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Abstract
Uncertainty of hydrogeologic conditions makes it important to consider alternative plausible models in an

effort to evaluate the character of a ground water system, maintain parsimony, and make predictions with reason-
able definition of their uncertainty. When multiple models are considered, data collection and analysis focus on
evaluation of which model(s) is(are) most supported by the data. Generally, more than one model provides a simi-
lar acceptable fit to the observations; thus, inference should be made from multiple models. Kullback-Leibler
(K-L) information provides a rigorous foundation for model inference that is simple to compute, is easy to inter-
pret, selects parsimonious models, and provides a more realistic measure of precision than evaluation of any one
model or evaluation based on other commonly referenced model selection criteria. These alternative criteria strive
to identify the true (or quasi-true) model, assume it is represented by one of the models in the set, and given their
preference for parsimony regardless of the available number of observations the selected model may be underfit.
This is in sharp contrast to the K-L information approach, where models are considered to be approximations to
reality, and it is expected that more details of the system will be revealed when more data are available. We pro-
vide a simple, computer-generated example to illustrate the procedure for multimodel inference based on K-L
information and present arguments, based on statistical underpinnings that have been overlooked with time, that
its theoretical basis renders it preferable to other approaches.

Introduction
Sparse subsurface data cause us to be uncertain of the

exact nature of ground water system structure and compo-
nents. Consequently, it is a best, although not always cus-
tomary, practice to evaluate multiple models of a ground
water system before making predictions of system behav-
ior. Alternative models include variations in the structure
of hydrogeologic units, boundary conditions, and parame-
ter fields. Each alternative model must be calibrated (i.e.,
parameter values adjusted to obtain the best fit to the
observed data, e.g., using nonlinear least squares) before
models can be compared (Poeter and Hill 1997). The

advent of high-speed computing and robust inversion
algorithms makes calibration of multiple models feasible.

We often find that prediction uncertainty is larger
across the range of potential models than that which
arises from the misfit and insensitivity of any one opti-
mized model, even to the extent that confidence intervals
on predictions from some of the models may not include
the values predicted by others. This raises the question of
whether to select the best model and use those predictions
and confidence intervals for decision and design or to
weight all the models and calculate model-averaged pre-
dictions and intervals. If one model is clearly superior to
the rest, it is reasonable to use that model for prediction,
but its uncertainty should be evaluated using the entire
set of candidate models. If one model is not clearly supe-
rior, then it is reasonable to weight all predictions. If the
alternative models yield substantially different results for
the prediction of interest such that a reasonable decision
is untenable, then additional data should be collected to
develop better models.

A more representative model of ground water system
behavior (1) exhibits no consistent spatial or temporal
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pattern in the weighted residuals; (2) results in reasonable
estimated parameter values (e.g., hydraulic conductivity
of gravel is higher than that of silt and falls within the
range of values that might be expected for gravels); and
(3) has better fit statistics for the same data while main-
taining parsimony (i.e., balancing the bias vs. variance
trade-off or the trade-off between underfitting and overfit-
ting). There is a general agreement that considerable men-
tal effort, training, and experience are required to define
a set of reasonable models (Bredehoeft 2003; Neuman
and Wierenga 2003). However, the profession has not
agreed upon a procedure for ranking or weighting models
(Carrera and Neuman 1986; Neuman and Wierenga 2003;
Ye et al. 2004).

We have several objectives. First, we call attention to
the famous geologist Chamberlin’s (1890) call for ‘‘multi-
ple working hypotheses’’ as a strategy for rapid advances
in understanding applied and theoretical problems. Each
hypothesis or conceptualization is represented by a mathe-
matical model, which gives rigor to the procedure, then
data collection and analysis focus on which model is the
best, that is, most supported by the data. Second, we intro-
duce a simple and effective approach for the selection of
a best model: one that balances underfitting and overfitting
(i.e., maintains parsimony). Third, we provide an effective
method for making formal multimodel inference, includ-
ing prediction, from all models in a candidate set. Finally,
we present a computer-generated example to illustrate the
method, and we comment on alternative approaches.

Model Ranking and Inference from the
Best Model

Multiple Working Hypotheses
Ideally, understanding in science comes from strict

experimentation. Here, causation can be identified and
interactions can be explored. In most cases, an array
of practical considerations prevent experimentation in
ground water studies. At the opposite extreme are studies
that are merely descriptive. Here, progress in understand-
ing is slow and risky. Lack of causation, and other issues,
makes this a relatively poor approach. Between these ex-
tremes lie studies that can be termed ‘‘observational,’’
where inference is model based. One attempts to extract
the information in the data using a model. Many ground
water problems are in this observational category, and in-
ferences are inherently model based, thus the need for
multimodel inference in ground water modeling.

Given a well-defined ground water problem, with
extensive thoughtful consideration a hydrologist can con-
ceptualize R hypotheses concerning the system and the
questions to be asked. R might range from two to three to
perhaps a few dozen or even 100s in cases where statisti-
cal techniques are used to generate realizations. Given
a good set of data, hypotheses, and models, an investiga-
tor can ask, ‘‘which hypothesis is most supported by the
data?’’ This is the model selection problem and the heart
of Chamberlin’s strategic approach. Model selection is
a fundamental part of the data analysis. Approaches to
optimal inference for one model and data set are known

(e.g., least squares or maximum likelihood methods). The
central issue is ‘‘which model to use?’’

Model Selection
A large effort has been spent on a coherent theory of

model selection over the past 30 years. We will not re-
view this material in detail as it is covered in a number of
books (e.g., Linhart and Zucchini 1986; McQuarrie and
Tsai 1998; Burnham and Anderson 2002), research mon-
ographs (e.g., Sakamoto et al. 1986), and hundreds of
journal papers (e.g., deLeeuw 1992). Instead, we briefly
outline the approach we recommend.

The starting point for effective model selection theory
is Kullback-Leibler (K-L) information, I(f,g) (Kullback
and Leibler 1951). This is interpreted as the information,
I, lost when full truth, f, is approximated by a model, g.
Given a set of candidate models gi, one might compute
K-L information for each of the R models and select the
one that minimizes information loss—that is, minimize
I(f,g) across models. This is a compelling approach. How-
ever, for ground water models, K-L information cannot
be computed because the truth and the optimal effective
parameters (e.g., hydraulic conductivities, boundary heads,
and fluxes) are not known (Anderson 2003).

Akaike (1973, 1974) provided a simple way to esti-
mate expected K-L information, based on a bias-
corrected, maximized log-likelihood value. This was a
major breakthrough (Parzen et al. 1998). Soon thereafter,
better approximations to the bias were derived (Sugiura
1978; Hurvich and Tsai 1989, 1994) and the result, of rel-
evance here, is an estimator Akaike Information Criterion
(AICc) of twice the expected K-L information loss

AICc ¼ n log ðr2Þ þ 2k þ
�
2kðk þ 1Þ
n2 k2 1

�
ð1Þ

where r2 is the estimated residual variance, n is the
number of observations, and k is the number of estimated
parameters for the model. Here, the estimator of r2 =
WSSR/n, where WSSR is the weighted sum of squared
residuals. The second term accounts for first-order bias,
and the third term accounts for second-order bias result-
ing from a small number of observations. This is a precise
mathematical derivation, with the third term depending
on the assumed distribution of residuals, in this case, nor-
mally distributed error. Accounting for second-order bias
is important when n/k < 40, which is typical of ground
water models. The aforementioned expression applies to
analyses undertaken by a least squares approach; similar
expressions are available for those using maximum likeli-
hood procedures (Akaike 1973). AICc is computed for
each of the models; the model with the lowest AICc value
is the best model, and the remaining models are ranked
from best to worst, with increasing AICc values.

As parameters are added to a model, accuracy and
variance increase (fit improves, while uncertainty in-
creases). Use of AICc selects models with a balance
between accuracy and variance; this is the principle of
parsimony. Prediction can be further improved by basing
inference on all the models in the set (multimodel infer-
ence, as discussed later).
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Delta Values

Calculation of the AICc values can be posed so as to
retain or omit values that are constant across models
(e.g., multinomial coefficients) and are affected by the
number of observations; thus, it is essential to compute
and use simple differences

�i ¼ AICci 2AICcmin ð2Þ

for each model, i, in the set of R models, where AICcmin

is the minimum AICc value of all the models in the set.
These values are on an information scale (–log[prob-
ability]), free from constants and sample size issues. A �i

represents the information loss of model i relative to the
best model. As discussed by Burnham and Anderson
(2002, p. 70–72 and particularly 78), models with �i <
2 are very good models, while models with 4 < �i <
7 have less empirical support. In most cases, models
with �i greater than ~10 can be dismissed from further
consideration.

Model Probabilities

Simple transformation yields model probabilities
or Akaike weights (also referred to as posterior model
probabilities)

wi ¼
exp2 0:5�i

PR
j¼1

exp2 0:5�j

ð3Þ

where wi is the weight of evidence in favor of model i
being the best model in the sense of minimum K-L infor-
mation loss. These weights are also useful in multimodel
inference as discussed later.

Evidence Ratios

It is convenient to take ratios of the model probabili-
ties for models i and j as wi /wj and call these evidence
ratios. These are most useful when i is the best model and
j is another model of interest because they can be used
to make statements such as ‘‘there is ‘wi /wj’ times more
evidence supporting the best model.’’

Example Problem
Our goal is to illustrate model evaluation first by cal-

ibrating a set of simple (coarse versions of the ‘‘truth’’)
ground water models of a synthetic (known) system (as
defined by a generating model), then making multimodel
inference of predictions. The alternative models used for
the example are simplistic relative to models of field sites
using only zonation variations generated by a geostatis-
tical simulator. We do not offer this as a desired approach
to model development, only as a method for generating
models to demonstrate the procedure. Each coarse model
is calibrated by weighted least squares nonlinear regres-
sion under the initial pumping condition using 20 head
observations and 1 base flow observation. Then, we rank
and determine weights for the models. In the predictive
stage, additional pumping is simulated at another location
and head is predicted at 20 locations (offset from the

calibration data locations), while two flows are also pre-
dicted. In a subsequent section, we illustrate multimodel
inference of the predicted heads and flow rates and
compare them to the known predictions simulated by the
generating model.

Synthetic Model
A two-dimensional, unconfined steady-state system is

synthesized with a model domain 5000 m in the east-west
direction and 3000 m north-south direction (Figure 1).
The aquifer is assigned boundary conditions as follows:

d A no-flow boundary is defined on the northern, western,

and southern borders, and the aquifer base at210 m.

d A 10-m-wide river, in the center of the watershed, ranges

in stage from 20 to 5 m and is underlain by 5-m-thick sedi-

ments with their base at an elevation of 5 m. Rivers are

represented as a head-dependent flux boundaries using the

MODFLOW-2000 (Harbaugh et al. 2000) river package.

d A 10-m-wide river also bounds the east edge with a stage

of 5 m, and 5 m of sediments with their base at 0 m.

d A recharge of 8 3 1024 m/d is applied uniformly to the

top of the model, constituting all the inflow to the system.

d Awell pumps 2000 m3/d at x = 2050 and y = 550.

True heads and flows are generated using a synthetic
heterogeneous model with five zones of hydraulic con-
ductivity (K), and a grid of 250 3 150 cells, each 20 3 20
m (Figure 1). The model grid used for calibration and
prediction consists of 50 3 30 cells, each 100 3 100 m
(Figure 2). The ‘‘true’’ hydraulic conductivity distribution
(Figure 1) includes five zones, with values ranging from
1 to 25 m/d. Vertical hydraulic conductivity of the east-
west–oriented riverbed is 0.2 m/d, while that of the north-
south riverbed is 0.1m/d.

Alternative Models
In practice, alternative models should be developed

based on careful consideration of the uncertainties associ-
ated with understanding of the site hydrology and their
representation by the simulation software. For the pur-
pose of illustrating the model evaluation procedure, we
generate alternative models by varying the number and

Figure 1. True heterogeneity and head distribution for the
synthetic model under hydraulic conditions used to generate
calibration data.
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distribution of hydraulic conductivity zones. Ten sequen-
tial indicator simulations (A through J) are generated on
the fine grid using GeoStatistical LIBrary (GSLIB)
(Deutsch and Journel 1992), the indicator variograms of
the synthetic hydrogeologic units, and honoring 144
points of known lithologic type taken from the generating
model on a regular grid. Each realization was partitioned
into 2 two-zone (e.g., 2A-2J and 2AL-2JL: L indicates
that bias is toward low-K material because zone 3 is
included with zones 1 and 2 rather than zones 4 and 5), 1
three-zone (3A-3J), 2 four-zone (4A-4J and 4AL-4JL; for
L models, zone 3 is included with zone 2 rather than zone
4), and 1 five-zone model (5A-5J); in addition, a homoge-
neous model was evaluated, resulting in a total of 61
models. In field application the diversity of models will
be much greater, including variations of boundary con-
ditions, geologic structure and unit thicknesses, as well as
the use of alternative code features to represent features
of the ground water system (e.g., in MODFLOW using
constant head cells vs. drains, rivers, or streams to simu-
late communication with surface water).

Calibration data include 20 head observations on
a regular grid from the generating model with a hypothe-
sized standard deviation of 0.02-m measurement error
and a base flow observation to the central tributary of
6188 m3/d with a standard deviation of 58 m3/d. These
standard deviations needed to be increased by a factor of
38 to account for model error and obtain a calculated
error variance of 1.0. MODFLOW (Harbaugh et al. 2000;
Hill et al. 2000) is used to simulate heads and flows for
each model and to estimate a value for K of each zone and
the uniform recharge rate; using weights calculated as the
inverse of the measurement variance resulted in a dimen-
sionless weighted sum of squared residuals (WSSR).
The calibrations require a few seconds on a 3-GHz
Pentium 4 PC.

Predictions of flow to both the central tributary and
the eastern river and heads at 20 locations, each 200 m up-
gradient of the calibration data locations, are made while
simulating additional pumping of 3000 m3/d at x = 3250 m
and y = 2150 m. Head distribution in the generating model
for the predictive conditions is illustrated in Figure 3.

Evaluation Software
J_MMRI is used to evaluate example models. J_MMRI

is an early-stage application of the JUPITER (Joint Univer-
sal Parameter IdenTification and Evaluation of Reliability)
application programming interface (API), which is cur-
rently under development through cooperation of the
USGS and U.S. EPA (Poeter et al. 2003). The API pro-
vides researchers with open-source program modules and
utilities that undertake universal basic tasks required for
evaluating sensitivity, assessing data needs, estimating
parameters, and evaluating uncertainty, so researchers can
focus on developing methods without ‘‘reinventing the
wheel,’’ while providing practitioners with public domain
software to facilitate the use of the new techniques.
J_MMRI collects soft information about each model in-
cluding (1) model structure: dimensionality, complexity
of processes, method of parameter generation/degree of
regularization, model representation of features, number/
size of model cells/elements, and length/mass/time units;
(2) residual distribution: spatial, temporal, and randomness;
(3) feasibility of optimal parameter values: absolute and rel-
ative; (4) objective function: weighted sum of squares and
log likelihood; (5) model selection statistics (e.g., AICc,
Bayesian information criterion [BIC], Hannan and Quinn’s
criterion [HQ], and Kashyap’s information criterion [KIC]);
(6) residual quality: Gaussian character, degree of spatial
bias, and similarity to data error; and (7) parameter correla-
tion/certainty. This information is analyzed and organized
to facilitate subjective evaluation of the models and provide
quantitative model ranking and weighting measures.

Model Ranks
Models were discarded from consideration if the

regression did not converge in 20 iterations (two models),
or K of a lower-zone number (finer grained material) ex-
ceeded the K of a higher-zone number (13 models), leav-
ing 46 of the 61 models for ranking and weighting. It is
preferable to include a defensible number of plausible
models; however, some models yield unreasonable rela-
tive values or cannot be used because they do not con-
verge; thus, the results are not valid for use in further
computation. Examinations show that these situations
typically occur when the connectivity of hydraulic

Figure 2. Coarse grid showing rivers (bold lines), observa-
tion locations (heads: dots, flux: bracket), and pumping well
location.

Figure 3. Head distribution in the synthetic model under
hydraulic conditions for prediction.

600 E. Poeter, D. Anderson GROUND WATER 43, no. 4: 597–605



conductivity units differ significantly from the true con-
ditions (Poeter and McKenna 1995). For example, if a dis-
continuous high-K field unit is represented in a model by
a continuous unit, then a low-K value may be estimated
for the high-K unit in order to compensate for too much
continuity. Model selection statistics are given for the best
18 models in Table 1. The number of parameters varied
from only three (K for one zone, recharge rate, and r2) to
seven (K for five zones, recharge rate, and r2). r2 is coun-
ted as a parameter because formally, the likelihood func-
tion in the case of normal errors reads as L(B, r2|X,g) and
means ‘‘the likelihood of the (unknown) vector of bs, and,
r2, given the data (X) and the model (g).’’ From the AICc
scores, the �i values, and weights, model 4F is the best
model, 2J ranks second, and models 5J, 4FL, and 3F have
less support, while a number of models have weights of
a few percent. The remaining models have relatively little
empirical support. Most of the 10 five-zone (seven-parame-
ter) models, are not retained based on unreasonable relative
parameter values. Although there are only 21 observations,
the more complex models receive high ranks, likely due to
the fact that all the geostatistical simulations were well
conditioned so the complex models capture the zones well.
With less conditioning, simpler models may do a better job
of capturing the gross connectivity.

Alternative Model Selection Criteria
We recommend approaches based on K-L informa-

tion (e.g., AICc) for both model selection and multimodel
inference. These methods are based on the concept that
models are approximations (i.e., there are no true models
of field systems) and select models with more parameters
(structure) as the number of observations increase. That

is, in complex systems, smaller effects are identified as
the number of observations increase.

There are many other criteria for model selection
(McQuarrie and Tsai 1998), and we offer brief comments
on some of the alternatives. The BIC (Schwarz 1978), HQ
(Hannan and Quinn’s 1979) criterion, and KIC (Kashyap
1982) have been suggested for selection of ground water
models (Carrera and Neuman 1986; Neuman 2003;
Neuman and Weirenga 2003; Ye et al. 2004). These crite-
ria are similar in form to AICc and are as follows

BIC ¼ n log ðr2Þ þ k log ðnÞ ð4Þ

HQ ¼ n log ðr2Þ þ ck log ðlog ðnÞÞ where; c> 2 ð5Þ

KIC ¼ n log ðr2Þ þ k log
� n

2p

�
þ log jXTxXj ð6Þ

where,
��XTxX

�� is the determinant of the Fisher informa-
tion matrix, X is the sensitivity matrix, X T is its transpose,
and x is weight matrix.

We do not recommend these procedures as they
assume that the true (or quasi-true) model exists in the
set of candidate models (Burnham and Anderson 2004),
and their goal is to identify this model (as n approaches
infinity, probability converges to 1.0 for the true model).
These criteria strive for consistent complexity (constant k)
regardless of the number of observations. In practice,
these criteria can perform similarly to AICc; however,
their theoretical underpinnings are philosophically weak.
McQuarrie and Tsai (1998) give a readable account of
this issue, as do Burnham and Anderson (2002, sections
6.3 and 6.4). Deeper insights are provided in Burnham
and Anderson (2004).

Recall that as the number of estimated parameters in-
creases, bias decreases but variance increases (i.e., preci-
sion decreases, error bars are larger). The alternative
criteria approach the ‘‘true model’’ asymptotically (i.e., as
the number of observations increase). However, in most
ground water models, the number of observations is small
relative to the number of parameters estimated, and these
criteria tend to select models that are too simple (i.e.,
underfitted). Thus, they tend to select for less bias and
greater certainty, which threatens to capture a precise but
inaccurate answer. We argue that it is preferable to select
the model that provides the best approximation to reality
for the number of observations available.

A final comment is that AICc and BIC can be
derived under either a Bayesian or a frequentist frame-
work. Thus, an argument for or against a criterion should
not be based on its Bayesian or frequentist lineage.
Rather, one must ask if the true (or quasi-true) model can
be expected to be in the set of candidate models in a par-
ticular discipline. If so, then criteria such as BIC, HQ,
and KIC should be used. In cases where models are
merely approximations to complex reality, AICc is pref-
erable (Burnham and Anderson 2002). In addition, AICc
has a cross-validation property that is important and
stems from its derivation (Stone 1977).

Ranks and model probabilities (weights) for the best
18 models based on AICc are presented in Table 2. BIC

Table 1
Statistics for the 18 Best Models1 (n = 21 in all)

ID** WSSR s2 k AICc Di wi

4F 9.40 0.45 5 1.1 0.0 0.2585
2J 13.67 0.65 3 1.5 0.4 0.2155
5J 8.03 0.38 6 2.4 1.3 0.1356
4FL 10.41 0.50 5 3.3 2.1 0.0884
3F 12.82 0.61 4 3.6 2.5 0.0734
3D 13.67 0.65 4 5.0 3.9 0.0374
2H 16.53 0.79 3 5.5 4.3 0.0294
2F 16.68 0.79 3 5.7 4.5 0.0267
5F 9.38 0.45 6 5.7 4.6 0.0262
2A 17.75 0.85 3 7.0 5.8 0.0139
3G 15.25 0.73 4 7.3 6.2 0.0119
2GL 18.11 0.86 3 7.4 6.3 0.0112
2E 18.14 0.86 3 7.4 6.3 0.0111
2C 18.61 0.89 3 8.0 6.8 0.0085
2B 18.71 0.89 3 8.1 6.9 0.0080
4GL 13.17 0.63 5 8.2 7.1 0.0075
2FL 19.17 0.91 3 8.6 7.5 0.0062
4D 13.52 0.64 5 8.8 7.6 0.0057

* The remaining 28 models had essentially zero weight (<5x10-03) and are not
shown.
** See Alternative Conceptual Models Section for description of model IDs.

E. Poeter, D. Anderson GROUND WATER 43, no. 4: 597–605 601

epoeter
Note
Note: The k value in this table is the number of hydrologic parameters estimated in the model.  In order to get the AICc value k must be increased by 1 as described above.



and HQ produce results similar to AICc for this particular
example, where n = 21 and k ranges from only three to
seven parameters. The same model is ranked highest by all
three measures. The same seven models occupy the top
seven ranks (constituting 89%, 93%, and 91% of the weight
for BIC, HQ, and AICc, respectively) although in slightly
different order. At lower ranks, there is more variation.

Multimodel Inference
The traditional approach to data analysis has been to

find the best model, based on some criteria or test result,
and make inferences, including predictions and estimates
of precision, conditional on this model (as if no other
models had been considered). In hindsight, this strategy
is poor for a number of reasons. Often, the best model is
not overwhelmingly best; perhaps, the weight for the best
model is only 0.25 as in Table 1. Thus, there is nonnegli-
gible support for other models. In this case, confidence
intervals estimated using the best model are too narrow,
and multimodel inference is desirable.

Model Averaging
Model averaging allows estimation of optimal

parameter values and predictions from multiple models.
Both are calculated in a similar manner; however, we dis-
cuss model averaging of predictions first because it is
straightforward due to the fact that the same items are
predicted using each model, whereas each model may not
have the same parameters.

In the example, the best model, 4F, has an AICc
weight of only 0.26. This value reflects substantial model
uncertainty. If a predicted value differs markedly across
the models (i.e., the ŷ differs across the models i = 1,

2,., R), then it is risky to base prediction only on the
selected model. An obvious possibility is to compute an
estimate of the predicted value, weighting the predictions
by the model weights (wi). This can be done under either
a frequentist or Bayesian paradigm. Here, we take the fre-
quentist approach, using K-L information because it is
easy to compute and effective in application. If no single
model is clearly superior, one should compute model-
averaged predictions as

ŷ ¼
XR
i¼1

wiŷi ð7Þ

where ŷi is the predicted value for each model i, and ŷ
denotes the model-averaged estimate.

For the estimated regression parameter, b^j, we aver-
age over all models where b^j appears

b
^
j ¼

XR9

i¼1

w9ib
^
j;i ð8Þ

Thus, the model weights must be recalculated to sum to 1
for the subset of models, R9, that include b^j. When possi-
ble, one should use inference based on the subset
of models that include b^j via model averaging because
this approach has both practical and philosophical advan-
tages. Where a model-averaged estimator can be used,
it appears to improve accuracy and estimates of uncer-
tainty, compared to using b^j from the selected best model
(Burnham and Anderson 2002, section 7.7.5). Parameter
averaging is rarely useful for ground water modeling
because use of an average parameter value in a particular
model construct is not appropriate. However, model-
averaged parameter values could provide a range of
values for a material type given its multiple representa-
tions in alternative models.

Unconditional Variance
Unconditional variance is calculated from multiple

models for either parameter values or predictions as
shown here for predictions

v̂arðŷÞ ¼
"XR

i¼1

wi

h
v̂arðŷi

���modeliÞ þ ðŷi 2 ŷÞ
2i0:5#2

ð9Þ

This expression allows for model selection uncertainty to
be part of precision because the first term represents the
variance, given one calibrated model, and the second
term represents the among-model variance, given the set
of models. This variance should be used whether the pre-
diction is model averaged or not. The standard deviation
is merely the square root of the unconditional variance.
Thus, approximate 95% confidence intervals can be
expressed using the usual procedure

95% confidence intervals on ŷ ¼ ŷ ± 2

ffiffiffiffiffiffiffiffiffiffiffi
v̂arðŷ

q
Þ ð10Þ

If a b^j is to be averaged across models where it ap-
pears, the number of models (R9) and the recalculated
model weights (w9i) must be used in expressions

Table 2
Weights in Rank Order1

Model2 BIC Model2 HQ Model2 KIC

5J 0.3034 5J 0.4280 5J 0.4549
4F 0.2638 4F 0.2473 4F 0.1884
2J 0.1086 4FL 0.0845 5F 0.0795
4FL 0.0902 5F 0.0828 4FL 0.0717
5F 0.0587 2J 0.0449 2J 0.0695
3F 0.0464 3F 0.0289 3F 0.0276
3D 0.0237 3D 0.0147 3D 0.0165
2H 0.0148 4GL 0.0072 5G 0.0116
2F 0.0134 2H 0.0061 4GL 0.0103
4GL 0.0077 2F 0.0056 2H 0.0074
3G 0.0075 4D 0.0055 2F 0.0067
2A 0.0070 4N 0.0049 5A 0.0066
4D 0.0058 3G 0.0047 3G 0.0065
2GL 0.0057 5B 0.0044 5B 0.0052
2E 0.0056 5G 0.0043 4D 0.0051
4N 0.0052 5A 0.0034 4N 0.0045
2C 0.0043 2A 0.0029 2A 0.0036
2B 0.0040 2GL 0.0023 5D 0.0035

1 Top 18 ranked models, remaining models had very low weights.
2 See ‘‘Alternative Conceptual Models’’ section for description of model la-
bels
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equivalent to Equations 9 and 10, with b
^
replacing ŷ, and

b^j replacing ŷi.

Extended Example
None of the models considered for the example prob-

lem is clearly ‘‘the best’’ as indicated by the AICc weight
of 0.26 for the model with the highest rank. The evidence
ratio for the best and second best models indicates that the
best model is only 1.2 times more likely than the second
model, given the evidence, indicating a lack of strong sup-
port for the best model. A model needs to have a weight
greater than ~0.95 before considering it as the best model
and bypassing the multimodel averaging process.

Predictive Quality of the Best Model and the
Multimodel Average

Desirable predictive models are those with small
weighted mean square error (WMSE) between their pre-
dictions and those of the generating model. The prediction
locations are 200 m upgradient (left) of the calibration
locations, which are shown in Figure 2. Weighting by the
inverse of measurement variance, using the same weights
for heads and flows as used in the calibration to account
for differences in magnitude and units of measurements,
predictive WMSE is calculated. WMSE is the sum of the
mean weighted squared differences between the 20 heads
and 2 flows predicted by the alternative models and the
true heads and flows simulated by the generating model
with the additional pumping. The correlation between
AICc and KIC model ranks and that WMSE for the 46
retained models illustrates the best fit to calibration data
does not assure the most accurate predictions at all loca-
tions in the model (Figure 4). This is also illustrated by
the relationship of the WSSR for the calibration and the
WMSE for predictions (Figure 4). It has been noted that
ground water models with the best fit to calibration data
will not necessarily produce the most accurate predictions
(Yeh and Yoon 1981; Rushton et al. 1982).

Rigorous experimental comparison of the alternative
model ranking criteria requires evaluation of many differ-
ent systems and numerous realizations of observation sets
that is beyond the scope of this paper. Such an exercise
would only reveal empirical value of the alternative
methods because their theoretical underpinning is not
well founded, as we know it is impossible to include the
true model of a ground water system in the set of models.

Predictions at most locations are fairly accurate and
readily captured by the linear confidence intervals of
most of the alternative models. Model-averaged head pre-
dictions and their Scheffe confidence intervals are pre-
sented in Figure 5 for each individual model at locations
8, 9, and 10 (located 200 m upgradient of the calibration
points with the same ID in Figure 2). At location 7, nearly
all models underestimate head, and confidence intervals
of the top four models do not capture the truth. Model
averaging (Equations 9 and 10) increases the confidence
intervals and captures the truth (i.e., the value predicted
by the generating model) (Figure 5a). Although large
numbers of simulations would be needed to make a rigor-
ous statistical evaluation, the practical similarity of the
approaches is illustrated by noting the following: of the 22
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predictions made for this example, 21 were captured by
the model-averaged intervals. The predicted head at loca-
tion 1 (Figure 5b) tends to be overestimated, and some of
the best ranked models barely capture the truth in the con-
fidence intervals based on individual model variance, but
model averaging clearly captures the truth. Head at loca-
tion 8 (Figure 5c) is not predicted successfully by any of
the models and this is so consistent that it is not captured
by model averaging. Although large numbers of simu-
lations would be needed to make a rigorous statistical
evaluations, the practical similarity of the approaches is
illustrated by noting the following: of the 22 predictions
made for this example, 12 were captured by the model-
averaged intervals.

In this example, predictions generated by the alterna-
tive models vary considerably in some locations and not
in others. This is illustrated in Figure 6 where the differ-
ence between the high and low head of all 46 models
is displayed as a function of location. It is also indicated
by noting that model averaging increases the confidence
intervals indicated by the best model on 1 of the 22
predictions by less than 25% and another by 166%, with
an average increase of 72% and a median of 64%. This
variability serves to increase model-averaged variance
through the second term of Equation 9, which is carried
forward to confidence intervals in Equation 10. Field ap-
plications are likely to exhibit more striking variation in
models including differences in geometry and boundary
conditions, hence more significant shift of prediction and
broadening of confidence intervals as a result of model
averaging.

Summary and Conclusions
Given our uncertainty of site conditions, hydrolo-

gists should routinely consider several, well-thought-out
models to maintain an open mind about the system.
Generally, inferences should stem from multiple plausible
models (multimodel inference) because it yields more
robust predictions and a more ‘‘honest,’’ realistic measure
of precision. Modelers should be keenly aware of the fact
that even multimodel inference, which provides greater
consideration for uncertainty, is vulnerable to yielding
poor predictions if fundamentally important processes are
not included in the model, predictive locations and/or
conditions differ substantially from those of the calibra-
tion, or the prediction horizon is large relative to the cali-
bration time frame as discussed by Bredehoeft (2003).

Multimodel ranking and inference approaches based
on K-L information, such as the AICc measure presented
here, are simple to compute, easy to interpret, and pro-
vide a rigorous foundation for model-based inference.
Approaches based on K-L information view models as
approximations of the truth, and assume (1) a true model
does not exist and cannot be expected to be in the set of
models and (2) as the number of observations increases,
one can uncover more details of the system; thus, AICc
will select more complex models when more observations
are available. Alternative model selection criteria (e.g.,
BIC, HQ, and KIC) seek to identify the true (or quasi-
true) model with consistent complexity as the number of

observations goes to infinity. These alternatives are based
on the assumption that reality can be nearly expressed as
a model and that this quasi-true model is in the set.
Although these measures may perform similarly in appli-
cation, it is unreasonable to assume that one would ever
include the true or quasi-true model in the set of alterna-
tive ground water models; thus, approaches based on K-L
information such as AICc are the preferable model rank-
ing and inference criterion.
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