidenceOrPrediction=Prediction and set MeasStatistic=0.0 for the predictions for
which confidence intervals are desired.

Example of a Prediction_List input block:
BEGIN PREDICTION_LIST TABLE
nrow=6 ncol=2 COLUMNLABELS MEASSTATFLAG=VAR
PREDICTIONNAME MeasStatistic
G1 10.907
G2 7.5765
G3 7.2347
G4 5.2386
G5 3.4021
G6 6.6283
END PREDICTION_LIST

208

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --CORFAC_PLUS: Parameter_List Input Block--

Parameter_List Input Block (this block, the last block, or both are needed)

The Parameter_List input block lists the parameters for which correction factors are
calculated by CORFAC_PLUS and for which nonlinear intervals are calculated in a
subsequent execution of the nonlinear-uncertainty mode of UCODE_2005. Either the
Parameter_List input block or the Prediction_List input block described in the previous
section, or both, must be provided.

Parameters listed in the Parameter_List input block need to have had sensitivities
calculated in the preceding prediction mode run of UCODE_2005. Not all of the
parameters need to be listed here -- only the ones for which correction factors and
nonlinear intervals are to be calculated. The list of parameters is checked using
ParamNames; the comparison is case-insensitive.

The Parameter_List input block has three keywords.

ParameterName - Parameter name for which a correction factor, and possibly a
nonlinear interval, is to be calculated. Each name needs to be one
of the names listed in the Parameter_Data input block of the
associated UCODE_2005 run.

The following two keywords define the statistic needed to calculate prediction intervals.
If ConfidenceOrPrediction=Confidence in the Correction_Factor_Data input block, the
following two keywords are not used to calculate correction factors.

Prediction intervals are rarely calculated for parameters. If they are, MeasStatistic and
MeasStatFlag define the expected precision with which unbiased parameter values can be
measured.

MeasStatistic - A statistic used to calculate the variance with which the
parameter could be measured. Used by the nonlinear-uncertainty
mode of UCODE_2005 to calculate prediction intervals. Rarely
used for parameters. Default=0.0.

MeasStatFlag - Character string that defines how the corresponding MeasStatistic
is used to calculate the variance of the error with which the
parameter value can be measured. No default. Options are:

MeasStatFlag Variance is calculated as
VAR MeasStatistic
SD (MeasStatistic)2

If Blockformat KEYWORDS is selected by designation or default, keywords related to a
parameter need to be grouped together and follow the related ParameterName. The
ParameterName keyword needs to be the first keyword on a new line. ParameterName
and associated keywords are repeated to list multiple predictions.

209

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --CORFAC_PLUS: Parameter_List Input Block--

Example of a Parameter_List input block:
BEGIN PARAMETER_LIST TABLE
nrow=2 ncol=1 COLUMNLABELS
PARAMETERNAME
HK_1
HK_2
END PARAMETER_LIST

Matrix_Files Input Block (Optional)

Up to two matrices are read as indicated by keywords Read_Cov and Read_ObsPredC in
the Correction_Factor_Data input block. If both of the keywords are set to ‘yes’, two
matrices are read and the matrix associated with Read_Cov needs to be first.

This Matrix_Files input block performs as described in Chapter 10. Here some brief
instructions and some restrictions on this use of the Matrix_Files capability are provided.

There are two keywords in the Matrix_Files input block.

MatrixFile - Name or path of the file from which one or more matrices are
read. (Up to 2,000 characters; case sensitivity depends on the
operating system).

NMatrices - Number of matrices to be read from MatrixFile.

Example of a Matrix_Files input block:
BEGIN MATRIX_FILES
matrixfile=V-VPmatrix NMATRICES=2
END MATRIX_FILES

210

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --CORFAC_PLUS: Output Files--

Output Files for CORFAC_PLUS

Each run of CORFAC_PLUS produces five output files, as listed in table 34: the main
output file with file extension #corfac_* and data-exchange files with file extensions
_b1adv*, _b3*,_cf*, and _cfsu. The * is replaced by ‘conf’ or ‘pred’ depending on the
designations for keyword ConfidenceOrPrediction in the Correction_Factor_Data input
block.

The * is replaced by ‘conf’ when ConfidenceOrPrediction=Confidence and
‘pred’ when ConfidenceOrPredicion=Prediction.

The CORFAC_PLUS main input file, with file extension #corfac_*, is very similar to the
output file from the CORFAC_2K program described by Christensen and Cooley (2005,
p. 56-57, 117-121). Readers are referred to that source for further information.

The _b1adv* data-exchange file contains sets of parameter values, where the number of
sets equals two times the number of estimated parameters.

The_b3* data-exchange file also contains sets of parameters values. The number of sets
equals the number of items listed in the Prediction_List and Parameter_List input blocks
in the preceding run of CORFAC_PLUS.

The _cf* data-exchange file contains correction factors.

The _cfsu data-exchange file contains sensitivities for the quantities for which intervals
are calculated evaluated at the optimal parameter values.

211

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --The Advanced-Test-Model-Linearity Mode of UCODE_2005--

The Advanced-Test-Model-Linearity Mode of UCODE_2005

The Advanced-Test-Model-Linearity mode of UCODE_2005 creates the files needed by
the computer program Model_Linearity_ADV. The resulting analysis supports the
analyses produced by the Test-Model-Linearity mode; in general the analyses produced
by both programs should be performed.

The Advanced-Test-Model-Linearity mode calculates simulated values for each of the
sets of parameter values listed in the _b1adv* and _b3* data-exchange files, where * is
replaced by ‘conf’ for confidence intervals and ‘pred’ for prediction intervals. It produces
the files _b2adv* and _b4*. See tables 34 and 35 and figure 17B.

In most respects, the UCODE_2005 main input file needs to be identical to a forward
mode run. Exceptions are as follows.

1. Set keyword LinearityAdv=conf or pred in the UCODE_Control_Data input block
(table 3; Chapter 6).

2. The advanced-test-model-linearity mode requires information for both observations
and predictions. Items 3 to 5 describe how to accomplish this.

3. Change the Model_Command_Lines input block of Chapter 6 as needed to run the
process models required to obtain simulated equivalents to the observations and
predictions. Generally this means using the methods discussed for the
Model_Command_Lines input block to run the process model as in the UCODE_2005
parameter-estimation mode and the prediction mode runs.

4. Use the input blocks described in Chapter 8 to define both observations and
predictions. When starting with a UCODE_2005 main input file from a parameter-
estimation mode run, this means adding input blocks for predictions. Generally these can
simply be copied from the preceding prediction mode run.

5. Change the input blocks described in Chapter 11 to interact with the process model
input and output files as needed to obtain results for both calibration and prediction
conditions. When starting with a parameter-estimation mode run main input file, this
usually means integrating the lines from the prediction mode run into these input blocks.
In the Model_Output_Files input block, each ModOutFile keyword needs to be
associated with a Category keyword, with Category=Obs for observations or
Category=Pred for predictions. Any output files that include both observations and
predictions need to be listed twice: once with the instruction file to read the values
required for observations with Category=Obs, and once with the instruction file to read
the values for predictions with Category=Pred.

Input and output files for the advanced-test-model-linearity mode are listed in table 34.

212

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --MODEL_LINEARITY_ADV--

MODEL_LINEARITY_ADV: Advanced Evaluation of Model
Linearity

MODEL_LINEARITY_ADV differs substantially from MODEL_LINEARITY, which is
documented in Chapter 15. MODEL_LINEARITY_ADV calculates total model
nonlinearity, intrinsic model nonlinearity, and combined intrinsic model nonlinearity. The
types of nonlinearity measures and a few comments are provided in table 38.

The role of model predictions highlighted in table 38 is important if the predicted
quantity and(or) prediction conditions are substantially different than the quantities used
to calibrate the model and (or) calibration conditions. In ground-water modelling, this
occurs when a model calibrated with heads and flows is used to simulate transport, or
when pumping conditions change considerably. If there are substantial differences,
linearity measures that do not account for predictions may underestimate the effects of
nonlinearity on calculated intervals. For more information, see Christensen and Cooley
(2005), Cooley (2004), and Hill and Tiedeman (2007).

Execution

The MODEL_LINEARITY_ADV run command is of the form:

path:\ MODEL_LINEARITY_ADV.exe fn

where:

path:\ = the relative or absolute path to the RESIDUAL_ANALYSIS_ADV.exe on your
computer (alternatively you could specify this in your system path
variable)

fn = filename prefix for data-exchange files that were generated by the regression and
prediction executions of UCODE_2005 and the execution of
CORFAC_PLUS (spaces are not allowed in fn, even on operating
systems that allow spaces in filenames)

Input Files for MODEL_LINEARITY_ADV

MODEL_LINEARITY_ADV relies on previously generated data-exchange files listed in
Table 34, as shown in Figure 17B. Execution needs to be preceded by four runs:

1. UCODE_2005 parameter-estimation mode or sensitivity mode using optimal
parameter values.

2. UCODE_2005 prediction mode, if there are predictions.

3. CORFAC_PLUS.

4. UCODE_2005 advanced-test-model-linearity mode.
No user-generated input files are needed or possible.

213

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --MODEL_LINEARITY_ADV--

Table 38. The model nonlinearity measures listed in the MODEL_LINEARITY_ADV
main output file.

Name1 Comment Critical Values

Total model
nonlinearity2
(p. 18-19)

Nonlinearity of the simulated equivalents of the
observations with respect to the parameters.
Equals the sum of intrinsic model nonlinearity
and parameter effects nonlinearity. Parameter
effects nonlinearity is defined as nonlinearity
that could be eliminated by a parameter
transformation, though the transformation is
unknown.

Intrinsic model
nonlinearity3
(p. 19-20)

Nonlinearity of the simulated equivalents of the
observations that cannot be eliminated by
parameter transformation.

>1.0 highly
nonlinear

0.09 to 1.0
nonlinear

0.01 to 0.09
moderately
nonlinear

<0.01 effectively
linear

Combined
intrinsic model
nonlinearity3
(eq. 48 or 56)

One value is produced for each interval.
Nonlinearity of the simulated equivalents of the
observations and the prediction that cannot be
eliminated by the same parameter
transformation.

≤0.01

Combined
intrinsic
nonlinearity –
maximum sum
(p. 24, 48)

The largest of BMI+2BMF0 or |BMI-2BMG0|.
BMI=combined intrinsic model nonlinearity,
BMF0=what BMI would equal if the simulated
equivalents to observations were linear, and
BMG0=what BMI would equal if the
predictions were linear.
Measures the magnitude of intrinsic model
nonlinearity and combined intrinsic model
nonlinearity. If it is small, linear and nonlinear
confidence or prediction intervals are similar.

<0.09
(conservative

limit; larger values
may be okay)

1 Equation or page numbers listed are where the statistic is defined in Christensen and Cooley
(2005). For combined intrinsic model nonlinearity, eq. 48 and 56 apply for confidence and
prediction intervals, respectively.
2 Conclusions about nonlinearity are similar to those reached using the modified Beale’s measure
calculated by MODEL_LINEARITY.
3 Called model intrinsic nonlinearity and model combined intrinsic nonlinearity, respectively, by
Cooley (2004, p. 36, 56) and Christensen and Cooley (2005).

214

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --MODEL_LINEARITY_ADV--

Output File for MODEL_LINEARITY_ADV

MODEL_LINEARITY_ADV produces: fn.#modlinadv, which lists the nonlinearity
measures listed in Table 38 and associated critical values. Total model nonlinearity and
intrinsic model linearity are printed about halfway down the file and appear as follows.

###########
########### TOTAL NONLINEARITY (BNT).......... = 45.433
########### INTRINSIC NONLINEARITY (BNI)...... = 0.12908
###########
###########CRITICAL VALUES FOR BOTH MEASURES:
########### >1.0 highly nonlinear
########### 0.09 to 1.0 non-linear
########### 0.01 to 0.09 moderately nonlinear
########### <0.01 effectively linear

Combined intrinsic model nonlinearity and associated statistics are printed at the bottom
of the file and appear as follows.

COMBINED INTRINSIC NONLINEARITY
 Standard linear intervals are good approximations
 for predictions with values <= 0.01
 INTERVAL NO. BMI INTERVAL NO. BMI
 1 AD10_X 4.4280 4 A100_X 4.0473
 2 AD10_Y 489.68 5 A100_Y 53.153
 3 AD10_Z 9.9946 6 A100_Z 13.687

 COMBINED INTRINSIC NONLINEARITY AS IF F WERE LINEAR
 INTERVAL NO. BMF0 INTERVAL NO. BMF0
 1 AD10_X 4.4275 4 A100_X 4.0467
 2 AD10_Y 489.68 5 A100_Y 53.152
 3 AD10_Z 9.9940 6 A100_Z 13.686

 COMBINED INTRINSIC NONLINEARITY AS IF G WERE LINEAR
 INTERVAL NO. BMG0 INTERVAL NO. BMG0
 1 AD10_X 0.54578E-03 4 A100_X 0.61157E-03
 2 AD10_Y 0.45722E-03 5 A100_Y 0.67193E-03
 3 AD10_Z 0.61090E-03 6 A100_Z 0.10208E-02

 COMBINED INTRINSIC NONLINEARITY - MAX. SUM
 Correction factors are not affected by combined intrinsic model
 linearity if this value <0.09. This limit is conservative;
 larger values may not affect correction.
 INTERVAL NO. BMIMAX INTERVAL NO. BMIMAX
 1 AD10_X 13.283 4 A100_X 12.141
 2 AD10_Y 1469.0 5 A100_Y 159.46
 3 AD10_Z 29.983 6 A100_Z 41.059

.

215

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --The Nonlinear Uncertainty Mode of UCODE_2005--

The Nonlinear-Uncertainty Mode of UCODE_2005

Nonlinear intervals are calculated using the nonlinear-uncertainty mode of UCODE_2005
(table 3). Nonlinear intervals can not be calculated using a post-processor such as
LINEAR_UNCERTAINTY because each limit of each interval requires that a full
regression be completed.

The regression procedure conducted by the nonlinear-uncertainty mode seeks to find
parameter values that produce the extreme values of each quantity for which intervals are
being calculated. For example, for a prediction, the goal is to find parameter values that
produce the largest and smallest values of the prediction. The parameter values also need
to result in simulated equivalents of the observations that produce a specified objective-
function value. The specified value is called the objective-function goal in this report.

The objective-function goal is determined based three factors: (1) whether the interval is
a confidence or prediction interval, (2) whether the interval is an individual or
simultaneous interval, and (3) whether correction factors are all set to 1.0 or determined
by CORFAC_PLUS.

The quantities for which intervals are calculated are defined in the CORFAC_PLUS input
file, using the Prediction_List and Parameter_List input blocks.

An execution of the nonlinear-uncertainty mode of UCODE_2005 has either
ConfidenceOrPrediction=Confidence or ConfidenceOrPrediction=Prediction in the
Red_GN_NonLinInt input block described below in this section. Files from a
CORFAC_PLUS run with the same option specified in the Correction_Factor_Data input
block need to be present in the directory in which the UCODE_2005 nonlinear-
uncertainty mode is run, using the same filename prefix on the command line.

Preparatory Steps

The steps by which the user prepares for nonlinear interval calculation are as follows. It is
generally most useful to modify a copy of the related UCODE_2005 parameter-
estimation mode main input file. If intervals are calculated on predictions (the
Prediction_List input block is used in the CORFAC_PLUS input file), parts of a related
UCODE_2005 prediction mode main input file are needed for the nonlinear-uncertainty
mode main input file.

1. For the UCODE_2005 nonlinear-uncertainty mode to calculate intervals on
predictions, the nonlinear-uncertainty mode needs to follow successful completion of at
least three, and possibly four, other runs. Other runs may be important to model analysis,
but are not needed to calculate nonlinear confidence intervals. The three required runs
are:

(a) UCODE_2005 parameter-estimation (the first run in table 34),

216

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --The Nonlinear Uncertainty Mode of UCODE_2005--

(b) UCODE_2005 prediction mode, and

(c) CORFAC_PLUS.

In addition, the second sensitivity-analysis mode run listed in table 34 is needed if the
_init and _init._** files generated by (a) are inadequate. They can be inadequate in three
situations: (1) the parameter-estimation mode starting parameter values equal the optimal
values, (2) the parameter-estimation mode run is a replaced by a sensitivity-analysis
mode run with the parameter values equal to the optimal parameter values (this is needed
if the parameter definition is changed, as discussed in the section “Project Flow Using the
Advanced Capabilities” of this chapter), or (3) the parameter-estimation mode starting
values produce a very large value of the objective function. Problems are indicated if the
_rdadv file contains intervals that are so wide that the weighted residuals plot on a
vertical line because the scale on the horizontal axis is so large. If problems are
suspected, run the second sensitivity-analysis mode listed in table 34 to produce init files.
Use parameter values from an intermediate parameter-estimation iteration. These
parameter values are listed in the data-exchange file with extension _pasub produced by
the parameter-estimation mode run. The data-exchange file from the same run with
extension _ss can be used to determine the objective-function values produced by each
set of parameter values in the _pasub file. For additional information, see the section at
the beginning of Chapter 17 entitled “Project Flow Using the Advanced Capabilities”.

If nonlinear intervals are calculated only on parameters (the Parameter_List input block
is used in the CORFAC_PLUS input file and the Prediction_List input block is not), the
situation is the same as that described above except that the prediction run (b) is not
needed.

Comments 2 through 8 refer the UCODE_2005 main input file for the nonlinear-
uncertainty mode.

2. In the UCODE_Control_Data input block, include keyword NonLinearIntervals=yes.
Make sure the other keywords that control the UCODE_2005 mode are set to “no” by
default or designation. Specifics are provided in table 3 and Chapter 6.

3. If intervals are to be calculated on predictions, the UCODE_2005 nonlinear-
uncertainty mode main input file needs to be able to run calibration and prediction
conditions. See instructions in the section on the advanced-test-model-linearity mode of
UCODE-2005 earlier in this chapter. In addition, if derivatives-interface files described
in Chapter 13 are used for the observations and the predictions, the following steps are
needed.

(a) If separate runs of the process model are used to produce sensivity-equation
sensitivities, the files containing the sensitivities need to be merged into one file. In the
Options input block of Chapter 6, use the PathToMergedFile keyword to define the file.
In the Merge_Files input block of Chapter 6, list the files to be merged. Modify the
derivatives-interface file described in Chapter 13 to read the merged file; this generally
requires adding the prediction names to the list of dependent variables and changing
NDEP accordingly (see table 13).

217

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --The Nonlinear Uncertainty Mode of UCODE_2005--

4. As noted in the description of the Parameter_Values input block in Chapter 7, better
regression convergence can sometimes be achieved using different starting values. If
AlternateStartValues=yes in the Reg_GN_NonLinInt input block, parameter values listed
in the Parameter_Values input block are used as the starting values. These values may be
different for different runs of the nonlinear-uncertainty mode. The starting parameter
values need to be within the parameter confidence region, so can not be too far from the
optimal values. If the AlternateStartValues=no, parameter values from the _paopt data-
exchange file are used.

5. In the Parameter_Data input block, the values assigned for ScalePval are used in the
nonlinear-uncertainty mode as described for keyword TolIntP of the Reg_GN_NonLinInt
input block described next. Typically, the absolute values of the estimated parameter
values listed in the _paopt data-exchange file are used and need to be pasted into the
Parameter_Data input block.

6. If the defaults are not adequate, add a Reg_GN_NonLinInt input block to the
UCODE_2005 main input file. This input block is described in the following section of
this report.

7. The observation and prior information input blocks from the parameter-estimation or
sensitivity-analysis mode run (the first run listed in table 34) are required without
modification.

8. List the predictions for which nonlinear intervals are to be calculated in the prediction
input blocks described in Chapter 8. The prediction input blocks from the prediction
mode run (table 34) can be modified to include only predictions for which intervals are to
be calculated. If new predictions are of interest, they need to be added to the prediction
mode input file and the prediction mode and subsequent runs needs to be repeated before
proceeding (see step 1).

9. Execute UCODE_2005. A regression is performed for each interval limit, so execution
times can be long.

Multiple computers can be used to reduce the time required to obtain nonlinear
confidence intervals. There are two possible ways of using multiple computers:

(a) For each interval limit, when sensitivities are calculated by perturbation, each
process-model run can be sent to a different computer using the parallel
capabilities described in Chapter 12.

(b) The calculations for each interval limit are completely independent of one
another. Thus they can be calculated using different computers. This is not
supported by the parallelization capabilities included in UCODE_2005; instead, it
can be accomplished simply by running UCODE_2005 on different computers.
The only difference between the runs would be the predictions defined in the
input blocks defined in Chapter 8 (see item 8 above) and possibly the designation
of the WhichLimits keyword in the Reg_GN_NonLinInt input block described in
the following section.

218

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --The Nonlinear Uncertainty Mode of UCODE_2005--

Reg_GN_NonLinInt Input Block (Optional)

The Reg_GN_NonlinInt input block can be added to the UCODE_2005 main input file to
define options for calculating nonlinear intervals. It follows the Reg_GN_Controls input
block and precedes the Model_Command_Lines input block. Keywords only need to be
included to use something other than the defaults, and the input block can be omitted if
all defaults are used.

Data from the Reg_GN_Controls input block used to calculate nonlinear interval limits
include the designations for keywords MaxIter, MaxChange, MaxChangeRealm, and
MqrtDirection. The value of MaxChange is often important to obtaining convergence for
interval limits. In the event of convergence problems try decreasing MaxChange and
increasing MaxIter.

 The Parameter_Data input block allows MaxChange values to be specified, but these
values are ignored when calculating nonlinear interval limits. Only the MaxChange value
in Reg_GN_Controls is used to calculate nonlinear interval limits.

The quasi-Newton updating, dynamic omission of parameters, and trust region features
for which keywords are defined in the Reg_GN_Controls input block are not available
for calculating nonlinear intervals. Designations for these keywords are not used.

ConfidenceOrPrediction – confidence: confidence intervals are calculated. prediction:
Prediction intervals are calculated. Default=confidence.

Confidence and prediction intervals are defined in Chapter 3. In a single run of
the nonlinear-uncertainty mode, only one type of interval is calculated. If
ConfidenceOrPrediction=Confidence, and data-exchange file _cfconf from
CORFAC_PLUS does not exist, correction factors are not used to calculate the
confidence intervals. Similarly, if ConfidenceOrPrediction=Prediction, and data-
exchange file _cfpred does not exist, correction factors are not used to calculate
the prediction intervals. The _cfconf and _cfpred data-exchange files can be
produced by CORFAC_PLUS.

IndividualOrSimultaneous – individual: individual intervals are calculated.

simultaneous: simultaneous intervals are calculated.
Default=individual.

Individual and simultaneous intervals are defined in Chapter 3. In a single run of
the nonlinear-uncertainty mode, only one type of interval is calculated.

Simultaneous intervals are all Scheffé d=NP intervals, which are accurate when
the number of intervals exceeds the number of parameters, and tend to be too
large for fewer intervals.

For prediction intervals (ConfidenceOrPrediction=prediction), only individual
intervals can be calculated; if IndividualOrSimultaneous=simultaneous, the
designation is ignored.

219

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --The Nonlinear Uncertainty Mode of UCODE_2005--

WhichLimits - The interval limits to be calculated. Options are Lower, Upper or

Both. Default=Both.

TolIntP - Tolerance based on parameter values: a limit of a confidence

interval is achieved if the maximum absolute value of the
fractional change in parameter values between iterations is less
than ScalePvalj×TolIntP. ScalePval is a keyword defined for the
Parameter_Data input block and the values specified there are used
in this calculation. The subscript j refers to the jth parameter.
Default=0.001.

TolIntS - Tolerance based on model fit. Convergence is achieved when the

fractional change over two iterations is less than TolIntS,
calculated as |S(θr+1)- S(θr)|/ S(θr) + |S(θr)- S(θr-1)|/ S(θr-1)<TolIntS.
Christensen and Cooley (2005, p. 41) found that a value of one-
tenth of TolIntP worked well in the problems they tested. While
the relation to TolIntP depends on parameter sensitivity, the default
is based on their experience. Default=0.1×TolIntP.

TolIntY - Tolerance based on the change in the value of the computed

interval limit. Convergence is achieved when the value of the limit
has not changed more than TolIntY times the average of the last
two values of the limit. That is, |2×(g(γθr+1)-g(γθr))/
(g(γθr+1)+g(γθr))| < TolIntY, where g(γθ) is the iteratively
calculated value at the limit, r is the iteration counter, and γθr is a
vector of parameter values at iteration r. Default=0.001. If
TolIntY=0.0, this convergence criterion is not used.

CorrectionFactors - yes: read and use correction factors calculated by

CORFAC_PLUS. no: do not read or use correction factors
(equivalent to setting the correction factors to 1.0). Default=no.

Even when correction factors are not used, CORFAC_PLUS needs to be run
before the UCODE_2005 nonlinear-uncertainty mode run.

AlternativeStartValues - yes: use the parameter values listed in the Parameter_Values
input block to start the regression for all interval limits. no: use the
estimated parameter values listed in file fn._paopt. Use
AlternativeStartValues=yes to investigate uniqueness of the
interval limits and possibly to aid convergence. Default=no.

Calculating a Subset of the Interval Limits

When calculating a set of interval limits, two circumstances may result in the need to
recalculate some of the limits. First, some limits may not converge. This is apparent
because there is a message in the main output file and a message is written instead of a

220

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --The Nonlinear Uncertainty Mode of UCODE_2005--

value in the _int* file. Second, convergence may be obtained but the large discrepancy
between the sum-of-squared weighted residuals and the desired value is too large.
Satisfactory limits often can be achieved by changing the MaxStep in the
Reg_GN_Controls input block or changing the convergence criteria in the
Ref_GN_NonLinInt input block.

Several runs may be required to obtain some limits, and it is computationally intensive to
recalculate all the limits for each of these runs. There are two ways to restrict the
calculated limits. First, the WhichLimits keyword in the Reg_GN_NonLinInt input block
can be used to calculate only upper or lower limits.

Second, some of the quantities for which limits are calculated can be omitted. To omit
predictions, the predictions need to be removed from (1) the input blocks in the main
UCODE_2005 input file, (2) the instruction file listed in the Model_Output_Files input
block, and (3) the Prediction_List input block in the CORFAC_PLUS input file. In some
circumstances it may be convenient to change the process model so that the predictions
are not calculated. This primarily occurs when the Standard File option is being used to
read from model output files, and it is easier to change the predictions produced by the
process model than to construct a more complicated instruction file. For example, if
MODFLOW-2000 is used and predictions are read from an _os file and sensitivities are
read from the _su file using the standard file option, one option is to change the
MODFLOW run so that these files list results for the predictions of cocern.

To omit parameters, the parameters need to be omitted from the Parameter_List input
block of the CORFAC_PLUS input file and keyword NonLinearInterval defined for the
Parameter_Data input block of the UCODE_2005 main input file needs to be changed.

Nonlinear-Uncertainty Mode Output Files

Results are reported in the output files fn.#unonlinint_*, _int*, fn._intwr, and _int*par, as
listed in table 34. The symbol * is replaced by ‘conf’ when confidence intervals are
calculated and ‘pred’ when prediction intervals are calculated.

The main output file is composed of an initial echo of input information followed by
information from each iteration of the nonlinear regression process used to calculate each
limit of each interval. The main output file can be large. Generally modelers need to look
at the output file only for debugging and to explore the iterations of limits for which
nonlinear regression did not converge.

Files with filename extensions _intconf, _intconfpar, and _intconfwr are produced if
confidence intervals are calculated and files with extensions _intpred, _intpredpar, and
_intpredwr are produced if predictions intervals are calculated.

The confidence intervals in the _intconf file can be individual or simultaneous intervals,
depending on the designation of IndividualOrSimultaneous in the Reg_GN_NonLinInt
Input Block. The prediction intervals in the _intpred file are always individual intervals
regardless of how keyword IndividualOrSimultaneous is defined.

221

Chapter 17: Advanced Evaluation of Residuals, Nonlinearity, and Uncertainty
 --The Nonlinear Uncertainty Mode of UCODE_2005--

The parameter values for each limit are listed in the _int*par file. The weighted residuals
calculated using the parameter values for each limit are listed in the _int*wr file, where *
is replaced by ‘conf’ or ‘pred’. These files can be used to check calculations for the
nonlinear interval limits, and the weighted residuals can be used to check for intrinsic
nonlinearity as described by Christensen and Cooley (2005, p. 11, 36).

It is important to determine whether all of the intervals are associated with the
appropriate value of the sum-of-squared weighted residuals. This can be evaluated by
comparing the values in the fifth column of the _intconf or _intpred data-exchange files
against the critical value listed in the sixth column. The percent difference is listed in the
seventh column.

For more information about the data-exchange files, see table 35.

222

Chapter 18: References

Chapter 18: REFERENCES

Anderman, E.R. and Hill, M.C., 1999, A new multistage groundwater transport inverse

method: Presentation, evaluation, and implications: Water Resources Research., v. 35,
No. 4, p. 1053-1063.

Barlebo, H.C., Hill, M.C., Rosbjerg, D., and Jensen, K.H., 1998, Concentration data and
dimensionality in groundwater models: Evaluation using inverse modeling: Nordic
Hydrology, v. 29, p. 149-178.

Banta, E.R., Poeter, E.P., Doherty, J.E., Hill, M.C.,2006, JUPITER API: U.S. Geological
Survey Techniques and Methods 6-E1, 268p.

Barth, G.R. and Hill, M.C., 2005a, Numerical methods for improving sensitivity analysis
and parameter estimation of virus transport simulated using sorptive-reactive
processes: Journal of Contaminant Hydrology, v. 76, p. 251-277.

Barth, G.R. and Hill, M.C., 2005b, Parameter and observation importance in modeling
virus transport in saturated systems – Investigations in a homogenous system: Journal
of Contaminant Hydrology, v. 80, p. 107-129.

Belsley, D.A, Kuh, E., and Welsch, R.E, 1980, Regression diagnostics, Identifying
influential data and source of collinearity: John Wiley & Sons, New York, 292 p.

Christensen, Steen and Cooley, R.L, 1999, Simultaneous confidence intervals for a
steady-state leaky aquifer groundwater flow model: Advances in Water Resources
Special Section on Model Calibration and Reliability Evaluation, v. 22, No. 8, p. 807-
817.

Christensen and Cooley, 2005, User guide to the UNC process and three utility programs
for computation of nonlinear confidence and prediction intervals using MODFLOW-
2000: U.S. Geological Survey Techniques and Methods Report 2004-1349, 186p.

Christensen, Steen, Rasmussen, K.R., and Moeller, K., 1998, Prediction of regional
ground-water flow to streams: Ground Water, v. 36, No. 2, p. 351-360.

Cook, R.D. and Weisberg, S., 1982, Residuals and influence in regression: Chapman and
Hall, New York, 230 p.

Cooley, R.L., 2004, A theory for modeling ground-water flow in heterogeneous media:
U.S. Geological Survey Professional Paper 1679, 220 p.

Cooley, R.L. and Hill, M.C., 1992, A comparison of three Newton-like nonlinear least-
squares methods for estimating parameters of ground-water flow models, in Russell,
T.F., Ewing, R.E., Brebbia, C.A., Gray, W.G., and Pinder, G.F., eds., Computational
Methods in Water Resources 9th, vol. 1: Numerical methods in water resources,
Elsevier, p. 379-386.

Cooley, R.L. and Naff, R.L., 1990, Regression modeling of ground-water flow: U. S.
Geological Survey Techniques in Water-Resources Investigations, book 3, Chapter
B4, 232 p.

223

Chapter 18: References

D'Agnese, F.A., Faunt, C.C., Turner, A.K, and Hill, M.C., 1997, Hydrogeologic
evaluation and numerical simulation of the Death Valley Regional ground-water
flow system, Nevada and California: U.S. Geological Survey Water-Resources
Investigations Report 96-4300, 124 p.

D’Agnese, F.A., Faunt, C.C. Hill, M.C., and Turner, A.K., 1999, Death Valley regional
ground-water flow model calibration using optimal parameter estimation methods
and geoscientific information systems: Invited paper for a Special Section of
Advances in Water Resources on Model Calibration and Reliability Evaluation For
Ground-Water Systems, A. Leijnse and M.C. Hill, eds., v. 22, No. 8, p. 777-790.

Dennis, J.E., Gay, D.M. and Welsch, R.E., 1981, An adaptive nonlinear least-squares
algorithm: ACM Transactions on Mathematical Software, v. 7, no. 3, p. 348-368

Dennis, J.E. and Schnabel, R.B., 1996, Numerical methods for unconstrained
optimization and nonlinear equations: Society for Industrial and Applied
Mathematics, Philadelphia, USA, 378 p.

Doherty, John, 2004, PEST-2000: Corinda, Australia, Watermark Computing,
http://www.sspa.com/pest/pestsoft.shtml

Draper, N.R. and Smith, H., 1998, Applied Regression Analysis (3rd ed.): John Wiley &
Sons, New York, 706 p.

Eberts, S.M. and George, L.L., 2000, Regional ground-water flow and geochemistry in
the midwestern basins and arches aquifer system in parts of Indiana, Ohio, Michigan,
and Illinois: U.S. Geological Survey Professional Paper 1323-C, 103 p.

Gailey, R.M., Gorelick, S.M., and Crowe, A.S., 1991, Coupled process parameter
estimation and prediction uncertainty using hydraulic head and concentration data:
Advances in Water Research, v. 14, No. 5, p. 301-314.

Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000, MODFLOW-
2000, the U.S. Geological Survey modular ground-water model, User’s guide to the
modularization concepts and the ground-water flow process: U.S. Geological Survey
Open-File Report 00-92, 121 p.
http://water.usgs.gov/nrp/gwsoftware/modflow2000/modflow2000.html

Helsel, Dennis, 2004, Nondetects and data analysis, Statistics for censored environmental
data: Wiley and Sons, New York, 250p.

Hill, M.C., 1990, Preconditioned conjugate gradient 2(PCG2), a computer program for
solving ground-water flow equations: U.S. Geological Survey Water-Resources
Investigations Report 90-4048, 43 p.

Hill, M.C., 1992, A computer program (MODFLOWP) for estimating parameters of a
transient, three-dimensional, ground-water flow model using nonlinear regression:
U.S. Geological Survey Open-File Report 91-484, 358 p.

Hill, M.C., 1994, Five computer programs for testing weighted residuals and calculating
linear confidence and prediction intervals on results from the ground-water parameter

224

http://water.usgs.gov/nrp/gwsoftware/modflow2000/modflow2000.html

Chapter 18: References

estimation computer program MODFLOWP: U.S. Geological Survey Open-File
Report 93-481, 81 p.

Hill, M.C., 1998, Methods and guidelines for effective model calibration: U.S.
Geological Survey Water-Resources Investigations Report 98-4005, 90 p.

Hill, M.C., Banta, E.R., Harbaugh, A.W., and Anderman, E.R., 2000, MODFLOW-2000,
the U.S. Geological Survey modular ground-water model, User’s guide to the
Observation, Sensitivity, and Parameter-Estimation Process and three post-processing
programs: U.S. Geological Survey Open-File Report 00-184, 209 p.
http://water.usgs.gov/nrp/gwsoftware/modflow2000/modflow2000.html

Hill, M.C. and Tiedeman, C.R., 2007, Effective groundwater model calibration, with
analysis of sensitivities, predictions, and uncertainty: Wiley and Sons, New York,
New York, 455 p.

Hill, M.C. and Østerby, Ole, 2003, Determining extreme parameter correlation in ground-
water models: Ground Water, v. 41, No. 4, p. 420-430.

Keidser, A. and Rosbjerg, D., 1991, A comparison of four inverse approaches to
groundwater flow and transport parameter identification: Water Resources Research,
v. 27, No. 9, p. 2219-2232.

Matott, L.S., 2005, OSTRICH, An optimization software tool, documentation and user’s
guide, Version 1.6: State University of New York at Buffalo, 114p. Accessed
December 28, 2005 at
http://www.groundwater.buffalo.edu/software/Ostrich/OstrichMain.html

Mehl, S.W. and Hill, M.C., 2002, Evaluation of a local grid refinement method for
steady-state block-centered finite-difference groundwater models: p. 367-374 in S.M.
Hassanizadeh, R.J. Schotting, W.G. Gray, and G.F. Pinder, eds., Proceedings of the
XIVth International Conference on Computer Methods in Water Resources
Conference, Developments in Water Science vol. 47, Elsevier, June, 2002, Delft, the
Netherlands, ISBN: 0-444-50975-5, 1808 p.

Mehl, S.W. and Hill, M.C., 2003, Locally refined block-centered finite-difference
groundwater models, Evaluation of parameter sensitivity and the consequences for
inverse modelling and predictions: Karel Kovar, Hrkal Zbynek, eds., IAHS
Publication 277, p. 227-232.

Poeter, E.P. and Anderson, D.R., 2005, Multi-model ranking and inference in ground-
water modeling: Ground Water, vol. 43, no. 4, p. 597-605.

Poeter, E.P. and Hill, M.C., 1996, Unrealistic parameter estimates in inverse modeling: a
problem or a benefit for model calibration?: Proceedings of the ModelCARE 96
Conference, Golden, CO, September 1996, International Association of Hydrological
Sciences Publication no. 237, p. 277-285.

Poeter, E.P. and Hill, M.C., 1997, Inverse models: A necessary next step in groundwater
modeling: Ground Water, v. 35, No. 2, p. 250-260.

Poeter, E.P. and Hill, M.C., 1998, Documentation of UCODE, a computer code for
universal inverse modeling: U.S Geological Survey Water-Resources Investigations
Report 98-4080, 122p. http://pubs.water.usgs.gov/wri984080/.

225

http://water.usgs.gov/nrp/gwsoftware/modflow2000/modflow2000.html
http://www.groundwater.buffalo.edu/software/Ostrich/OstrichMain.html
http://pubs.water.usgs.gov/wri984080/

Chapter 18: References

Poeter, E.P. and Hill, M.C., 2007, MMA, a computer program for multi-model analysis:
U.S Geological Survey Techniques and Methods 6-E3 113p.
http://typhoon.mines.edu/freeware/mma/.

Saltelli, Andrea, Chan, Karen, and Scott, E. M., 2000, Sensitivity Analysis, John Wiley &
Sons, NY, 475p.

Seber, G.A.F., and C.J. Wild, 1989, Nonlinear Regression, John Wiley & Sons, NY,
768p.

Tiedeman, C.R., Ely, D.M., Hill, M.C., and O'Brien, G.M., 2004, A method for
evaluating the importance of system state observations to model predictions, with
application to the Death Valley regional groundwater flow system: Water Resources.
Research, v. 40, W12411, doi:10.1029/2004WR003313.

Tiedeman, C.R., Hill, M.C., D’Agnese, F.A., and Faunt, C.C., 2003, Methods for using
groundwater model predictions to guide hydrogeologic data collection, with
application to the Death Valley regional ground-water flow system: Water Resources
Research, v. 39, No. 1, p. 5-1 to 5-17, 10.1029/2001WR001255.

Tonkin, M.J., Hill, M.C., and Doherty, John, 2003, MODFLOW-2000, the U.S.
Geological Survey modular ground-water model -- Documentation of MOD-
PREDICT for predictions, prediction sensitivity analysis, and enhanced analysis if
model fit: U.S. Geological Survey Open-File Report 03-385, 69 p.
http://water.usgs.gov/nrp/gwsoftware/modflow2000/modflow2000.html

Tonkin, M., C.R. Tiedeman, D.M. Ely, and M.C. Hill, 2007, OPR-PPR, a computer
program for assessing data importance to model predictions using linear statistics:
U.S. Geological Survey Techniques and Methods 6-E2, 115p.

Wagner B.J., and Gorelick, S.M., 1986. A statistical methodology for estimating
transport parameters: theory and applications to one-dimensional advective-dispersive
systems: Water Resources Research, v. 22, No. 8, p. 1303-1315.

Winston, R.B., 2000, Graphical User Interface for MODFLOW, Version 4: U.S.
Geological Survey Open-File Report 00-315, 27 p.
http://water.usgs.gov/nrp/gwsoftware/GW_Chart/GW_Chart.html

Yager, R.M., 1998, Detecting influential observations in nonlinear regression modeling
of ground-water flow: Water Resources Research, v. 34, no. 7, p. 1623-1633.

Yager, R.M., 2004, Effects of model sensitivity and nonlinearity on nonlinear regression
of ground water flow: Ground Water 42(3):390-400.

226

http://water.usgs.gov/nrp/gwsoftware/modflow2000/modflow2000.html
http://water.usgs.gov/nrp/gwsoftware/GW_Chart/GW_Chart.html

Appendix A. Connection of UCODE_2005 with the JUPITER API

Appendix A. CONNECTION WITH THE JUPITER API
UCODE_2005, RESIDUAL_ANALYSIS, LINEAR_UNCERTAINTY,
MODEL_LINEARITY, RESIDUAL_ANALYSIS_ADV,
LINEAR_UNCERTAINTY_ADV, and CORFAC_PLUS were designed and constructed
using conventions and tools from the Joint Universal Parameter IdenTification and
Evaluation of Reliability (JUPITER) Application Programming Interface (API) (Banta
and others, 2006).

The JUPITER API is a computer programming environment that includes conventions
and software components designed to support the development of computer programs
that perform model sensitivity analysis, data needs evaluation, calibration, uncertainty
evaluation, and(or) optimization. The goal of the JUPITER API is to allow scientists to
be able to express their ideas in programs that are sophisticated enough to be readily used
in research and applications. For example, the JUPITER API provides modules that make
it easy for such programs to use or expand existing input blocks, substitute parameter
values into model input files, extract data from model output files, use full weight
matrices, and produce data-exchange files.

 It is hoped that facilitating the connection between ideas, research, and application in this
way will accelerate technical and scientific advances related to analysis of natural
systems, and, therefore, lead to more successful societal decisions about these systems.

This appendix describes the aspects of the API used for each program.

UCODE_2005

UCODE_2005 uses the JUPITER modules listed in Table A- 1.

UCODE_2005 replaces UCODE (Poeter and Hill, 1998). To improve modularity,
UCODE_2005 is now limited to performing sensitivity analysis and regression, while
other stand-alone JUPITER applications are used to generate sets of normally distributed
random numbers for residual analysis (RESIDUAL_ANALYSIS), calculate linearity
(MODEL_LINEARITY) and evaluate predictive uncertainty
(LINEAR_UNCERTAINTY). If desired, multiple programs can be run using a single
file (such as a batch file on Windows operating systems), thereby achieving performance
similar to that of UCODE.

UCODE was written using the computer languages Perl and Fortran77. UCODE_2005
uses only Fortran90/95. As part of this change, the substitution and reading processes
used to interact with the process model(s), which had been written in Perl, were changed
using Fortran code provided by John Doherty (written commun., 2003) as part of the
JUPITER API Model Input-Output Modules. The result is that the methods used for
substitution and reading are nearly identical to those used in PEST (Doherty, 2004),
which makes it easier for users to compare and use the analyses provided by both of these

227

Appendix A. Connection of UCODE_2005 with the JUPITER API

programs. The only difference is that UCODE_2005 has a standard matrix option that is
not available in the version of PEST documented by Doherty (2004).

The JUPITER API input and output conventions are also used by a version of PEST
called J_PEST. This compatibility allows greater ease of code comparison and use of
capabilities unique to UCODE_2005 and J_PEST.

Table A- 1. JUPITER modules, conventions, and mechanisms used in UCODE_2005.
[The modules listed are described in Banta and others (2006).]
Module Authorship
Datatypes Banta
Global Data Banta and Doherty
Utilities Banta, Doherty, and Poeter
Basic Banta and Doherty
Model Input-Output Doherty and Banta
Dependents Banta and Poeter
Equation Doherty
Sensitivity Banta and Poeter
Statistics Poeter, Hill, and Banta
Prior-Information Banta and Poeter
Parallel Processing Banta
Conventions and Mechanisms Authorship
Parameter-Value Generation Hill, Banta, Poeter, and Doherty
Input and Output Specifications
(including matrices)

Banta, Doherty, Hill, and Poeter

Input Block Names and Keywords Doherty, Poeter, and Banta
Data-Exchange Files Poeter, Banta, and Hill

The conventions and some of the content of the input blocks and data-exchange files
produced and used by the programs documented in this report are defined in the
JUPITER API. For more information, see the JUPITER API documentation.

228

Appendix A. Connection of UCODE_2005 with the JUPITER API

The Other Six Codes

The other six codes documented in this report are RESIDUAL_ANALYSIS,
RESIDUAL_ANALYSIS_ADV, LINEAR_UNCERTAINTY, MODEL_LINEARITY,
MODEL_LINEARITY_ADV, and CORFAC_PLUS. These programs use the input block
and data exchange-file conventions established as part of the JUPITER API and
JUPITER API modules as indicated in Table A-2.

Table A-2. JUPITER API modules, conventions, and mechanisms used in the other six

codes documented in this report.
[The modules listed are described in Banta and others, 2006).

Module Authorship
Datatypes Banta
Global Data Banta and Doherty
Utilities Banta, Doherty, and Poeter
Basic Banta and Doherty
Dependents Banta and Poeter
Equation Doherty
Sensitivity Banta and Poeter
Statistics Poeter, Hill, and Banta
Prior-Information Banta and Poeter
Conventions and Mechanisms Authorship
Input and Output Specifications
(including matrices)

Banta, Doherty, Hill, and Poeter

Input Block Names and Keywords Doherty, Poeter, and Banta
Data-Exchange Files Poeter, Banta, and Hill

References

Doherty, John, 2004, PEST-2000: Corinda, Australia, Watermark Computing,

http://www.sspa.com/PEST/index.html

229

http://www.sspa.com/PEST/index.html

Appendix A. Connection of UCODE_2005 with the JUPITER API

230

Appendix B: Files Produced by Using the Filename Prefix Specified on Command Lines

Appendix B: FILES PRODUCED BY USING THE
FILENAME PREFIX SPECIFIED ON COMMAND LINES

The programs documented in this report produce a number of files using the fn filename
prefix specified on the command line. File extensions for all of the files are listed in
Table B- 1 in alphabetical order.

Table B- 1. Files produced by UCODE_2005, RESIDUAL_ANALYSIS,

LINEAR_UNCERTAINTY, and MODEL_LINEARITY named using the fn
prefix specified on the command line, in alphabetic order by letter in the file
extension.

[File extensions that begin with an underscore identify data-exchange files and are listed first.
File extensions that begin with # are main output files and are listed at the end of the table.
Shading identifies files not produced by UCODE_2005. ‘iteration’ refers to parameter-estimation
iteration. * is replaced by ‘conf’ for results related to confidence intervals or ‘pred’ for results
related to prediction intervals.]

Extension Brief description
(see also tables 16-22, 24-28, 34, 35) Content1 Use1

_b1 Parameter sets for _b2 19 --
_b1adv* Parameter sets for _b2adv* 35 34
_b2 Values simulated using parameter sets from _b1 19 --

_b2adv* Values simulated using parameter sets from _b1adv* 35 34
_b3* Parameter sets for _b4* 35 34
_b4* Values simulated using parameter sets from _b3* 35 34

_cf* Correction factors 35 34
_cfsu Sensitivities used by CORFAC_PLUS 35 34

_dm Information about model structure, fit and parsimony 21 --
_dmp Information about predictions 21 --

_gm Observation groups 16 --
_gmp Prediction groups 20 --

_init As for _paopt evaluated at other parameter values 15 --
_init._mv As for the _mv file evaluated at other parameter values 15 --
_init._su As for the _su file evaluated at other parameter values 15 --
_init._supri As for the _supri file evaluated at other parameter values 15 --

_int* Nonlinear intervals 35 34
_int*par Parameter values at nonlinear interval limits 35 34
_int*wr Weighted residuals at nonlinear interval limits

_linp Predictions and their linear confidence intervals 26 --
#linunc LINEAR_UNCERTAINTY main output file 26 --

231

Appendix B: Files Produced by Using the Filename Prefix Specified on Command Lines

Extension Brief description
(see also tables 16-22, 24-28, 34, 35) Content1 Use1

_mc Parameter correlation coefficient matrix 19 30
#modlin MODEL_LINEARITY main output file 27 --
#modlinadv MODEL_LINEARITY_ADV main output file
_mv Parameter variance-covariance matrix 19 30

_nm Weighted residuals, probability plotting positions 16 31
_os Unweighted simulated and observed or prior values 16 31

_p Predictions 20 --
_pa Parameter values for each iteration 19 --
_paopt 6 Information for all defined parameters 19 --
_pasub Parameter values for each iteration 19 --

_pc 6 Information for estimated parameters 19 30
_pcc Large parameter correlation coefficients (≥ 0.85) 18 30, 31
_pr Prior information equations 16 --
_pv Prediction variances 20 --

_r Unweighted residuals (observations and prior) 16 31
_rb DFBetas statistics for each observation and parameter 24 32
_rc Cook’s D statistic for each observation 24 32

_rd Ordered uncorrelated random numbers 24 32
_rdadv Results of RESIDUAL_ANALYSIS_ADV -- --
_rg Ordered correlated random numbers 24 32

_s1 One-percent scaled sensitivities 18 30, 31
_sc Composite scaled sensitivity 18 30, 31
_sd Dimensionless scaled sensitivities 18 30, 31
_so Sensitivity summary by observation, including leverage 18 30, 31
_sos Parameter values and resulting value of the sum of

squared weighted residuals objective function. 19 --

_sppp Prediction sensitivity scaled by Param5/PredValue4 20 --
_sppr Prediction sensitivity scaled by Param5/RefValue3 20 --
_spsp Prediction sensitivity scaled by PSD2/PredValue4 20 --
_spsr Prediction sensitivity scaled by PSD2/RefValue3 20 --

_spu Unscaled sensitivities for predictions 20 --
_ss Sum of squared weighted residuals by iteration 19 31
_su Unscaled sensitivities for observations 18 --
_supri Unscaled sensitivities for prior information 18 --

_w Weighted residuals, observations and prior information 16 31
_ws Simulated equivalents and weighted residuals for

observations and prior information 16 31

_wt Weights for observations 17 --

232

Appendix B: Files Produced by Using the Filename Prefix Specified on Command Lines

Extension Brief description
(see also tables 16-22, 24-28, 34, 35) Content1 Use1

_wtpri Weights for prior information 17 --
_ww Weighted simulated equivalents in relation to weighted

observations or prior information 16 31

_xyztwr Merger of _r, _w and the optional input file fn.xyzt 16 31

The following are main output files for the listed codes
#corfac_* CORFAC_PLUS 35 34
#linunc LINEAR_UNCERTAINTY 26 --
#modlin MODEL_LINEARITY 27 --

#modlinadv MODEL_LINEARITY_ADV -- --
#resan RESIDUAL_ANALYSIS 24 --
#resanadv RESIDUAL_ANALYSIS_ADV -- --

The following are UCODE_2005 main output files for the listed modes
#ucreateinitfiles Sensitivity-analysis with CreateInitFiles=yes -- --
#umodlin Test-model-linearity -- --
#unonlinint_* Nonlinear-uncertainty -- --

#uout Forward, sensitivity-analysis, parameter-estimation -- 28-30
#upred Prediction 20 33
#usos Evaluate-objective-function -- --
1 Tables in this report that describe the file contents and suggest how to use it. --, the content or
use of the file is not described in a table.
2 Parameter Standard Deviation.
3 Reference Value from Prediction_Data block. Scaled sensitivity is set to zero if this number
equals zero.
4 Predicted Value. Scaled sensitivity is set to zero if this number equals zero.
5 Parameter Value.
6 These data-exchange files are not generated from JUPITER API subroutines; they are part of
UCODE_2005.

233

Appendix B: Files Produced by Using the Filename Prefix Specified on Command Lines

234

Appendix C: Example Simulation
--UCODE_2005 Main Input File--

Appendix C: EXAMPLE SIMULATION
Examples are included in the distribution to demonstrate UCODE_2005 input and operation and
to test the calculations. The directory structure and the batch files are described in appendix D. A
complete set of input files is distributed with UCODE_2005. Output files can be produced by
executing the batch files. The test case is referred to as test case 1 so that it can be differentiated
easily from other test cases. This appendix describes the simulated system, discusses selected
results, and presents selected input and output from the parameter-estimation mode run of
UCODE_2005 (Table 3).

For the results presented here, test case 1 is simulated using the Ground-Water Flow Process of
MODFLOW-2000 (Harbaugh and others, 2000; Hill and others, 2000; Anderman and Hill,
2001).

Simulations for calibration and predictions are presented.

Calibration Conditions

The physical system for test case 1 is shown in figure C-1. The system consists of two aquifers
separated by a confining unit. Each aquifer is 50 m thick, and the confining unit is 10 m thick.
The river is treated as a head-dependent boundary that is hydraulically connected to aquifer 1.
Recharge from the hillside adjoining the system is treated as a head-dependent boundary that is
hydraulically connected to aquifers 1 and 2 at the boundary farthest from the river.

Stresses on the system include (1) areal recharge to aquifer 1 in the area near the stream (zone 1)
and in the area farther from the stream (zone 2), and (2) pumpage from wells completed in each
of the two layers. Pumpage from aquifer 1 is assumed to equal pumpage from aquifer 2. The
transient response to pumpage is simulated starting from a steady flow field with no pumpage.

Observations of head and river-flow gain are available for comparison with steady- and
transient-state model results. The river is represented using MODFLOW-2000’s River Package.

For the finite-difference method, the system is discretized into square 1,000-m by 1,000-m cells,
so that the grid has 18 rows and 18 columns. Time discretization for the model run is specified to
simulate a period of steady-state conditions with no pumpage followed by a transient-state period
with a constant rate of pumpage. The steady-state period is simulated with one stress period
having one time step. The transient period is simulated with four stress periods: the first three
are 1, 3, and 6 days long, and each has one time step; the fourth is 272.8 days long and has 9 time
steps, and each time-step length is 1.2 times the length of the previous time-step length.

The top model layer represents a system that is unconfined so that the saturated ground-water
system is bounded on the top by a water table. However, this layer is simulated as having
constant thickness because the results are similar to the simulation with an unconfined layer and

235

Appendix C: Example Simulation
--UCODE_2005 Main Input File--

execution times are shorter. Indeed, this is an approximation that can be used to advantage in
many ground-water systems, especially in the early stages of model development.

The parameters that define aquifer geometry are shown in figure C-1 and ground-water
properties are listed in tables C-1 and C-2. The hydraulic conductivity of aquifer 2 increases with
distance from the river. The variation is simulated using the multiplier-array capability of
MODFLOW-2000. In this case, a multiplier array is defined to represent a step function and
contains the value 1.0 in columns 1 and 2, 2.0 in columns 3 and 4, and so on to the value 9.0 in
columns 17 and 18; this multiplier array is referenced in the definition of parameter HK_2 in the
input file for the Layer Property Flow Package. For this test case, parameters SS_1 and SS_2 are
defined such that their values are storage coefficients. SS_1 and SS_2 are divided by the aquifer
thickness (using a multiplier array defined to be the inverse of the aquifer thickness) to produce
the specific-storage values expected by the Layer Property Flow Package.

The river is simulated using the River Package to designate 18 river cells in column 1 of layer 1;
the head in the river is 100 m. The conductance of the riverbed for each cell is calculated as
([LRB × WRB / bRB] × K_RB), where, for each cell, LRB is the length of the river, WRB is the width
of the river, and bRB is the thickness of the riverbed. K_RB is a parameter defined to be the
hydraulic conductivity of the riverbed material, so that the quantity [LRB × WRB / bRB] is listed as
Condfact for each cell in the input file for the River Package (Harbaugh and others, 2000). For
this system, LRB = 1,000 m, WRB = 10 m, and bRB = 10 m at each river cell, so all Condfact
values equal 1,000 m.

Ground-water flow into the system from the adjoining hillside is represented using the General-
Head Boundary Package. Thirty-six general-head-boundary cells are specified in column 18 of
layers 1 and 2, each having an external head of 350 m and a hydraulic conductance of 1x10-7
m2/s.

Recharge in zone 1 (RCH_1) applies to cells in columns 1 through 9, recharge in zone 2
(RCH_2) applies to cells in columns 10 through 18. A multiplier array defined as a constant is
referenced in the definitions of the recharge parameters to convert the recharge rates from units
of cm/yr to m/s.

Pumpage is simulated using the Well Package. Wells are located at the center of the cells at row
9, column 10; there is one well in each layer and both wells have the same pumping rate. The
parameter WELLS_TR specifies the pumping rate for each of the wells.

The parameter values estimated using observations with and without noise (errors) added to the
observations are listed in tables C-1 and C-2, along with the starting and the true parameter
values. Selected input and output files from the run with noisy observations are presented in the
following sections.

The results without noise (errors) added to the observations are presented in table C-2 to
demonstrate that the regression estimated the true parameter values when unmodified simulated

236

Appendix C: Example Simulation
--UCODE_2005 Main Input File--

values from the synthetic system were used to generate the observations. This constitutes a test
of the regression algorithm, and it can be seen that all parameter values were correctly estimated.

The example available in test subdirectory ex1 produces the results shown in table C-1 and
additional results. It demonstrates a UCODE_2005 set up to execute a sequence of
UCODE_2005 modes and associated runs of RESIDUAL_ANALSYSIS,
LINEAR_UNCERTAINTY, and MODEL_LINEARITY. The predictions considered are the
coordinates of a particle at 10, 50, and 200 years. Sensitivity-equation sensitivities produced by
MODFLOW-2000 are used. The batch files distributed for the Windows operating system in the
ex1 subdirectory are listed in Appendix D.

The example available in test subdirectory ex1-true produces the results shown in table C-2. It
demonstrates UCODE_2005 set up to execute the parameter-estimation mode of UCODE_2005
using perturbation sensitivities.

237

Appendix C: Example Simulation
--UCODE_2005 Main Input File--

Figure C- 1: (A) Physical system and (B) model grid for test case 1. Pumpage is from two wells

at the designated location. One pumps from aquifer 1, the other from aquifer 2.

238

Appendix C: Example Simulation
--UCODE_2005 Main Input File--

Table C- 1. Parameters defined for test case 1, starting and true parameter values, and the values
estimated using the data with errors added.

 [The associated output file main UCODE_2005 output file, ex1.#uout, is presented in this appendix. m,
meter; s, second; cm, centimeter; yr, year. The estimated values and sum of squared, weighted residuals
differ from those reported in Hill and others (2000) because variances on the drawdowns equal 0.0050
instead of 0.0025.]
Parameter

label Description Starting
Value

Estimated
Value

True
Value

Q_1&2 Pumping in each of two layers (m3/s) -1.10 -1.07 -1.00
RCH_1 Recharge rate in zone 1 (cm/yr) 60.0 34.1 31.6
RCH_ 2 Recharge rate in zone 2 (cm/yr) 30.0 50.5 47.3
K_RB Hydraulic conductivity of the

riverbed (m/s)
1.20x10-3 1.38x10-3 1.00x10-3

SS_1 Storage coefficient of aquifer 1
(dimensionless)

1.30x10-3 1.14x10-3 1.00x10-3

HK_1 Hydraulic conductivity of aquifer 1
(m/s)

3.00x10-4 4.26x10-4 4.00x10-4

VK_CB Vertical hydraulic conductivity of the
confining layer (m/s)

1.00x10-7 2.17x10-7 2.00x10-7

SS_2 Storage coefficient of aquifer 2
(dimensionless)

2.00x10-4 6.09x10-5 1.00x10-4

HK_2 Hydraulic conductivity of aquifer 2
under the river (m/s)

4.00x10-5 4.82x10-5 4.40x10-5

Sum of squared, weighted residuals (dimensionless) 269,000 23.9 171.7

239

Appendix C: Example Simulation
--UCODE_2005 Main Input File--

Table C- 2: Parameters defined for test case 1, starting and true parameter values, and the values
estimated using the data without errors added.
[This is from the run that can be executed from test directory “ex1-true” distributed with UCODE_2005.
m, meter; s, second; cm, centimeter; yr, year.]
Parameter

label Description Starting
Values

Estimated
Values

True
Values

Q1&2 Pumping rate in each of layers 1 and
2 (m3/s) -1.10 -1.00 -1.00

RCH_1 Recharge rate in zone 1 (cm/yr) 60 31.6 31.6
RCH_ 2 Recharge rate in zone 2 (cm/yr) 30 47.3 47.3
K_RB Hydraulic conductivity of the

riverbed (m/s) 1.20x10-3 1.00x10-3 1.00x10-3

SS_1 Storage coefficient of aquifer 1
(dimensionless) 1.30x10-3 1.00x10-3 1.00x10-3

HK_1 Hydraulic conductivity of aquifer 1
(m/s) 3.00x10-4 4.00x10-4 4.00x10-4

VK_CB Vertical hydraulic conductivity of the
confining layer (m/s) 1.00x10-7 2.00x10-7 2.00x10-7

SS_2 Storage coefficient of aquifer 2
(dimensionless) 2.00x10-4 1.00x10-4 1.00x10-4

HK_2 Hydraulic conductivity of aquifer 2
under the river (m/s) 4.00x10-5 4.40x10-5 4.40x10-5

Sum of squared, weighted residuals (dimensionless) 268,770 1.33x10-6 0.000000

Input Files

Selected input files are shown, including the UCODE_2005 main input file for estimating
parameters using sensitivity-equation sensitivities, two files read by the Observation_Data input
block, and two template files. The files are from the parameter-estimation mode run with noise in
the observations.

UCODE_2005 Main Input File 03.in for Parameter-Estimation Mode

UCODE INPUT EXAMPLE 1

BEGIN Options TABLE
NROW=1 NCOL=2 COLUMNLABELS
Verbose Derivatives_Interface
 0 ..\ex1a-files\transient.derint
END Options

240

Appendix C: Example Simulation
--UCODE_2005 Main Input File--

UCODE-CONTROL INFORMATION

BEGIN UCODE_CONTROL_DATA KEYWORDS
ModelName=ex1
#Performance
 sensitivities=yes # calculate sensitivities: yes/no
 optimize=yes # estimate parameters: yes/no
#Printing and output files
 StartRes=yes # print residuals: yes/no
 IntermedRes=no # # same
 FinalRes=no # # same
 StartSens=css # print sensitivities:
 IntermedSens=css # # css, dss, unscaled, onepercentss,
 FinalSens=css # # allss,all, or none
 DataExchange=yes # create data-exchange files: yes/no
END UCODE_CONTROL_DATA

REGRESSION-CONTROL INFORMATION

BEGIN REG_GN_CONTROLS KEYWORDS
tolpar=0.01 # GN param conv crit. Also see parameter blocks
tolsosc=0.0 # GN fit-change conv criteria.
MrqtDirection=85.41 # angle (degrees) for Mrqt parameter
MrqtFactor=1.5 # #
MrqtIncrement=0.001 # #
quasinewton=no # option to use QN updating: yes, no
FletcherReeves=0 # # FR iterations for FR, QN combined
maxiter=10 # maximum # of GaussNewton updates
maxchange=2.0 # max frac param change for GN updates
maxchangerealm=regression # how changes apply, log-trans params
END REG_GN_CONTROLS

COMMAND FOR APPLICATION MODEL(S)

BEGIN MODEL_COMMAND_LINES FILES
..\ex1a-files\obs-fwd.command
..\ex1a-files\obs-fwd-der.command
END MODEL_COMMAND_LINES

241

Appendix C: Example Simulation
--UCODE_2005 Main Input File--

PARAMETER INFORMATION

BEGIN PARAMETER_GROUPS KEYWORDS
 GroupName = MyPars adjustable=yes TOLPAR=.01 maxchange=2.0
 SENMETHOD=-1
END PARAMETER_GROUPS

BEGIN PARAMETER_DATA FILES
..\ex1a-files\tr.params
END PARAMETER_DATA

OBSERVATION INFORMATION

BEGIN OBSERVATION_GROUPS FILES
..\ex1a-files\groups.obs
END OBSERVATION_GROUPS

BEGIN OBSERVATION_DATA FILES
..\ex1a-files\hed.obs
..\ex1a-files\flo.obs
END OBSERVATION_DATA

APPLICATION MODEL INFORMATION

BEGIN MODEL_INPUT_FILES KEYWORDS
 modinfile=..\..\test-data-win\data-transient\tc1-fwd.sen
 templatefile=..\ex1a-files\tc1sen-forward.tpl
 modinfile=..\..\test-data-win\data-transient\tc1-fwd-der.sen
 templatefile=..\ex1a-files\tc1sen-eq.tpl
END MODEL_INPUT_FILES

BEGIN MODEL_OUTPUT_FILES KEYWORDS
 modoutfile=..\..\test-data-win\data-transient\tc1._os
 instructionfile=..\ex1a-files\obs.instructions
 category=obs
END MODEL_OUTPUT_FILES

242

Appendix C: Example Simulation
--Other Selected UCODE_2005 Input Files--

Other Selected UCODE_2005 Input Files

File Listed in the Observation_Data Input Block: flo.obs

BEGIN OBSERVATION_DATA TABLE
NROW=3 NCOL=4 COLUMNLABELS GROUPNAME=FLOWS
obsname obsvalue statistic statflag
flow01.ss -4.4 .160000 var
flow01.10 -4.1 .144400 var
flow01.283 -2.2 .044100 var
END OBSERVATION_DATA

Template File Listed in the Model_Input_Files input block: tc1sen-eq.tpl

jtf @
 9 0 -40 9 ITEM 1: NPLIST ISENALL IUHEAD MXSEN
 0 0 0 0 ITEM 2: IPRINTS ISENSU ISENPU ISENFM
Q1&2 1 0 @Q1&2 @ -1.4 -0.8 1.0E-3
RCH_1 1 0 @RCH_1 @ 30.0 80.0 1.0E-2
RCH_2 1 0 @RCH_2 @ 20.0 60.0 1.0E-2
K_RB 1 1 @K_RB @ 1.2E-4 1.2E-2 1.0E-6
SS_1 1 1 @SS_1 @ 1.3E-4 1.3E-2 1.0E-6
HK_1 1 1 @HK_1 @ 3.0E-5 3.0E-3 1.0E-7
VK_CB 1 1 @VK_CB @ 1.0E-8 1.0E-6 1.0E-10
SS_2 1 1 @SS_2 @ 2.0E-5 2.0E-3 1.0E-7
HK_2 1 1 @HK_2 @ 4.0E-6 4.0E-4 1.0E-8

Output Files

Selections from the main output file and selected data-exchange files are shown from the
UCODE_2005 parameter-estimation mode using sensitivity-equation sensitivities. Some lines
have been editing so they do not wrap or omitted to improve presentation.

UCODE_2005 Main output file ex1.#03uout-parest

 Derivatives interface file is: ..\ex1a-files\transient.derint

 Reading input from file: 03.in

 **
 **

 Output from program UCODE_2005, Version: 1.011

 Constructed using the JUPITER API, Version: 1.2.2

 **
 **

243

Appendix C: Example Simulation
--Selected Data-Exchange Files--

 ECHO UCODE CONTROLS INPUT:

 MODEL NAME = ex1
 MODEL LENGTH UNITS = NA
 MODEL TIME UNITS = NA
 MODEL MASS UNITS = NA

 OPTIMIZATION WILL BE PERFORMED
 NONLINEAR INTERVALS WILL NOT BE PERFORMED (BY DEFAULT)
 SENSITIVITIES WILL BE CALCULATED
 STARTRES - Residuals will not be written at initial parameter values
 INTERMEDRES - Residuals will not be written between iterations
 FINALRES - Residuals will not be written at final parameter values
 EIGENVECTORS/EIGENVALUES WILL NOT BE PRINTED
 STARTSENS Print composite scaled sensitivities at starting values
 INTERMEDSENS Print composite scaled sensitivities at intermed values
 FINALSENS Print composite scaled sensitivities at final values
 DATA EXCHANGE FILES WILL BE PRODUCED

 ECHO MODIFIED GAUSS-NEWTON UCODE REGRESSION CONTROL INPUT:

 MAXIMUM NUMBER OF PARAMETER ITERATIONS = 10
 DEFAULT TOLERANCE ON % PARAMETER CHANGE FOR CLOSURE = 1.00E-02
 TOLERANCE ON % CHANGE OF SOSC OVER 3 ITERATIONS = 0.00E+00
 MAXIMUM FRACTIONAL PARAMETER CHANGE = 2.00E+00
 MAXIMUM CHANGE APPLIES TO INDICATED PARAMETER SPACE REGRESSION
 MARQUARDT DIRECTION (IN DEGREES) = 85.41
 MARQUARDT FACTOR = 1.50E+00
 MARQUARDT INCREMENT = 1.00E-03

 ECHO MODEL COMMAND LINES:

 Command ID Purpose Command Line
 ------------ ------------ --
 modflow Forward ..\..\test-data-win\data-transient\tc1-fwd.bat
 modflow_sen Forward&Der ..\..\test-data-win\data-transient\tc1-fwd-der.bat

 PARAMETER INFORMATION:

 No. Param. name Group Value Lower value Upper value Adj?
 ---- ------------ ------------ ------------ ------------ ------------ -----
 1 Q1&2 MyPars -1.10000 -1.40000 -0.800000 Y
 2 RCH_1 MyPars 60.0000 30.0000 80.0000 Y
 3 RCH_2 MyPars 30.0000 20.0000 60.0000 Y
 4 K_RB MyPars 1.200000E-03 1.200000E-04 1.200000E-02 Y
 5 SS_1 MyPars 1.300000E-03 1.300000E-04 1.300000E-02 Y
 6 HK_1 MyPars 3.000000E-04 3.000000E-05 3.000000E-03 Y
 7 VK_CB MyPars 1.000000E-07 1.000000E-08 1.000000E-06 Y
 8 SS_2 MyPars 2.000000E-04 2.000000E-05 2.000000E-03 Y
 9 HK_2 MyPars 4.000000E-05 4.000000E-06 4.000000E-04 Y

 No. Param. name LN SCALEPVAL PERTURB MAXCHANGE TOLPAR
 ---- ------------ -- ---------- ---------- --------- ---------
 1 Q1&2 0 1.000E-03 1.000E-02 2.00 1.000E-02
 2 RCH_1 0 1.000E-02 1.000E-02 2.00 1.000E-02
 3 RCH_2 0 1.000E-02 1.000E-02 2.00 1.000E-02
 4 K_RB 1 1.000E-06 1.000E-02 2.00 1.000E-02

244

Appendix C: Example Simulation
--Selected Data-Exchange Files--

 5 SS_1 1 1.000E-06 1.000E-02 2.00 1.000E-02
 6 HK_1 1 1.000E-07 1.000E-02 2.00 1.000E-02
 7 VK_CB 1 1.000E-10 1.000E-02 2.00 1.000E-02
 8 SS_2 1 1.000E-07 1.000E-02 2.00 1.000E-02
 9 HK_2 1 1.000E-08 1.000E-02 2.00 1.000E-02

 INFORMATION FOR ADJUSTABLE PARAMETERS:

 Param. name Group Value Lower value Upper value Par. no.
 ------------ ------------ ------------- ------------- ------------- -------
 Q1&2 MyPars -1.10000 -1.40000 -0.800000 1
 RCH_1 MyPars 60.0000 30.0000 80.0000 2
 RCH_2 MyPars 30.0000 20.0000 60.0000 3
 K_RB MyPars 1.200000E-03 1.200000E-04 1.200000E-02 4
 SS_1 MyPars 1.300000E-03 1.300000E-04 1.300000E-02 5
 HK_1 MyPars 3.000000E-04 3.000000E-05 3.000000E-03 6
 VK_CB MyPars 1.000000E-07 1.000000E-08 1.000000E-06 7
 SS_2 MyPars 2.000000E-04 2.000000E-05 2.000000E-03 8
 HK_2 MyPars 4.000000E-05 4.000000E-06 4.000000E-04 9

 Sens
 Param. name Method LN SCALEPVAL PERTURB MAXCHANGE TOLPAR
 ------------ ------ -- ---------- ---------- --------- ----------
 Q1&2 -1 0 1.000E-03 1.000E-02 2.00 1.000E-02
 RCH_1 -1 0 1.000E-02 1.000E-02 2.00 1.000E-02
 RCH_2 -1 0 1.000E-02 1.000E-02 2.00 1.000E-02
 K_RB -1 1 1.000E-06 1.000E-02 2.00 1.000E-02
 SS_1 -1 1 1.000E-06 1.000E-02 2.00 1.000E-02
 HK_1 -1 1 1.000E-07 1.000E-02 2.00 1.000E-02
 VK_CB -1 1 1.000E-10 1.000E-02 2.00 1.000E-02
 SS_2 -1 1 1.000E-07 1.000E-02 2.00 1.000E-02
 HK_2 -1 1 1.000E-08 1.000E-02 2.00 1.000E-02

 OBSERVATIONS
 Total number of observations read--------- 35
 Number of directly extracted observations- 35
 Number of observations to be derived------ 0
 Number of observations to be used--------- 35

 Number of linear prior-information equations = 0

**
 END ECHO OF INPUT - REPORT RESULTS OF SIMULATION
**

 Method of obtaining sensitivities is: MODEL-CALCULATED SENSITIVITY

245

Appendix C: Example Simulation
--Selected Data-Exchange Files--

 FIT OF SIMULATED EQUIVALENTS TO OBSERVATIONS

 OBSERVATION MEASURED SIMULATED WEIGHTED
 NAME VALUE VALUE RESIDUAL WEIGHT**.5 RESIDUAL

 hd01.ss 101.804 100.214 1.590 0.999 1.588
 hd01.1 -2.900000E-02 -1.525879E-05 -2.8985E-02 14.1 -0.4099
 hd01.283 -0.129000 -9.061432E-02 -3.8386E-02 14.1 -0.5429
 hd02.ss 128.117 137.416 -9.299 0.999 -9.287
 hd02.1 -4.100000E-02 -9.475708E-03 -3.1524E-02 14.1 -0.4458
 hd02.4 -0.557000 -0.276215 -0.2808 14.1 -3.971
 hd02.10 -11.5310 -12.9634 1.432 14.1 20.26
 hd02.283 -14.1840 -18.7714 4.587 14.1 64.88
 hd03.ss 156.678 170.742 -14.06 0.999 -14.05
 hd03.1 -4.38100 -3.66571 -0.7153 14.1 -10.12
 hd03.283 -42.5400 -56.2375 13.70 14.1 193.7
 hd04.ss 124.893 137.416 -12.52 0.999 -12.51
 hd04.1 -6.700000E-02 -1.625061E-02 -5.0749E-02 14.1 -0.7177
 hd04.283 -14.3040 -18.8487 4.545 14.1 64.27
 hd05.ss 140.961 154.350 -13.39 0.999 -13.37
 hd05.1 -6.000000E-02 -3.678894E-02 -2.3211E-02 14.1 -0.3283
 hd05.283 -21.6760 -28.4615 6.785 14.1 95.96
 hd06.ss 126.537 137.702 -11.17 0.999 -11.15
 hd06.1 5.000000E-03 -1.245117E-02 1.7451E-02 14.1 0.2468
 hd06.283 -14.3650 -19.1850 4.820 14.1 68.17
 hd07.ss 101.112 102.728 -1.616 0.999 -1.614
 hd07.1 4.800000E-02 -1.144409E-03 4.9144E-02 14.1 0.6950
 hd07.283 -0.568000 -1.38068 0.8127 14.1 11.49
 hd08.ss 158.135 170.355 -12.22 0.999 -12.21
 hd08.1 -5.53300 -5.80962 0.2766 14.1 3.912
 hd08.283 -43.2170 -57.2549 14.04 14.1 198.5
 hd09.ss 176.374 185.904 -9.530 0.999 -9.518
 hd09.1 -1.000000E-03 -5.050659E-02 4.9507E-02 14.1 0.7001
 hd09.283 -38.2420 -49.5115 11.27 14.1 159.4
 hd10.ss 142.020 154.263 -12.24 0.999 -12.23
 hd10.1 -1.300000E-02 -4.287720E-03 -8.7123E-03 14.1 -0.1232
 hd10.283 -19.9210 -26.1288 6.208 14.1 87.79
 flow01.ss -4.40000 -4.62400 0.2240 2.50 0.5600
 flow01.10 -4.10000 -4.48159 0.3816 2.63 1.004
 flow01.283 -2.20000 -2.62660 0.4266 4.76 2.031

 STATISTICS FOR ALL RESIDUALS :
 AVERAGE WEIGHTED RESIDUAL : 0.246E+02
 # RESIDUALS >= 0. : 18
 # RESIDUALS < 0. : 17
 NUMBER OF RUNS : 19 IN 35 OBSERVATIONS

 THE NUMBER OF RUNS EQUALS THE EXPECTED NUMBER OF RUNS

 STATISTICS FOR THESE RESIDUALS:
 MAXIMUM WEIGHTED RESIDUAL: 0.199E+03 Observation: hd08.283
 MINIMUM WEIGHTED RESIDUAL: -0.140E+02 Observation: hd03.ss
 AVERAGE WEIGHTED RESIDUAL: 0.246E+02
 # RESIDUALS >= 0. : 18
 # RESIDUALS < 0. : 17
 NUMBER OF RUNS: 19 IN 35 OBSERVATIONS

246

Appendix C: Example Simulation
--Selected Data-Exchange Files--

 SUM OF SQUARED WEIGHTED RESIDUALS : 0.13406E+06

 SUM OF SQUARED WEIGHTED RESIDUALS WITH PRIOR: 0.13406E+06

 SUM OF SQUARED, WEIGHTED RESIDUALS:
 DEPENDENT VARIABLES: 0.13406E+06

 NUMBER OF INCLUDED OBSERVATIONS = 35 OF 35

**
**

 CALCULATING SENSITIVITIES FOR THE INITIAL PARAMETERS

 Method of obtaining sensitivities is: MODEL-CALCULATED SENSITIVITY

--
--

 COMPOSITE SCALED SENSITIVITIES ((SUM OF THE SQUARED DSS)/ND)**.5
 DSS = DIMENSIONLESS SCALED SENSITIVITIES (SCALED BY (PARAMETER_VALUE*(wt**.5))

 PARAMETER COMPOSITE SCALED SENSITIVITY RATIO TO MAXIMUM
 ---------- ---------------------------- ----------------
 Q1&2 2.58328E+02 1.00000E+00
 RCH_1 1.49116E+01 5.77235E-02
 RCH_2 1.37221E+01 5.31190E-02
 K_RB 6.39961E-01 2.47732E-03
 SS_1 4.42764E+01 1.71396E-01
 HK_1 1.58725E+02 6.14433E-01
 VK_CB 5.25642E+00 2.03479E-02
 SS_2 7.58973E+00 2.93802E-02
 HK_2 5.33679E+01 2.06590E-01

 STARTING VALUES OF REGRESSION PARAMETERS :

 Q1&2 RCH_1 RCH_2 K_RB SS_1 HK_1
 VK_CB SS_2 HK_2

 -1.100 60.00 30.00 1.2000E-03 1.3000E-03 3.0000E-04
 1.0000E-07 2.0000E-04 4.0000E-05

==
==

 UCODE Modified Gauss-Newton: Parameter-Estimation Iteration#: 1

 VALUES FROM SOLVING THE NORMAL EQUATION :
 MRQT PARAMETER ------------------- = 0.0000
 FRACTIONAL PARAMETER CHANGE IS EVALUATED IN REGRESSION SPACE
 MAXIMUM FRACTIONAL CHANGE OCCURRED FOR PARAMETER: "RCH_2 "
 MAXIMUM FRACTIONAL PARAMETER CHANGE = 0.465
 MAXIMUM FRACTIONAL CHANGE IN NATIVE SPACE CONTROLS CONVERGENCE
 MAXIMUM FRACTIONAL NATIVE SPACE CHANGE PARAMETER: "VK_CB "
 MAXIMUM FRACTIONAL CHANGE, NATIVE SPACE = 0.902
 CONVERGENCE TOLERANCE FOR THIS PARAMETER (TolPar) = 1.000E-02

247

Appendix C: Example Simulation
--Selected Data-Exchange Files--

 MAXIMUM CHANGE ALLOWED FOR THIS PARAMETER (MaxChange) = 2.00

 ADJUSTMENTS TO PARAMETER CHANGE VECTOR WERE NOT REQUIRED

 UPDATED ESTIMATES OF REGRESSION PARAMETERS :

 Q1&2 RCH_1 RCH_2 K_RB SS_1 HK_1
 VK_CB SS_2 HK_2

 -1.019 39.39 43.95 2.0469E-04 1.2419E-03 4.0013E-04
 1.9020E-07 8.8500E-05 4.3463E-05

 Method of obtaining sensitivities is: MODEL-CALCULATED SENSITIVITY

 SUM OF SQUARED, WEIGHTED RESIDUALS:
 DEPENDENT VARIABLES: 672.17

 NUMBER OF INCLUDED OBSERVATIONS = 35 OF 35

**
**

 CALCULATING SENSITIVITIES FOR PARAMETERS ESTIMATED IN ITERATION: 1

 Method of obtaining sensitivities is: MODEL-CALCULATED SENSITIVITY

--
--
.
. Lines omitted
==
==

UCODE Modified Gauss-Newton: Parameter-Estimation Iteration#: 6

 VALUES FROM SOLVING THE NORMAL EQUATION :
 MRQT PARAMETER ------------------- = 0.0000
 FRACTIONAL PARAMETER CHANGE FOR LIMITING CHANGE IS IN: REGRESSION SPACE
 MAXIMUM FRACTIONAL CHANGE OCCURRED FOR PARAMETER: "K_RB "
 MAXIMUM FRACTIONAL PARAMETER CHANGE = 2.346E-04
 MAXIMUM FRACTIONAL CHANGE IN NATIVE SPACE CONTROLS CONVERGENCE
 MAXIMUM FRACTIONAL NATIVE SPACE CHANGE PARAMETER: "K_RB "
 MAXIMUM FRACTIONAL CHANGE, NATIVE SPACE = 1.557E-03
 CONVERGENCE TOLERANCE FOR THIS PARAMETER (TolPar) = 1.000E-02
 MAXIMUM CHANGE ALLOWED FOR THIS PARAMETER (MaxChange) = 2.00

 ADJUSTMENTS TO PARAMETER CHANGE VECTOR WERE NOT REQUIRED

 UPDATED ESTIMATES OF REGRESSION PARAMETERS :

 Q1&2 RCH_1 RCH_2 K_RB SS_1 HK_1
 VK_CB SS_2 HK_2

 -1.074 34.12 50.49 1.3188E-03 1.1405E-03 4.2580E-04
 2.1744E-07 6.0352E-05 4.8202E-05

248

Appendix C: Example Simulation
--Selected Data-Exchange Files--

**
 Parameter Estimation CONVERGED: % change of PARAMETER VALUES less than TolPar
**

 Method of obtaining sensitivities is: MODEL-CALCULATED SENSITIVITY

 SUM OF SQUARED, WEIGHTED RESIDUALS:
 DEPENDENT VARIABLES: 23.859

 NUMBER OF INCLUDED OBSERVATIONS = 35 OF 35

**
**

 SEARCHING FOR ITERATION WITH LOWEST SUM OF SQUARED RESIDUALS

 PARAMETER VALUES FROM ITERATION 5
 YIELDED THE LOWEST SUM OF SQUARED RESIDUALS

 Q1&2 RCH_1 RCH_2 K_RB SS_1 HK_1
 VK_CB SS_2 HK_2

 -1.074 34.13 50.49 1.3167E-03 1.1405E-03 4.2580E-04
 2.1745E-07 6.0337E-05 4.8202E-05

**
**

 CALCULATING SENSITIVITIES FOR THE FINAL PARAMETERS

 Method of obtaining sensitivities is: MODEL-CALCULATED SENSITIVITY

--
--

 COMPOSITE SCALED SENSITIVITIES ((SUM OF THE SQUARED DSS)/ND)**.5
 DSS = DIMENSIONLESS SCALED SENSITIVITIES (SCALED BY (PARAMETER_VALUE*(wt**.5))

 PARAMETER COMPOSITE SCALED SENSITIVITY RATIO TO MAXIMUM
 ---------- ---------------------------- ----------------
 Q1&2 1.97159E+02 1.00000E+00
 RCH_1 6.26105E+00 3.17563E-02
 RCH_2 1.69887E+01 8.61675E-02
 K_RB 6.65906E-01 3.37750E-03
 SS_1 1.81725E+01 9.21714E-02
 HK_1 1.42927E+02 7.24932E-01
 VK_CB 3.23449E+00 1.64054E-02
 SS_2 1.21855E+00 6.18054E-03
 HK_2 4.11103E+01 2.08513E-01

 SMALLEST AND LARGEST WEIGHTED RESIDUALS

249

Appendix C: Example Simulation
--Selected Data-Exchange Files--

 SMALLEST WEIGHTED RESIDUALS
 WEIGHTED PERCENT OF
 NAME RESIDUAL OBJ FUNC
 hd04.ss -2.10 18.45
 hd08.283 -1.57 10.35
 hd03.1 -0.859 3.09
 hd04.283 -0.744 2.32
 hd06.ss -0.666 1.86

 LARGEST WEIGHTED RESIDUALS
 WEIGHTED PERCENT OF
 NAME RESIDUAL OBJ FUNC
 hd01.ss 1.62 10.98
 hd09.283 1.59 10.55
 hd09.1 1.40 8.25
 hd07.283 1.18 5.79
 hd02.ss 1.12 5.27

 CORRELATION BETWEEN ORDERED WEIGHTED RESIDUALS AND NORMAL ORDER STATISTICS
 FOR OBSERVATIONS = 0.969

--
 COMMENTS ON THE INTERPRETATION OF THE CORRELATION BETWEEN
 WEIGHTED RESIDUALS AND NORMAL ORDER STATISTICS:

 The critical value for correlation at the 5% significance level is 0.943

 IF the reported CORRELATION is GREATER than the 5% critical value, ACCEPT
 the hypothesis that the weighted residuals are INDEPENDENT AND NORMALLY
 DISTRIBUTED at the 5% significance level. The probability that this
 conclusion is wrong is less than 5%.

 IF the reported correlation IS LESS THAN the 5% critical value REJECT the
 hypothesis that the weighted residuals are INDEPENDENT AND NORMALLY
 DISTRIBUTED at the 5% significance level.

 The analysis can also be done using the 10% significance level.
 The associated critical value is 0.952
 --

 VARIANCE-COVARIANCE MATRIX FOR THE PARAMETERS

 Q1&2 RCH_1 RCH_2 K_RB SS_1 ….
..
..
 Q1&2 3.91624E-03 -2.84322E-02 -0.22884 -3.43634E-03 -3.73014E-03 ….
 RCH_1 -2.84322E-02 9.4362 -3.1403 5.23706E-03 2.41006E-02 ….
 RCH_2 -0.22884 -3.1403 16.115 0.23845 0.21476 ….
 K_RB -3.43634E-03 5.23706E-03 0.23845 0.40976 -1.02858E-02 ….
 SS_1 -3.73014E-03 2.41006E-02 0.21476 -1.02858E-02 6.46206E-03 ….
HK_1 -3.62660E-03 2.80196E-02 0.21119 -1.95541E-04 3.42612E-03 ….
 VK_CB -3.71631E-03 2.85855E-02 0.21016 -2.99786E-02 7.89411E-03 ….
 SS_2 -2.65751E-03 4.49391E-02 0.20042 0.21109 -3.86963E-02 ….
 HK_2 -3.69867E-03 2.15861E-02 0.21888 1.14570E-02 3.47534E-03 ….

250

Appendix C: Example Simulation
--Selected Data-Exchange Files--

 CORRELATION MATRIX FOR THE PARAMETERS

 Q1&2 RCH_1 RCH_2 K_RB SS_1 ….

..
..
 Q1&2 1.0000 -0.14790 -0.91092 -8.57824E-02 -0.74149 ….
 RCH_1 -0.14790 1.0000 -0.25465 2.66332E-03 9.75983E-02 ….
 RCH_2 -0.91092 -0.25465 1.0000 9.27943E-02 0.66551 ….
 K_RB -8.57824E-02 2.66332E-03 9.27943E-02 1.0000 -0.19989 ….
 SS_1 -0.74149 9.75983E-02 0.66551 -0.19989 1.0000 ….
 HK_1 -0.99192 0.15613 0.90045 -5.22858E-03 0.72950 ….
 VK_CB -0.49211 7.71129E-02 0.43382 -0.38809 0.81376 ….
 SS_2 -5.36565E-02 1.84845E-02 6.30833E-02 0.41666 -0.60823 ….
 HK_2 -0.94710 0.11261 0.87370 0.28681 0.69278 ….

 THE CORRELATION OF THE FOLLOWING PARAMETER PAIRS >= .95
 PARAMETER PARAMETER CORRELATION
 Q1&2 HK_1 -0.99

 THE CORRELATION OF THE FOLLOWING PARAMETER PAIRS IS BETWEEN .90 AND .95
 PARAMETER PARAMETER CORRELATION
 Q1&2 RCH_2 -0.91
 Q1&2 HK_2 -0.95
 RCH_2 HK_1 0.90
 HK_1 HK_2 0.90

 THE CORRELATION OF THE FOLLOWING PARAMETER PAIRS IS BETWEEN .85 AND .90
 PARAMETER PARAMETER CORRELATION
 RCH_2 HK_2 0.87

 CORRELATIONS GREATER THAN 0.95 COULD INDICATE THAT THERE MAY NOT BE ENOUGH
 INFORMATION IN THE OBSERVATIONS AND PRIOR USED IN THE REGRESSION TO ESTIMATE
 PARAMETER VALUES INDIVIDUALLY.
 TO CHECK THIS, START THE REGRESSION FROM SETS OF INITIAL PARAMETER VALUES
 THAT DIFFER BY MORE THAT TWO STANDARD DEVIATIONS FROM THE ESTIMATED
 VALUES. IF THE RESULTING ESTIMATES ARE WELL WITHIN ONE STANDARD DEVIATION
 OF THE PREVIOUSLY ESTIMATED VALUE, THE ESTIMATES ARE PROBABLY
 DETERMINED INDEPENDENTLY WITH THE OBSERVATIONS AND PRIOR USED IN
 THE REGRESSION. OTHERWISE, YOU MAY ONLY BE ESTIMATING THE RATIO
 OR SUM OF THE HIGHLY CORRELATED PARAMETERS.

 PARAMETER SUMMARY

 __

 PARAMETER VALUES IN "REGRESSION" SPACE --- LOG TRANSFORMED AS APPLICABLE
 __

 PARAMETER: Q1&2 RCH_1 RCH_2 K_RB SS_1
 * = LOG TRNS: * *

251

Appendix C: Example Simulation
--Selected Data-Exchange Files--

 UPPER 95% C.I. -9.46E-01 4.04E+01 5.87E+01 -2.31E+00 -2.87E+00
 FINAL VALUES -1.07E+00 3.41E+01 5.05E+01 -2.88E+00 -2.94E+00
 LOWER 95% C.I. -1.20E+00 2.78E+01 4.22E+01 -3.45E+00 -3.01E+00

 STD. DEV. 6.26E-02 3.07E+00 4.01E+00 2.78E-01 3.49E-02

 COEF. OF VAR. (STD. DEV. / FINAL VALUE); "--" IF FINAL VALUE = 0.0
 5.83E-02 9.00E-02 7.95E-02 9.65E-02 1.19E-02
 __

 PARAMETER VALUES IN "REGRESSION" SPACE --- LOG TRANSFORMED AS APPLICABLE
 __

 PARAMETER: HK_1 VK_CB SS_2 HK_2
 * = LOG TRNS: * * * *

 UPPER 95% C.I. -3.32E+00 -6.55E+00 -3.51E+00 -4.26E+00
 FINAL VALUES -3.37E+00 -6.66E+00 -4.22E+00 -4.32E+00
 LOWER 95% C.I. -3.42E+00 -6.77E+00 -4.93E+00 -4.37E+00

 STD. DEV. 2.54E-02 5.24E-02 3.44E-01 2.71E-02

 COEF. OF VAR. (STD. DEV. / FINAL VALUE); "--" IF FINAL VALUE = 0.0
 7.53E-03 7.87E-03 8.15E-02 6.28E-03

 --
 --

 __

 PHYSICAL PARAMETER VALUES --- EXP10 OF LOG TRANSFORMED PARAMETERS
 __

 PARAMETER: Q1&2 RCH_1 RCH_2 K_RB SS_1
 * = LOG TRNS: * *

 UPPER 95% C.I. -9.46E-01 4.04E+01 5.87E+01 4.91E-03 1.35E-03
 FINAL VALUES -1.07E+00 3.41E+01 5.05E+01 1.32E-03 1.14E-03
 LOWER 95% C.I. -1.20E+00 2.78E+01 4.22E+01 3.53E-04 9.67E-04

 REASONABLE
 UPPER LIMIT -8.00E-01 8.00E+01 6.00E+01 1.20E-02 1.30E-02
 REASONABLE
 LOWER LIMIT -1.40E+00 3.00E+01 2.00E+01 1.20E-04 1.30E-04

 ESTIMATE ABOVE (1)
 BELOW(-1)LIMITS 0 0 0 0 0
 ENTIRE CONF. INT.
 ABOVE(1)BELOW(-1) 0 0 0 0 0
 __

 PHYSICAL PARAMETER VALUES --- EXP10 OF LOG TRANSFORMED PARAMETERS
 __

252

Appendix C: Example Simulation
--Selected Data-Exchange Files--

 PARAMETER: HK_1 VK_CB SS_2 HK_2
 * = LOG TRNS: * * * *

 UPPER 95% C.I. 4.80E-04 2.79E-07 3.07E-04 5.48E-05
 FINAL VALUES 4.26E-04 2.17E-07 6.03E-05 4.82E-05
 LOWER 95% C.I. 3.78E-04 1.70E-07 1.19E-05 4.24E-05

 REASONABLE
 UPPER LIMIT 3.00E-03 1.00E-06 2.00E-03 4.00E-04
 REASONABLE
 LOWER LIMIT 3.00E-05 1.00E-08 2.00E-05 4.00E-06

 ESTIMATE ABOVE (1)
 BELOW(-1)LIMITS 0 0 0 0
 ENTIRE CONF. INT.
 ABOVE(1)BELOW(-1) 0 0 0 0

 LEAST-SQUARES OBJ FUNC (OBS. ONLY)----- = 23.859
 NUMBER OF INCLUDED OBSERVATIONS-------- = 35 OF 35
 NUMBER OF PRIOR ESTIMATES-------------- = 0
 NUMBER OF ESTIMATED PARAMETERS--------- = 9

 CALCULATED ERROR VARIANCE (CEV)-------- = 0.91767
 95% CONFIDENCE INTERVAL ON CEV--------- = 0.56916 1.7239
 STANDARD ERROR ------------------------ = 0.95795
 95% CONFIDENCE INTERVAL ON STD ERR----- = 0.75443 1.3130

 CORRELATION COEFFICIENT---------------- = 0.99999
 ITERATIONS----------------------------- = 6

 STATISTICS FOR EVALUATING ALTERNATIVE MODELS:

 No prior used in this parameter estimation
 MAX LIKE OBJ FUNC OBSERVATIONS ONLY (MLOFO)----------- = -13.411
 LN DETERMINANT of Fisher Information Matrix (OBS ONLY) = 55.484

 MODEL EVALUATION MEASURES:

 OBSERVATIONS ONLY (no prior used in this parameter estimation)
 AIC CRITERION------------- = 6.5890
 AICc CRITERION------------ = 15.756
 BIC CRITERION------------- = 22.143
 KASHYAP CRITERION--------- = 15.570

 SUMMARY OF PARAMETER VALUES AND STATISTICS FOR
 ALL PARAMETER-ESTIMATION ITERATIONS

--

--

 SELECTED STATISTICS FROM MODIFIED GAUSS-NEWTON ITERATIONS

 # PARAMs MAX. MAX. CHANGE DAMPING

253

Appendix C: Example Simulation
--Selected Data-Exchange Files--

 ITER. ESTIMATED PARNAM CALC. CHANGE ALLOWED PARAMETER
 ----- --------- ------------ ---------------- ------------- ------------
 1 9 VK_CB 0.902054 2.00000 1.0000
 2 9 K_RB 1.39889 2.00000 1.0000
 3 9 K_RB 0.887965 2.00000 1.0000
 4 9 K_RB 0.345080 2.00000 1.0000
 5 9 K_RB 0.559965E-01 2.00000 1.0000
 6 9 K_RB 0.155748E-02 2.00000 1.0000

--

 PARAMETER VALUES FOR EACH ITERATION
 - INDICATES DAMPING RESULTED FROM PARAMETER CONSTRAINTS FOR THAT ITERATION.
 * INDICATES SOME PARAMETERS WERE OMITTED DURING THAT ITERATION. THE VALUES
 OF THOSE PARAMETERS ARE REPORTED EVEN THOUGH THEY WERE NOT UPDATED

 ITER Q1&2 RCH_1 RCH_2 K_RB SS_1
 0 -1.100 60.00 30.00 0.1200E-02 0.1300E-02
 1 -1.019 39.39 43.95 0.2047E-03 0.1242E-02
 2 -1.062 34.72 49.63 0.4910E-03 0.1154E-02
 3 -1.074 34.15 50.45 0.9270E-03 0.1141E-02
 4 -1.074 34.13 50.49 0.1247E-02 0.1141E-02
 5 -1.074 34.13 50.49 0.1317E-02 0.1141E-02
 6 -1.074 34.12 50.49 0.1319E-02 0.1140E-02
 FINAL -1.074 34.13 50.49 0.1317E-02 0.1141E-02

 ITER HK_1 VK_CB SS_2 HK_2
 0 0.3000E-03 0.1000E-06 0.2000E-03 0.4000E-04
 1 0.4001E-03 0.1902E-06 0.8850E-04 0.4346E-04
 2 0.4237E-03 0.2174E-06 0.5328E-04 0.4737E-04
 3 0.4256E-03 0.2172E-06 0.6043E-04 0.4819E-04
 4 0.4258E-03 0.2175E-06 0.6025E-04 0.4820E-04
 5 0.4258E-03 0.2175E-06 0.6034E-04 0.4820E-04
 6 0.4258E-03 0.2174E-06 0.6035E-04 0.4820E-04
 FINAL 0.4258E-03 0.2175E-06 0.6034E-04 0.4820E-04

--

 SUMS OF SQUARED WEIGHTED RESIDUALS FOR EACH ITERATION

 SUMS OF SQUARED WEIGHTED RESIDUALS
 ITER. OBSERVATIONS PRIOR INFO. TOTAL # INCLUDED OBS
 0 0.13406E+06 0.0000 0.13406E+06 35 OF 35
 1 672.24 0.0000 672.24 35 OF 35
 2 37.052 0.0000 37.052 35 OF 35
 3 26.318 0.0000 26.318 35 OF 35
 4 23.909 0.0000 23.909 35 OF 35
 5 23.859 0.0000 23.859 35 OF 35
 6 23.859 0.0000 23.859 35 OF 35
 FINAL 23.859 0.0000 23.859 35 OF 35

**
**
 Parameter Estimation CONVERGED: % change of PARAMETER VALUES less than TolPar
**

254

Appendix C: Example Simulation
--Selected Data-Exchange Files--

**

 Run end date and time (yyyy/mm/dd hh:mm:ss): 2008/01/09 13:07:22
 Elapsed run time: 8.252 Seconds

Selected Data-Exchange Files

The header line and the next five lines of data-exchange files with file extensions _os, _w, and
_ws are shown. Some header lines have been reformatted to fit on one line in the table.
ex1._os
"SIMULATED EQUIVALENT" "OBSERVED or PRIOR VALUE" "PLOT SYMBOL" "OBSERVATION…"
 100.1854 101.8040 1 h1.0
 -0.8392334E-04 -0.2900000E-01 1 h1.1
 -0.8770752E-01 -0.1290000 1 h1.12
 126.9964 128.1170 1 h2.0
 -0.3368378E-01 -0.4100000E-01 1 h2.1
ex1._w
"WEIGHTED RESIDUAL" "PLOT SYMBOL" "OBSERVATION or PRIOR NAME"
 1.616581 1 h1.0
 -0.4089351 1 h1.1
 -0.5839639 1 h1.12
 1.119202 1 h2.0
 -0.1034670 1 h2.1
ex1._ws
"SIMULATED EQUIVALENT" "WEIGHTED RESIDUAL" "PLOT SYMBOL" "OBSERVATION…"
 100.1854 1.616581 1 h1.0
 -0.8392334E-04 -0.4089351 1 h1.1
 -0.8770752E-01 -0.5839639 1 h1.12
 126.9964 1.119202 1 h2.0
 -0.3368378E-01 -0.1034670 1 h2.1

Many of the data-exchange files are designed for plotting on x-y graphs. Figure C-2 shows the
Cook’s D from the ex1._rc data-exchange file produced by the code RESIDUAL_ANALYSIS.
The results show that for the transient problem the head at point 8 of figure C-1B at 12 days into
the pumping test is most important to the estimated parameter values. In contrast to the
calibration of the steady-state system without pumpage presented by Hill and Tiedeman (2007,
table 7.2), the streamflow gain flow measurements are not very important. This is expected
because the pumpage is such a large stress on the system.

Figure C-3 shows the contents of the ex1._rdadv file plotted using the USGS open-source,
public-domain program GWCHART (Winston, 2000). The weighted residuals are all within their
associated theoretical intervals, so these results do not contradict the hypothesis that the model fit
is random and consistent with normally distributed true errors.

255

Appendix C: Example Simulation
--Selected Data-Exchange Files--

0.0

0.5

1.0

1.5

2.0

hd
09

.1

flo
w

01
.1

0

hd
02

.2
83

hd
05

.2
83

flo
w

01
.s

s

flo
w

01
.2

83

hd
03

.s
s

hd
06

.s
s

hd
04

.2
83

hd
10

.2
83

hd
02

.s
s

hd
10

.s
s

hd
08

.s
s

hd
02

.1
0

hd
04

.s
s

hd
09

.2
83

hd
03

.1

hd
01

.2
83

hd
03

.2
83

hd
09

.s
s

hd
07

.2
83

hd
08

.1

hd
08

.2
83

Observations name

C
oo

k'
s

D

Figure C- 2. Cook’s D calculated for the observations of the transient calibration. The largest 23

values are shown. Observations names that begin with ‘hd’ and end with ‘.ss’ are for
heads at steady state. Other observations names that begin with ‘hd’ are drawdowns. For
heads and drawdowns, the well number from figure C-1B follows the ‘hd’. Observation
names that begin with ‘flow’ are streamflow gain measurements. The number at the end
of many names is the number of days after pumping started.

Figure C- 3. Plot of the contents of the ex1._rdadv file from the ex1a directory (see AppendixD)

created using GWCHART (Winston, 2000). Heads are represented by squares,
drawdowns are represented by circles, and flows are represented by triangles. The means
of the theoretical weighted residuals are represented by an asterisk.

256

Appendix C: Example Simulation
-- Particle Path Predictions and Measures of Uncertainty --

Particle-Path Predictions and Measures of Uncertainty

The movement of a particle from the X in the northeast corner of the area (figure C-1A) is
predicted under steady-state conditions with pumpage. The ADV2 Package (Anderman
and Hill, 2001) of MODFLOW-2000 is used. This package simulates particle motion as
distance traveled in the three coordinate directions. Particle positions are calculated for
four times: 10, 50, 100, and 175 years.

Porosity is not estimated because the observations of head, drawdown, and flow do not
depend on porosity. However, the advective-transport prediction does depend on porosity.
The uncertainty in porosity of the system can be included in measures of uncertainty of the
particle position by defining one or more porosity parameters. Here, a porosity parameter
is defined and named POR_1&2. It defines the porosity in aquifers 1 and 2 of figure C-1A.
The porosity value is assigned to be 0.33. Prior information is applied with a standard
deviation of 0.03. Thus, assuming a normal probability distribution, a 95-percent linear
confidence intervals on the porosity is bound by the limits of 0.27 and 0.39, which is
reasonable for the unconsolidated deposits involved. The porosity of the confining layer is
set to 0.10 and is not defined using a parameter. The uncertainty in this value is not
expected to be important, because the distance through the confining layer is small and
does not affect the primary question posed in this problem, which is whether the particle
goes to the well. Thus exclusion of this parameter is not expected to adversely affect the
analysis.

To demonstrate the affect of including the uncertainty of the porosity in the analysis of
prediction uncertainty, figure C-4 shows the width of 95-percent linear confidence
intervals that exclude and include a porosity parameter. The linear confidence intervals are
calculated using the code LINEAR_UNCERTAINTY and are listed in the _linp data-
exchange file. For some of the predictions, confidence interval widths increase
substantially when the porosity parameter is included. The linear intervals without the
porosity parameter are produced in subdirectory ex1a; the intervals with the porosity
parameter are produced in subdirectory ex1b (see Appendix D).

The predicted particle paths and linear and nonlinear individual confidence intervals for
motion in the two planar coordinate directions are shown in figure C-5. The linear
confidence intervals are calculated using LINEAR_UNCERTAINTY. The nonlinear
confidence intervals are calculated using the UCODE_2005 nonlinear-uncertainty mode.
The porosity parameter is included and the files needed to produce these results are
provided in the ex1b subdirectory (see Appendix D).

257

Appendix C: Example Simulation
-- Particle Path Predictions and Measures of Uncertainty --

0

500

1000

1500

2000

2500

3000

3500

A
D

10
_X

A
D

50
_X

A
10

0_
X

A
17

5_
X

Prediction name

W
id

th
 o

f 9
5-

pe
rc

en
t l

in
ea

r i
nd

iv
id

ua
l

co
nf

id
en

ce
 in

te
rv

al
s

0

1000

2000

3000

4000

5000

6000

7000

8000

A
D

10
_Y

A
D

50
_Y

A
10

0_
Y

A
17

5_
Y

Prediction name

no porosity parameter
with porosity parameter

0
5

10
15
20
25
30
35
40
45
50

A
D

10
_Z

A
D

50
_Z

A
10

0_
Z

A
17

5_
Z

Prediction name

Figure C- 4. Width of 95-percent linear confidence intervals for the predicted advective
transport of a particle in the three coordinate directions at 10, 50, 100, and 175
years without and with a porosity parameter. Results without and with a porosity
parameter are produced using files in directory ex1a and ex1b, respectively (see
Appendix D). In each prediction name, the number is the number of years of
transport and the last letter indicates transport in the x, y, or z direction.

(A)

10 yrs
50 yrs
100 yrs
175 yrs

R
iv

er

Well

True particle
position at:

Predicted path
Confidence interval
True path

50 yr
100 yr

10 yr

175 yr

(B)

R
iv

er

Well

50 yr
100 yr

10 yr

175 yr

Figure C- 5: Plan view showing predicted and true advective-transport paths and particle

locations at travel times10, 50, 100, and 175 years. Simultaneous, 95-percent
confidence intervals are shown calculated using (A) the linear methods of
LINEAR_UNCERTAINTY and (B) the nonlinear methods of the UCODE_2005
nonlinear-uncertainty mode. The x direction is horizontal on the page; the y
direction is vertical. At 175 years the dashed lines in (B) are affected by the
projection simulated by the ADV2 Package when a particle exits the simulated
system. Here, the particle exits the well. The realistic interval limit is the well
location, where the solid line ends. (from Hill and Tiedeman, 2007, Chapter 9).

258

Appendix C: Example Simulation
-- Particle Path Predictions and Measures of Uncertainty --

Table C-3 shows that total model nonlinearity, as measured using Beale’s measure and the
total model nonlinearity statistic, is large. However, intrinsic model linearity is much
smaller, indicating that some statistics, such as the Cook’s D measure shown in figure C-2,
are not adversely affected by nonlinearity.

Table C- 3. Nonlinearity measures for the transient problem with 10 defined parameters,

including porosity.
Name of Linearity Measure Value Critical Value Output file1
Modified Beale’s measure 93 2Nonlinear if > 0.45 ex1.#modlin
Intrinsic nonlinearity
measure 0.62 2Linear if <<24 ex1.#resanadv

Total model nonlinearity 45 3Nonlinear if >1.0 ex1.#modlinadv
Intrinsic model
nonlinearity 0.13 30.09 to 1.0 nonlinear ex1.#modlinadv

1 These are the file extensions used by UCODE_2005. The batch files in the ex1b subdirectory (see
Appendix D) change the filenames to add run sequence number after the #.
2 Critical value is problem dependent. It is printed in the output file with an interpretive statement.
3 Critical values are presented in table 38.

The combined intrinsic nonlinearity is printed at the end of the file with file extension
#modlinadv.

259

Appendix C: Example Simulation
-- Objective-Function Surface for the Steady-State Problem with Two Parameters --

Objective-Function Surface for the Steady-State Problem with
Two Parameters

Figure C-5 shows the objective-function surface produced for the steady-state version of
the problem shown in figure C-1 without pumpage using the starting parameter values
listed in tables C-1 and C-2. Such plots can be created using the data-exchange file with
filename extension _sos produced by the investigate-objective-function mode of
UCODE_2005 (table 3).The plots are often usedto investigate difficulties with regression.
For this plot, the six parameters that apply of the nine listed in tables C-1 and C-2 are
lumped into two parameters. Parameter RCH_MULT multiplies the values of the RCH_1
and RCH_2 parameters. Parameter K_MULT multiplies the values of the K_RB, HK_1,
VK_CB, and HK_2 parameters.

The recharge and hydraulic-conductivity parameters are grouped because flows and
hydraulic conductivities are often extremely correlated in ground-water problems. For the
steady-state problem considered here, the two lumped parameters are completely
correlated when only hydraulic-head observations are considered, as discussed by Hill and
Tiedeman (2007, exercise 4.1). As parameters are lumped, parameter correlation can
become easier to identify (Hill and Tiedeman, 2007, section 4.4.2).

Figure C- 6. Objective-function surface for the steady-state problem with no pumpage

when the six parameters that apply are lumped into two parameters. The data file
used to produce this figure is the data-exchange file with extension _sos produced
using the UCODE_2005 investigate-objective-function mode (table 3). The
UCODE_2005 files are distributed in subdirectory ex1-ss-sos (Appendix D).
(modified from Hill and Tiedeman, 2007, figure 4-4.).

260

Appendix C: Example Simulation
-- References --

References
Anderman, E.R. and Hill, M.C., 2001, MODFLOW-2000, the U.S. Geological Survey

modular ground-water model -- Documentation of the ADVective-Transport
observations (ADV2) Package: U.S. Geological Survey Open-File Report 01-54, 69p.
http://water.usgs.gov/nrp/gwsoftware/MODFLOW-2000/MODFLOW-2000.html

Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000, MODFLOW-2000,
the U.S. Geological Survey modular ground-water model, User’s guide to the
Modularization concepts and the Ground-Water Flow Process: U.S. Geological Survey
Open-File Report 00-92, 121 p. http://water.usgs.gov/nrp/gwsoftware/MODFLOW-
2000/MODFLOW-2000.html

Hill, M.C., 1998, Methods and guidelines for effective model calibration: U.S. Geological
Survey, Water-Resources Investigations Report 98-4005, 90p.

Hill, M.C., Banta, E.R., Harbaugh, A.W., and Anderman, E.R., 2000, MODFLOW-2000,
the U.S. Geological Survey modular ground-water model, User’s guide to the
Observation, Sensitivity, and Parameter-Estimation Process and three post-processing
programs: U.S. Geological Survey Open-File Report 00-184, 209 p.
http://water.usgs.gov/nrp/gwsoftware/MODFLOW-2000/MODFLOW-2000.html

Hill. M.C. and Tiedeman, C.R., 2007, Effective model calibration, with analysis of data,
sensitivities, predictions, and uncertainty: Wiley and Sons, New York, New York, 455
p.

261

http://water.usgs.gov/nrp/gwsoftware/modflow2000/modflow2000.html
http://water.usgs.gov/nrp/gwsoftware/modflow2000/modflow2000.html
http://water.usgs.gov/nrp/gwsoftware/modflow2000/modflow2000.html
http://water.usgs.gov/nrp/gwsoftware/modflow2000/modflow2000.html

Appendix C: Example Simulation
-- References --

262

Appendix D. Program Distribution and Installation

Appendix D. PROGRAM DISTRIBUTION AND
INSTALLATION

Distributed Files and Directories

UCODE_2005 and the post-processors can be downloaded from the web site listed in the
preface. The operating system is listed for each compiled downloadable executable file.
When uncompressed, a directory is created with six subdirectories. The directory is
named wrdapp\ucode_2005. The subdirectories are listed in table D-1. For windows
operating systems, the batch files distributed in the test-win\ex1a subdirectory are listed
in table D-2 and the batch files distributed in the test-win\ex1b subdirectory are listed in
table D-3.

Compiling and Linking

If changes to the source codes are needed, or if the codes are used with an operating
system other than those for which executable files are distributed, the codes need to be
compiled. The modules needed to compile each of the distributed codes are listed in a
readme file located in the subdirectory for each code. These subdirectories are located
within the src subdirectory.

The distributed source code is compatible with standard Fortran 90 and Fortran 95 except
for the following

(1) The call to the SYSTEM subroutine, which is used to initiate execution of an
operating-system command. This call is in subroutine UTL_SYSTEM.

(2) The call to the GETCL subroutine, which provides access to the command line used
to invoke a program. This call is in subroutine UTL_GETARG

These subroutines are non-standard and compiler-dependent. Both subroutines are in the
utilities module (UTL.F90) of the JUPITER API. It is expected that any changes needed
to accommodate compilers that have different subroutines or different syntax for these
capabilities would be restricted to these subroutines.

The object files created during compilation need to be linked to create an executable
program. The linker program commonly is invoked as part of the compilation procedure.

263

Appendix D. Program Distribution and Installation

Table D- 1: Contents of the subdirectories distributed with MODFLOW-2000.
[Name files, files used by MODFLOW-2000 to define program performance and input files.]
Subdir
ectory

Contents

bin Executable files of UCODE-2005, JRUNNER, and the six codes
RESIDUAL_ANALYSIS, LINEAR_UNCERTAINTY, MODEL_LINEARITY,
RESIDUAL_ANALYSIS_ADV, MODEL_LINEARITY_ADV, and
CORFAC_PLUS. Also, an executable for MODFLOW-2000 (MF2K). Executables
are platform dependent; the platform required is stated on the distribution site.
These files can be executed by typing the file name at the operating-system command
prompt or other methods supported by the operating systems. For example, batch files
can be used on a Windows operating system.

doc This documentation file, in PDF format.
src Fortran source files organized into nine subdirectories. All source files are named with

the extension “f90”. Except for API-MODULES, each subdirectory contains a file
called readme.txt that lists the modules needed to compile the code to which the
directory is dedicated. The subdirectories are:
API-MODULES: JUPITER API modules used in the codes listed below.
UCODE_2005: Files unique to UCODE_2005.
RUNNER: Files unique to the computer code RUNNER, which needs to be executed

on machines to be used for parallel computations.
Six directories each named for one of the other six codes documented in this report.
Each of these directories contains the files unique to those codes.
Subdirectories contain a Name file, input files, and a run file (batch files when
os=win) for a process-model forward run. Some also contain files to calculate
sensitivity-equation sensitivities. After the programs are run in the test-os directory
(see below), these subdirectories also include process-model output files.

Subdirectory Contents

test-
data-
os1

data-transient Transient response to pumpage. Nine parameters.2 Transient
observations.3

 data-adv-preds-ex1a Steady-state with pumpage. Nine parameters.2 Predictions.4
 data-adv-preds-ex1b Steady-state with pumpage. Ten parameters.5 Predictions.4
 data-ss Steady state without pumpage. Steady-state observations.6
 data-used-by-all Files referred to by the Name files in the above directories.

Subdirectories contain run files, UCODE_2005 main input files, and other files for the
test cases described in Appendix C. Any additional test cases are described in file
cases.txt in this directory.

Subdirectory Contents
ex1a
ex1a-files

Batch files, UCODE_2005 main input files, and auxiliary files
for results shown in table C-1 and figures C-2, C-3, and C-4.

ex1b
ex1b-files

Batch files, UCODE_2005 main input files, and auxiliary files
for results shown in figure C-4 and C-5.

ex1-ss-sos Files for the results shown in figure C-6.

test-os1

ex1-true Files for the results shown in table C-2.

264

Appendix D. Program Distribution and Installation

1 The content of this directory is operating-system dependent. The directory name is formed by
substituting the operating-system name for “os”. For example, test-win includes files for a
Windows operating system.
2 The nine defined parameters are listed in tables C-1 and C-2.
3 Observations are heads and drawdown at the 10 locations shown in figure C-1B and the
streamflow gain at steady-state with no pumping and two times after pumping begins.
4 Predictions are the x-, y-, and z- distances traveled at four times by a particle released from the
location of the proposed landfill of figure C-1A.
5 A porosity parameter is defined in addition to the nine parameters listed in tables C-1 and C-2.
The Porosity parameter is named Por_1&2 and applies to aquifers 1 and 2 of figure C-1A. The
value equals 0.33. Prior information is applied with a standard deviation of 0.3. The porosity of
the confining layer equals 0.10 and is not defined using a parameter.
6 Observations are heads at the 10 locations shown in figure C-1B and the streamflow gain.

Portability

UCODE_2005 and the post-processors were written in standard Fortran 90/95. A
modular style is used to enhance accuracy, to simplify maintenance, and to encourage
innovation.

The aspects of the code mentioned above that are compiler dependent are also platform
dependent.

Memory Requirements

As distributed, the source files and executable file dynamically allocate memory. Thus,
the program automatically adapts to whatever memory is required and no user
intervention is required. Slow execution times can result if the memory required exceeds
the physical memory available on the computer being used.

265

Appendix D. Program Distribution and Installation

Table D- 2. The batch files distributed in test-win subdirectory ex1a, in which nine
parameters are defined.

[Running these batch files produces the results shown in table C-1. Main output files are
renamed in the batch files. For example, for the UCODE_2005 parameter-estimation
mode run produced by batch file 03-parest+resan+resanadv.bat, the ex1.#uout file is
renamed as ex1.#03uout-parest.]
Batch file name Purpose
00-test-command.bat Test command used in the Model_Command_Lines input

block.
01-ucode-forward.bat Execute UCODE_2005 forward mode using starting

parameter values.
02-ucode-sen-analysis.bat1 Execute UCODE_2005sensitivity-analysis mode.
03-parest+resan+
resanadv.bat

Execute UCODE_2005 parameter-estimation mode using
sensitivity-equation sensitivities produced by MODFLOW-
2000, and execute RESIDUAL_ANALYSIS,
RESIDUAL_ANALYSIS_ADV.

04-ucode-modlin+
modlin.bat

Execute UCODE_2005 test-model-linearity mode and
MODEL_LINEARITY.

05-ucode-pred.bat Execute UCODE_2005prediction-mode. Predictions are
advective transport simulated using ADV2. Sensitivities are
obtained from UCODE-2005 using perturbation.

06-linunc.bat Execute LINEAR_UNCERTAINTY.
07-03-to-06.bat Perform parameter-estimation, calculate predictions, and

execute the other four programs listed above in this table.
08-clean_process-
models.bat

Delete all files in the subdirectories of the test-data-win
directory created by the above runs.

09-clean_all.bat Delete all files created with any of the batch files. This
includes files created in the test-data-win subdirectories as
well as the ex1a subdirectory.

1 The main output file of this run ends with an error message saying that the _b1 data-exchange
file is not written. The starting parameter values used for this run result in the parameter values
for Beale’s measure that are normally written to the _b1 file to be mathematically invalid. The
file is produced correctly after regression is performed.

266

Appendix D. Program Distribution and Installation

Table D- 3. Batch files distributed in test-win subdirectory ex1b, in which 10 parameters
are defined, including a porosity parameter important to predictions.

[Running these batch files produces the results shown in figure C-5B, table C-3, and
figure C-6. All sensitivities are calculated by UCODE_2005 using perturbation methods.
Main output files are renamed in the batch files. For example, for the UCODE_2005
sensitivity-analysis mode run produced by batch file 11-ucode-sen-analysis.bat, the
ex1.#uout file is renamed as ex1.#03uout-parest.]
Batch file name Purpose
11-ucode-sen-analysis.bat Execute UCODE_2005 sensitivity-analysis mode.
12-ucode-sen-analysis-
init.bat

Execute UCODE_2005 sensitivity-analysis mode with
keyword CreateInitFiles=yes in the UCODE_Control_Data
input block.

13-resanadv.bat Execute RESIDUAL_ANALYSIS_ADV.
14-ucode-modlin+
modlin.bat

Execute UCODE_2005 test-model-linearity mode and
MODEL_LINEARITY.

15-ucode-pred.bat Execute UCODE_2005 prediction-mode. Predictions are
advective transport simulated using ADV2.

16-linunc.bat Execute LINEAR_UNCERTAINTY to obtain linear intervals
that include uncertainty with which the porosity is known.

17-corfac.bat Execute CORFAC with ConfidenceOrPrediction=Confidence.
Thus, nonlinear confidence intervals are calculated in step 19.

18-ucode-modlinadv+
modinadv.bat

Execute UCODE_2005 advanced-test-model-linearity mode.

19-ucode-nonlinear-
intervals.bat

Delete all files in the subdirectories of the test-data-os
directory used in the above runs.

20-all.bat Perform all analyses listed above in this table.
21-clean_process-
models.bat

Delete all files in the subdirectories of the test-data-win
directory crated by the above runs.

22-clean_all.bat Delete all files created with any of the batch files. This
includes files created in the test-data-win subdirectories as
well as the ex1a subdirectory.

267

Appendix D. Program Distribution and Installation

268

Appendix E. Comparison with UCODE as Documented by Poeter and Hill (1998)

Appendix E. Comparison with UCODE as Documented
by Poeter and Hill (1998)

The aspects of the computer codes documented in this work that are similar, different,
and new relative to UCODE as documented by Poeter and Hill (1998) are listed in table
E-1. The table is largely self-explanatory, but the input file design for UCODE_2005
deserves some additional explanation here. All UCODE_2005 features are described
thoroughly in the main part this report.

The input file design for UCODE_2005 differs substantially from the input file design for
UCODE. This arises primarily because UCODE_2005 is written entirely in Fortran90/95,
while UCODE was written using a combination of Perl and Fortran77. As a result of Dr.
John Doherty’s participation with the JUPITER API used to construct UCODE_2005,
some aspects of the UCODE_2005 input files are similar to PEST input files (Doherty,
2004). For example, the methods available in UCODE_2005 to extract values from
process-model output files is identical to that used in PEST except that the UCODE_2005
Standard File option for reading has been added. Also, the equation protocols used to
define derived observations and parameters and to define prior information are identical
to those used in PEST, and template files are identical except for the three letters used on
the first line of each template file.

269

Appendix E. Comparison with UCODE as Documented by Poeter and Hill (1998)

Table E- 1. UCODE_2005 compared to UCODE as described in Poeter and Hill (1998).
[UCODE_2005 input blocks are described in Chapters 5 to 13 of this report.]
Capabilities that are the same or very similar
S1. The modified Gauss-Newton method except as described under “Capabilities that are new.”
S2. Process model(s) need to be run with batch files.
S3. Interaction with process model(s) is through text only input and output files.
S4. Flexible use of parameters to produce model input files and use of extracted values to produce
simulated equivalents to observations. The format of the equations has changed.
S5. Produce data sets for visualizing objective functions.
Capabilities that are different
D1. Input files. UCODE input files are replaced by input blocks in the main UCODE_2005 input
file and other files as follows:
UCODE Universal file UCODE_Control_Data, Reg_GN_Controls, Model_Command_Lines,

Observation input blocks.
UCODE Prepare file Parameter, Model_Input_Files input blocks.
Template input files Template input files that are similar.
UCODE Function file Equation capabilities of the Parameter input blocks.
UCODE Extract file Model_Output_Files input block, Instruction input files.
D2. Extraction. Except for new Standard File option, extraction is as in PEST (Doherty, 2004).
D3. Data-exchange files. Many UCODE output files with filename suffixes of the form _xxx are
now data-exchange files, which are different in that (a) all have a header line with column labels,
(b) some have been eliminated, and (c) there are many new files (see Chapters 14 and 16). The
_ws file now contains simulated values instead of weighted simulated values.
D4. Modes instead of Phases. UCODE phases in parentheses and UCODE_2005 modes:
(1) forward mode. (11) investigate-objective-function mode. (2, 22) sensitivity-analysis mode.
(3) parameter-estimation mode with RESIDUAL_ANALYSIS. (44, 45) prediction mode with
LINEAR_UNCERTAINTY. (33) test-model-linearity mode with MODEL_LINEARITY.
Capabilities that are new
N1. Sensitivities. Can use sensitivities produced by process model(s). For example, MODFLOW-
2000 sensitivity-equation sensitivities (Hill and others, 2000) can be used.
N2. Non-detects. For observations (usually concentrations) below a detection limit.
N3. No solution. Use for process models that may not be able to produce simulated equivalents
and that write a distinct value to output files. For example, cells may go dry.
N4. Weighting with simulated values. Weights can be calculated using coefficients of variation
and simulated values. For example, use this to weight concentration observations.
N5. Full weight matrix. For groups of observations or prior information.
N6. Faster, more robust parameter estimation. In tests, the trust-region modification to Gauss-
Newton reduced the number of parameter-estimation iterations to about half and was successful
in more situations (Mehl and Hill, 2003).
N7. Parallel processing. Send parameter-loop simulations (Figure 1) to separate processors.
N8. Standard Files. Easily extract values from columns of numbers.
N9. Unique criteria for each parameter. The criteria govern (1) the maximum fractional
parameter-value change in one parameter-estimation iteration and (2) the fractional parameter-
value change allowed when parameter-estimation is said to converge. For the two criteria, smaller
and larger values, respectively, may be useful for insensitive parameters.
N10. Dynamic omission of insensitive parameters. Remove insensitive parameters from
regression calculations. Reevaluates each parameter-estimation iteration.
N11. Constrained parameter values. Use if parameter values result in process-model failure.
Avoid use to ensure reasonable parameter estimates, which can be used to detect model error.
N12. Nonlinear confidence intervals and other capabilities described in Chapter 17.

270

Appendix F. Abbreviated Input Instructions for UCODE_2005

Appendix F. ABBREVIATED INPUT INSTRUCTIONS FOR
UCODE_2005

The abbreviated input instructions listed here are intended for quick reference by
experienced users. Complete input instructions are presented in Chapters 6 through 13
and 17. The input blocks are presented here in the order they need to appear in the
UCODE_2005 main input file. The chapter where the input block is described is noted.

Options Input Block (optional) Chapter 6
Verbose - Controls printing to the UCODE_2005 main output file.

Derivatives_Interface - Filename or path of file defining how to read derivatives.

PathToMergedFile - Filename or path of merged file. If the file exists, it is replaced.

Merge_Files Input Block (Optional) Chapter 6
PathToFile - Path of a file.

SkipLines - Lines to skip at the top before file is appended. Default=0.

UCODE_Control_Data Input Block (optional) Chapter 6

ModelName - Identifies the model. Up to 12 characters. Default=generic.

ModelLengthUnits - Defines the LENGTH units. Up to 12 characters. Default=NA.

ModelMassUnits - Defines the MASS units. Up to 12 characters. Default=NA.

ModelTimeUnits - Defines the TIME units. Up to 12 characters. Default=NA.

For the following seven variables, see Table 3 for modes produced by “yes”.

Sensitivities - yes: calculate sensitivities. Default is no.

Optimize - yes: estimate parameters. Default is no.

Linearity - yes: do the calculations and produce file fn._b2. Default=no.

Prediction - yes: determine predictions and their sensitivities. Default=no.

LinearityAdv - conf, pred, or no. Default=no.

NonlinearIntervals - yes: calculate nonlinear confidence intervals. Default=no.

SOSsurface - yes or file: calculate objective-function values. Default=no.

SOSfile - file used when SOSsurface=file.

StdErrOne - yes: calculate statistics with s2 replaced by 1.0. Default=no.

EigenValues - yes: calculate eigenvalues and eigenvectors. Default=yes.

271

Appendix F. Abbreviated Input Instructions for UCODE_2005

Three keywords control printing of tables of observations, simulated values, and residuals
to the main output file.

StartRes - For the starting parameter values. Default=yes.

IntermedRes - For parameter-estimation iterations. Default=no.

FinalRes - For the final parameter values. Default=yes.

Three keywords control printing of sensitivity tables to the main output file.

StartSens - For the starting parameter values. Default=dss.

IntermedSens - For parameter-estimation iterations. Default=none.

FinalSens - For the final parameter values. Default=dss.

DataExchange - yes: generate the data-exchange files. Default=yes.

CreateInitFiles - yes: generate only the _init data-exchange files. Default=no.

Reg_GN_Controls Input Block (optional) Chapter 6

Three keywords control when parameter-estimation iterations stop.

TolPar - Tolerance based on parameter values. Default=0.01.

TolSOSC - Tolerance based on model fit. Default=0.0.

MaxIter - Maximum number of parameter-estimation iterations. Default=5.

Two keywords restrict how much parameter values can change in one parameter-
estimation iteration.

MaxChange - Maximum fractional amount parameter values are allowed to
change between parameter-estimation iterations. Default=2.0.

MaxChangeRealm - Indicates whether MaxChange applies in native or regression
space. Default=Native.

Three keywords are used to calculate the Marquardt parameter

MqrtDirection - Angle (in degrees) between down-gradient direction on the sum-
of-squared-residuals surface and the parameter update vector.
Default=85.4o.

MqrtFactor - See equation 8 for the Marquardt parameter. Default=1.5.

MqrtIncrement - See equation 8 for the Marquardt parameter. Default=0.001.

Three keywords control quasi-Newton updating

QuasiNewton - yes: use quasi-Newton updating as indicated by the criteria
below. Default=no.

272

Appendix F. Abbreviated Input Instructions for UCODE_2005

If either of the following two criteria is met for a parameter-estimation iteration, Quasi-
Newton updating is used for that and all subsequent iterations.

QNiter - Number of iterations executed before including the Quasi-
Newton enhancement. Default=5.

QNsosr - Fractional change in the sum-of-squared weighted residuals over
two parameter iterations below which Quasi-Newton matrix
enhancement is employed. Default=0.01.

OmitDefault - The number of values to read from user-created file fn.omit.
Default=0.

Stats_On_Nonconverge – yes: calculate final sensitivities and calculate and print
statistics when parameter estimation does not converge in the
maximum number of iterations. Default=yes.

Three keywords control dynamic omission of insensitive parameters from regression.

OmitInsensitive – yes: omit parameter j from the regression if its composite scaled
sensitivity (CSSj) satisfies CSSj< (MinimumSensRatio ×
CSSmax). Default=no.

MinimumSensRatio – Used as described for OmitInsensitive. Default=0.005.

ReincludeSensRatio – If ReincludeSensRatio>0.0 and CSSj > (ReincludeSensRatio ×
CSSmax), reinclude parameter j. Default=0.02.

TolParWtOS – TolParWtOS × TolPar equals the parameter-change threshold
below which simulated values are used to calculate weights on
observations with WtOSConstant>0. Default=10.

Four keywords control the trust-region modification of Gauss-Newton regression.

TrustRegion - Dogleg: use the double-dogleg modification. Default=no.

MaxStep - Maximum allowable step size used in the trust-region method.
The default is a function of the sensitivities and the parameter
values, and is printed in the UCODE_2005 main output file.

ConsecMax - Maximum number of times that MaxStep is used consecutively
before execution stops. Default=5.

Reg_GN_NonLinInt Input Block (optional) Chapter 17
ConfidenceOrPrediction – confidence or prediction interval. Default=confidence.

IndividualOrSimultaneous – individual or simultaneous interval. Default=individual.

WhichLimits - Lower, Upper or Both. Default=Both.

TolIntP - Tolerance based on parameter values. Default=0.001.

TolIntS - Tolerance based on model fit. Default=0.1×TolIntP.

273

Appendix F. Abbreviated Input Instructions for UCODE_2005

TolIntY - Tolerance based on change in the value of the computed interval
limit. Default=0.001.

CorrectionFactors - yes: Use correction factors. Default=no.

The following keyword is used only if CorrectionFactors=yes.

AlternateStartValues – yes: Use starting parameter values from Parameter_Values input
block. Default=no, which means use values in fn._paopt.

Model_Command_Lines Input Block (required) Chapter 6
Command - Operating system command that executes the process model(s).

Purpose - The type of process model run performed. Default=forward.

CommandID - A name for the command.

Parameter_Groups Input Block (optional) Chapter 7

GroupName - The name of the group (up to 12 characters; not case sensitive).
Default=ParamDefault

Other keywords - Any keyword from the Parameter_Data input block.

Parameter_Data Input Block (required) Chapter 7
ParamName - Parameter name (up to 12 characters; not case sensitive)

GroupName - Group name (up to 12 characters; not case sensitive).
Default=ParamDefault.

StartValue - Starting parameter value. Default=A huge real number.

LowerValue - Smallest reasonable value for this parameter. Default = -(A huge
real number).

UpperValue - Largest reasonable value for this parameter. Default = +(A huge
real number).

Constrain - yes: constrain the parameter value. Default=no.

UpperConstraint - Upper limit on the parameter value.

LowerConstraint - Lower limit on the parameter value.

Adjustable - yes: this parameter value can be changed for the purpose defined
in the UCODE_Control_Data input block. Default=no.

PerturbAmt - Fractional amount of parameter value to perturb to calculate
sensitivities for this parameter. Default=0.01.

Transform - yes: log-transform the parameter for the regression. Default=no.

274

Appendix F. Abbreviated Input Instructions for UCODE_2005

TolPar - Replaces, for this parameter, the value of TolPar from the
Reg_GN_Controls input block or the default of 0.01.

MaxChange - Maximum fractional parameter change allowed between
parameter iterations. Default=2.0.

SenMethod - how sensitivities are obtained. -1=read as log transformed,
0=read as native, 1=forward perturbation, 2=central perturbation.
Default=1.

ScalePval - A positive number used to scale sensitivities if the parameter
value gets too small. Default=StartValue/100.

SOSIncrement - The number of values to be considered when SOSsurface=yes in
the UCODE_Control_Data input block. Default=5.

NonLinearInterval – yes: calculate nonlinear intervals for this parameter when
NonlinearIntervals=yes in the UCODE_CONTROL_DATA block.
Default=no.

Parameter_Values Input Block (optional) Chapter 7

ParamName - The name of the parameter for which a value is specified.

StartValue - The specified parameter value.

Derived_Parameters Input Block: (optional) Chapter 7
DerParName - Name of derived parameter (up to 12 characters; not case

sensitive).

DerParEqn - An equation without an “equal” sign (that is, just the right-hand
side of the equation) by which the derived parameter is calculated,
generally using defined parameters.

Observations (omit for prediction mode) Chapter 8

Observation_Groups Input Block (optional)
GroupName - Name for a group of observations (up to 12 characters; not case

sensitive). Default=DefaultObs.

UseFlag - yes: use the simulated values in this group to compare against
observed values in the regression. Default=yes.

PlotSymbol - An integer intended for use in post-processing programs to assign
symbols for plotting. Default=1.

275

Appendix F. Abbreviated Input Instructions for UCODE_2005

WtMultiplier - Value used to multiply weights for members of a group when the
weights are defined using Statistic and StatFlag keywords of the
Observation_Data input block. Default=1.0.

CovMatrix - Name of the error variance-covariance matrix.

Other keywords - Any keyword from the Observation_Data input block.

Observation_Data Input Block (required)
ObsName - Observation name (up to 20 characters; not case sensitive). Each

observation name needs to start with a letter and to be unique.

ObsValue - Observation value.

Statistic - Statistic used to calculate the observation weight.

StatFlag - Defines Statistic. Options: VAR, SD, CV, WT, SQRWT. No
default.

GroupName - Group name from the Observation_Groups input block.
Default=DefaultObs.

Equation - An equation without an “equal” sign (just the right had side of the
equation) that defines how to calculate an equivalent simulated
value from simulated equivalents of previously defined
observations. Default= _.

NonDetect - Detection limit for an observation. Default=0.

WtOSConstant - The constant η in equation 3. Default=0.

Derived_Observations Input Block (optional)

The Derived_Observations input block is identical to the Observation_Data input block
except in name. It is included in UCODE_2005 so the user can define derived
observations in a separate block, which is convenient in some circumstances.

Predictions (Omit for all modes but prediction, advanced-test-
model-linearity, and nonlinear-uncertainty) Chapter 8

Prediction_Groups Input Block (optional)
GroupName - Name for a group of predictions (up to 12 characters; not case

sensitive). Default=DefaultPreds.

UseFlag - yes: report and analyze the predictions in this group. Default=yes.

PlotSymbol - An integer intended for use in post-processing programs to assign
symbols for plotting. Default=1.

Other keywords - Any keyword from the Prediction_Data input block.

276

Appendix F. Abbreviated Input Instructions for UCODE_2005

Prediction_Data Input Block (required for three modes)
PredName - Prediction name (up to 20 characters; not case sensitive).Each

prediction name needs to start with a letter and to be unique.

RefValue - Reference value to which the prediction is compared.

MeasStatistic - A statistic used to calculate the variance of the measurement
error.

MeasStatFlag - Defines MeasStatistic. Options: VAR, SD. No default.

GroupName - Group name from the Prediction_Groups input block.

Equation - An equation without an “equal” sign (just the right hand side) that
defines how to calculate a derived prediction. Default= ‘_’.

Derived_Predictions Input Block (optional)
The Derived_Predictions input block is identical to the Prediction_Data input block
except in name. It is included in UCODE_2005 so the user can define derived
predictions in a separate block, which may be convenient in some circumstances.

Prior_Information_Groups Input Block (optional) Chapter 9
GroupName - Name for a group of prior information items (up to 12 letters,

numbers, and _; not case sensitive). Default=DefaultPrior.

UseFlag - yes: include this group when estimating parameters. Default=yes.

PlotSymbol - An integer used in post-processing programs for the purpose of
assigning symbols for plotting. Default=1.

WtMultiplier - Value that multiplies the weights for members of the group when
the weighting is defined using Statistic and StatFlag keywords
described for the Linear_Prior_Information input block.
Default=1.0

CovMatrix - Name of the error variance-covariance matrix.

Other keywords - Any keyword from the Linear_Prior_Information input block.

Linear_Prior_Information Input Block (optional) Chapter 9
PriorName - Prior information equation name (up to 20 letters, numbers, and

_; not case sensitive; start with a letter). Default=DefaultPrior.

Equation - An equation without an “equal” sign that defines the prior
information in terms of parameter names as specified in the
Parameter_Data or Derived_Parameters input blocks.

PriorInfoValue - Value of prior information.

Statistic - Value used to calculate the prior information weight.

277

Appendix F. Abbreviated Input Instructions for UCODE_2005

StatFlag - Defines Statistic. Options: VAR, SD, CV, WT, SQRWT. No
default.

GroupName - Name for a group of prior information items.

Matrix_Files Input Block (optional) Chapter 10
MatrixFile - Name or path of the file from which one or more matrices are

read. (Up to 2,000 characters; case sensitivity depends on the
operating system).

NMatrices - Number of matrices to read from MatrixFile. Default=1.

Complete Matrix
CompleteMatrix [NAME]
NGMEM NGMEM [ControlRecord]
[Array Control Record]
VAL(1,1) VAL(1,NGMEM)
 . . .
 . . .
 . . .
VAL(NGMEM,1) VAL(NGMEM,NGMEM)

Compressed Matrix
CompressedMatrix [NAME]
NNZ NGMEM NGMEM [ControlRecord]
[Array Control Record]
IPOS(1) VAL(1)
IPOS(2) VAL(2)
...
IPOS(NNZ) VAL(NNZ)

Array Control Record Input Instructions
1. INTERNAL CNSTNT FMTIN IPRN
2. OPEN/CLOSE FNAME CNSTNT FMTIN IPRN

Model_Input_Files Input Block (required) Chapter 11
ModInFile - Name for a process-model input file (up to 2,000 characters).

Names with spaces need to be enclosed in double quotes.

TemplateFile - Name for the template file (Up to 2,000 characters. Case
sensitivity depends on the operating system). Names with spaces
need to be enclosed in double quotes.

Template Files Chapter 11

A template file is created from a model input file by first inserting a line at the top. The
line contains “jtf” followed by one or more spaces and the substitution delimiter.
Commonly used substitution delimiters are @ and !.

278

Appendix F. Abbreviated Input Instructions for UCODE_2005

The substitution delimiter is used to define the space within which UCODE_2005 places
a number. The substitution space is defined by a pair of substitution delimiters. All of the
characters between and including the substitution delimiters are replaced. Characters
between the delimiters need to include spaces and one ParamName or DerParName
defined in the Parameter_Data or Derived_Parameter input block. The ParamName or
DerParName can be placed anywhere between the delimiters.

Model_Output_Files Input Block (required) Chapter 11
ModOutFile - Name of the process-model output file with values to be

extracted. Up to 2,000 characters; case sensitivity depends on the
operating system.

InstructionFile - Name for the Instruction file that UCODE_2005 uses to extract
values from ModOutFile. InstructionFile can be up to 2,000
characters; case sensitivity depends on the operating system.

Category - Identifies the type of quantity for which values are extracted.
Obs: observations. Pred: predictions

Instruction Files (required) Chapter 11

For a Standard Process-Model Output File
jif @
StandardFile Nskip ReadColumn Nread
[Names for each of the Nread values.
Place each name on a new line.]

Nskip, number of lines to skip at top of file.
ReadColumn, the column to be read.
Nread, the number of items to be read.

For a Non-Standard Process-Model Output File
The first line of an instruction file needs to begin with the three letters “jif”, a single
space, and a marker delimiter. Usually $, @, % or ~ are good choices for marker
delimiter.

Except for ‘dum’, which can be used repeatedly, a different name needs to be used for
each extracted value.

A compete list of instructions is presented in Table 9 of Chapter 11.

Parallel_Control Input Block (Optional) Chapter 12
Parallel - yes: Activates parallel processing. Default=no.

Wait - Time delay, in seconds, used in file management. Default=0.001.

279

Appendix F. Abbreviated Input Instructions for UCODE_2005

VerboseRunner - Flag that controls printing by the runner. Default=3.

AutoStopRunners -yes: stop runners when UCODE_2005 stops. Default=yes.

OperatingSystem - Operating system for dispatcher and runner. Default=Windows.

TimeoutFactor - Factor for RUNTIME to identify overdue run. Default=3.0.

Parallel_Runners Input Block (Optional) Chapter 12
RunnerName - Name of runner. Up to 20 characters.

RunnerDir - Pathname to directory where the runner program runs.

RunTime - Expected model runtime, in seconds. Default=10.

Equation Protocols (optional) Chapter 13

In UCODE_2005, equations can be defined in the Derived_Parameters,
Observation_Data, Derived_Observations, Prediction_Data, and Derived_Predictions
input blocks. See Chapter 13 for additional information.

Derivatives Interface Input File (optional) Chapter 13

A Derivatives Interface input file provides UCODE_2005 with information needed to
obtain model-calculated sensitivities (derivatives of simulated values with respect to
parameters) from a model-output file rather than determining them by perturbation. See
Chapter 13.

fn.xyzt Input File (optional) Chapter 13

The first line of the xyzt input file is ignored. The rest of the file needs to be composed of
lines containing five columns of data: Observation name, x, y, z, and time.

280

Appendix G. Abbreviated Input Instructions for Other Codes

Appendix G. ABBREVIATED INPUT INSTRUCTIONS FOR
OTHER CODES

RESIDUAL_ANALYSIS (optional) Chapter 15

Nsets - Number of sets. Default=4.

Seed - Used to generate random numbers. Default=104857.

Calc_RandomNumbers - Create _rd and _rg output files. Default=yes.

Calc_DFBetas - Calculate DfBetas statistics; create _rb output file. Default=yes.

The following keywords control printing to the #rs output file. Default=no.

Print_Par_Var_Cov_Matrix - Parameter variance-covariance matrix.

Print_Sqrt_Wt - Square-root of the weight matrix.

Print_Unscaled_Sens - Unscaled sensitivities.

Print_CooksD - Cook’s D statistics.

Print_RB - DFBetas statistics.

Print_RD - Sets of uncorrelated random numbers.

Print_RG - Sets of correlated random numbers.

Print_Res_Var_Cov_Matrix - Residual variance-covariance matrix

Print_Res_Correlation_Matrix - Residual correlation matrix.

281

Appendix G. Abbreviated Input Instructions for Other Codes

RESIDUAL_ANALYSIS_ADV (optional) Chapter 17

Options Input Block (optional)
Verbose - Controls printing to the #resanadv output file. Default=3.

RESIDUAL_ANALYSIS_ADV_Control_Data Input Block (optional)
Nsets - Number of sets. Default=4.

Seed - Used to generate random numbers. Default=104857.

StdDev - Alternate standard error. Default=0.0.

Read_ET - Read Mean_True_Error input block. Default=no.

Read_Cov - Read matrix from the Matrix_Files input block. Default=no.

The following keywords control printing to the #resanadv output file. Default=no.

Print_IRMatrix - Parameter (I-R) matrix.

Print_SimWgtResiduals – All sets of generated weighted residuals.

Print_Par_Var_Cov_Matrix - Parameter variance-covariance matrix.

Print_Sqrt_Wt - Square-root of the weight matrix.

Print_Unscaled_Sens - Unscaled sensitivities.

Mean_True_Error Input Block (optional)
MTEName - Observation name. No default.

MTEValue - ET value. Default=0.0.

Matrix_Files Input Block (optional)
MatrixFile - Filename or path of file containing a matrix.

NMatrices - Number of matrices. Here, NMatrices=1.

282

Appendix G. Abbreviated Input Instructions for Other Codes

CORFAC_PLUS (required) Chapter 17

Options Input Block (optional)
Verbose - Controls printing to the #resanadv output file. Default=3.

Correction_Factor_Data Input Block (required)
ConfidenceOrPrediction - Calculate confidence or prediction intervals. No default.

RegressionUsedTrueCov - Observation weights reflect observation errors. Default=no.

Read_Cov - Read matrix from the Matrix_Files input block. Default=no.

Effective_Correaltion - Upper limit of the spatial correlation. Default=0.8.

Read_ObsPred_Cov - Read second moments between observations and predictions
using the Matrix_Files input block. Default=no.

Prediction_List Input Block (this or the next is required)
PredName - Prediction name. No default.

MeasStatistic - Statistic for measurement error. Default=variance from _pv file.

MeasStatFlag - Defines statistic. Options=VAR, SD. Default=VAR.

Parameter_List Input Block (this or the last is required)
ParamName - Parameter name. No default.

MeasStatistic - Statistic for measurement error. Default=variance from _pv file.

MeasStatFlag - Defines statistic. Options=VAR, SD. Default=VAR.

Matrix_Files Input Block (optional)
MatrixFile - Filename or path of file containing a matrix.

NMatrices - Number of matrices. Here, NMatrices=1 or 2.

283

	Abstract
	Chapter 1: INTRODUCTION
	Purpose and Scope
	Acknowledgements

	Chapter 2: OVERVIEW AND PROGRAM CONTROL
	Introduction to UCODE_2005 Input and Output Files
	Flowchart for UCODE_2005 Used to Estimate Parameters
	Brief Description of the Six Other Codes
	Parallel-Processing Capabilities

	Chapter 3: USER CONSIDERATIONS
	Guidelines for Effective Model Calibration and Analysis using Nonlinear Regression
	Parameterization
	Starting Parameter Values
	Perturbation Sensitivities
	Calculation
	Accuracy

	Weighting Observations and Prior Information
	Sensitivity Analysis
	Common Ways of Improving a Poor Model
	Alternative Models
	Residual Analysis
	Predictions and Their Linear Confidence and Prediction Intervals

	Chapter 4: RUNNING UCODE_2005, RESIDUAL_ANALYSIS, MODEL_LINEARITY, and LINEAR_UNCERTAINTY
	Running UCODE_2005
	Controlling Execution and Output
	Files Associated with Running UCODE_2005
	Calibration and Prediction Conditions
	Typical UCODE_2005 Project Flow

	Running RESIDUAL_ANALYSIS
	Running MODEL_LINEARITY
	Running LINEAR_UNCERTAINTY
	Trouble Shooting
	What to Do When Simulated Values are Wrong
	What to Do When Sensitivities Equal Zero

	Chapter 5: OVERVIEW OF UCODE_2005 INPUT INSTRUCTIONS
	Main Input File
	Input blocks
	Blocklabel
	Blockformat
	Blockbody

	Additional Input Files

	Chapter 6: INPUT TO CONTROL UCODE_2005 OPERATION
	Options Input Block: Control Main Output File and Read Sensitivities (optional)
	Merge_Files Input Block (Optional)
	UCODE_Control_Data Input Block: Define the Task and Output (optional)
	Reg_GN_Controls Input Block: Control Parameter Estimation (optional)
	Model_Command_Lines Input Block: Control Execution of the Process model (required)

	Chapter 7: INPUT TO DEFINE PARAMETERS
	Parameter_Groups Input Block (optional)
	Parameter_Data Input Block (required)
	Parameter_Values Input Block: Use Alternative Starting Parameter Values (optional)
	Derived_Parameters Input Block: Define Model Inputs as Functions of Parameters (optional)

	Chapter 8: INPUT TO DEFINE OBSERVATIONS AND PREDICTIONS
	Observations
	Observation_Groups Input Block (optional)
	Observation_Data Input Block (required except for prediction mode)
	Derived_Observations Input Block: Define Simulated Equivalents as Functions of Model Outputs (optional)

	Predictions
	Prediction_Groups Input Block (optional)
	Prediction_Data Input Block (required only for prediction mode)
	Derived_Predictions Input Block: Define Predictions as Functions of Model Outputs (optional)

	Chapter 9: INPUT TO INCLUDE MEASUREMENTS OF PARAMETER VALUES
	Prior_Information_Groups Input Block (optional)
	Linear_Prior_Information Input Block (optional)

	Chapter 10: INPUT TO DEFINE WEIGHT MATRICES
	Matrix_Files Input Block (optional)
	Complete Matrix
	Compressed Matrix
	Array Control Records
	Array Control Record Input Instructions
	Explanation of Variables in the Array Control Records
	Examples of Array Control Records

	Chapter 11: INPUT TO INTERACT WITH THE PROCESS MODEL INPUT AND OUTPUT FILES
	Construct Process-Model Input Files Using Current Parameter Values
	Model_Input_Files Input Block (required)
	Template Files
	Construction
	Substitution Delimiter

	Read from Process-Model Output Files
	Model_Output_Files Input Block (required)
	Instruction Input File for a Standard Process-Model Output File
	Instruction Input File for a Non-Standard Process-Model Output File
	An Example Instruction File for a Non-Standard Input File
	Preliminaries
	Marker Delimiter, jif
	Extraction Names

	The Instruction Set
	Extraction Type
	Primary Marker
	Line Advance, l#
	Continuation, &
	Secondary Marker
	Whitespace, w
	Tab, tn

	Example Instruction Files
	Fixed Reading
	Semi-Fixed Reading
	Non-Fixed Reading

	Making an Instruction File

	Chapter 12: INPUT FOR PARALLEL EXECUTION
	Using Multiple Processors to Calculate Perturbation Sensitivities
	Parallel Processing Using the Dispatcher-Runner Protocol
	Parallel_Control Input Block (Optional)
	Parallel_Runners Input Block (Optional)

	Chapter 13: EQUATION PROTOCOLS AND TWO ADDITIONAL INPUT FILES
	Equation Protocols for the UCODE_2005 Main Input File
	Example Equations

	Derivatives Interface Input File
	fn.xyzt Input File

	Chapter 14: UCODE_2005 OUTPUT FILES
	Main UCODE_2005 Output File
	Data-Exchange Files Produced by UCODE_2005

	Chapter 15: EVALUATION OF RESIDUALS, NONLINEARITY, AND UNCERTAINTY
	RESIDUAL_ANALYSIS: Test Weighted Residuals and Identify Influential Observations
	LINEAR_UNCERTAINTY: Calculate Linear Confidence and Prediction Intervals on Predictions Simulated with Estimated Parameter Values
	MODEL_LINEARITY: Test Model Linearity

	Chapter 16: USE OF OUTPUT FROM UCODE_2005, RESIDUAL_ANALYSIS, MODEL_LINEARITY, AND LINEAR_UNCERTAINTY
	Output Files from UCODE_2005 Forward Mode
	Output Files from the UCODE_2005 Sensitivity-Analysis Mode
	Maps from UCODE_2005 Sensitivity Analysis Mode
	Tables of Scaled Sensitivities Produced for the UCODE_2005 Sensitivity-Analysis, Parameter-Estimation, and Prediction Modes
	Output Files from the UCODE_2005 Parameter-Estimation Mode
	Output Files from RESIDUAL_ANALYSIS for Evaluating Model Fit and Identifying Influential Observations
	Output Files from UCODE_2005 Prediction Mode
	Output Files from LINEAR_UNCERTAINTY for Predictions
	Output Files from MODEL_LINEARITY for Testing Linearity

	Chapter 17: NONLINEAR CONFIDENCE INTERVALS AND ADVANCED EVALUATION OF RESIDUALS AND NONLINEARITY
	Project Flow Using the Advanced Capabilities
	Data-Exchange Files for Advanced Capabilities
	RESIDUAL_ANALYSIS_ADV: Advanced Residual Analysis
	Execution
	User-Prepared Input File (Optional)
	Options Input Block (Optional)
	RESIDUAL_ANALYSIS_ADV_Control_Data Input Block (Optional)
	Mean_True_Error Input Block (Optional)
	Matrix_Files Input Block (Optional)

	Output Files for RESIDUAL_ANALYSIS_ADV

	CORFAC_PLUS: Correction Factors and Data for Analysis of Linearity
	Execution
	 User-Prepared Input File (Required)
	Options Input Block (Optional)
	Correction_Factor_Data Input Block (Optional)
	Prediction_List Input Block (this block, the next block, or both are needed)
	Parameter_List Input Block (this block, the last block, or both are needed)
	Matrix_Files Input Block (Optional)

	Output Files for CORFAC_PLUS

	The Advanced-Test-Model-Linearity Mode of UCODE_2005
	MODEL_LINEARITY_ADV: Advanced Evaluation of Model Linearity
	Execution
	Input Files for MODEL_LINEARITY_ADV
	Output File for MODEL_LINEARITY_ADV

	The Nonlinear-Uncertainty Mode of UCODE_2005
	Preparatory Steps
	Reg_GN_NonLinInt Input Block (Optional)
	Calculating a Subset of the Interval Limits
	Nonlinear-Uncertainty Mode Output Files

	Chapter 18: REFERENCES
	Appendix A. CONNECTION WITH THE JUPITER API
	UCODE_2005
	The Other Six Codes
	References

	Appendix B: FILES PRODUCED BY USING THE FILENAME PREFIX SPECIFIED ON COMMAND LINES
	Appendix C: EXAMPLE SIMULATION
	Calibration Conditions
	Input Files
	UCODE_2005 Main Input File 03.in for Parameter-Estimation Mode
	Other Selected UCODE_2005 Input Files
	File Listed in the Observation_Data Input Block: flo.obs
	Template File Listed in the Model_Input_Files input block: tc1sen-eq.tpl

	Output Files
	UCODE_2005 Main output file ex1.#03uout-parest
	Selected Data-Exchange Files

	Particle-Path Predictions and Measures of Uncertainty
	Objective-Function Surface for the Steady-State Problem with Two Parameters
	References

	Appendix D. PROGRAM DISTRIBUTION AND INSTALLATION
	Distributed Files and Directories
	Compiling and Linking
	Portability
	Memory Requirements

	Appendix E. Comparison with UCODE as Documented by Poeter and Hill (1998)
	Appendix F. ABBREVIATED INPUT INSTRUCTIONS FOR UCODE_2005
	Options Input Block (optional) Chapter 6
	Merge_Files Input Block (Optional) Chapter 6
	UCODE_Control_Data Input Block (optional) Chapter 6
	Reg_GN_Controls Input Block (optional) Chapter 6
	Reg_GN_NonLinInt Input Block (optional) Chapter 17
	Model_Command_Lines Input Block (required) Chapter 6
	Parameter_Groups Input Block (optional) Chapter 7
	Parameter_Data Input Block (required) Chapter 7
	Parameter_Values Input Block (optional) Chapter 7
	Derived_Parameters Input Block: (optional) Chapter 7
	Observations (omit for prediction mode) Chapter 8
	Observation_Groups Input Block (optional)
	Observation_Data Input Block (required)
	Derived_Observations Input Block (optional)

	Predictions (Omit for all modes but prediction, advanced-test-model-linearity, and nonlinear-uncertainty) Chapter 8
	Prediction_Groups Input Block (optional)
	Prediction_Data Input Block (required for three modes)
	Derived_Predictions Input Block (optional)

	Prior_Information_Groups Input Block (optional) Chapter 9
	Linear_Prior_Information Input Block (optional) Chapter 9
	Matrix_Files Input Block (optional) Chapter 10
	Complete Matrix
	Compressed Matrix
	Array Control Record Input Instructions

	Model_Input_Files Input Block (required) Chapter 11
	Template Files Chapter 11
	Model_Output_Files Input Block (required) Chapter 11
	Instruction Files (required) Chapter 11
	For a Standard Process-Model Output File
	For a Non-Standard Process-Model Output File

	Parallel_Control Input Block (Optional) Chapter 12
	Parallel_Runners Input Block (Optional) Chapter 12
	Equation Protocols (optional) Chapter 13
	Derivatives Interface Input File (optional) Chapter 13
	fn.xyzt Input File (optional) Chapter 13

	Appendix G. ABBREVIATED INPUT INSTRUCTIONS FOR OTHER CODES
	RESIDUAL_ANALYSIS (optional) Chapter 15
	RESIDUAL_ANALYSIS_ADV (optional) Chapter 17
	Options Input Block (optional)
	RESIDUAL_ANALYSIS_ADV_Control_Data Input Block (optional)
	Mean_True_Error Input Block (optional)
	Matrix_Files Input Block (optional)

	CORFAC_PLUS (required) Chapter 17
	Options Input Block (optional)
	Correction_Factor_Data Input Block (required)
	Prediction_List Input Block (this or the next is required)
	Parameter_List Input Block (this or the last is required)
	Matrix_Files Input Block (optional)

