

Basic Assumptions for Drawing a Flow Net:

- material zones are homogeneous
- isotropic hydraulic conductivity
- fully saturated
- flow is steady, laminar, continuous, irrotational
- fluid is constant density
- Darcy's Law is valid
- Drawn parallel to flow

Flow into the zone between 2 flow lines = flow out of the zone

Rules for drawing flow nets

- equipotential lines parallel constant head boundaries
- flow lines parallel no-flow boundaries
- streamlines are perpendicular to equipotential lines
- equipotential lines are perpendicular to no-flow boundaries
- the aspect ratio of the shapes formed by intersecting stream and equipotential lines must be constant
e.g. if squares are formed, the flow net must be squares throughout
(areas near boundaries are exceptions)
Each flow tube will represent the same discharage: $\mathrm{Q}=\mathrm{KiA}$

Procrastination is common. It is best to "dive in" and begin drawing. Just keep an eraser handy and do not hesitate to revise!

Draw a very simple flow net:

- equipotential lines parallel constant head boundaries
- flow lines parallel no-flow boundaries
- streamlines are perpendicular to equipotential lines
- equipotential lines are perpendicular to no-flow boundaries
- Interescting equipotential and flow lines form squares

$$
\begin{aligned}
& \text { Here is a simple net with: } \\
& 4 \text { stream lines } \\
& 3 \text { flow tubes } \mathbf{n}_{f} \\
& 6 \text { equipotential lines } \\
& 5 \text { head drops } \mathbf{n}_{\mathrm{d}} \\
& \text { Rate of flow through } 1 \text { square: } \\
& q_{A}=K i_{A} a_{A} \\
& \text { headloss in A is } \\
& \frac{H_{1}-H_{2}}{n_{d}}=\frac{H}{n_{d}} \\
& H \text { is total head loss } \\
& i_{A}=\frac{H}{\ln n_{d}} \quad a_{A}=w(1) \\
& \text { since } A \text { is square } w=I \quad \mathbf{q}_{A}=\frac{K H}{\mathbf{n}_{d}} \\
& \text { Total } \mathrm{Q} \text { per unit width = } \\
& \mathbf{Q}=\mathbf{q}_{\mathrm{A}} \mathbf{n}_{\mathrm{f}}=K H \frac{\mathbf{n}_{\mathrm{f}}}{\mathbf{n}_{\mathrm{d}}} \\
& \text { Consider an } \\
& \text { application: }
\end{aligned}
$$

[^0]
$\underset{\text { - equipotential lines parallel constant head boundaries }}{\longrightarrow}$

- flow lines parallel no-flow boundaries
- streamlines are perpendicular to equipotential lines
- equipotential lines are perpendicular to no-flow boundaries
- form squares by intersecting stream and equipotential lines

Stress caused in soil by flow $=\mathbf{j}=\boldsymbol{i} \gamma_{\mathrm{w}}$ If flow is upward, stress is resisted by weight of soil If j exceeds submerged weight of soil, soil will be uplifted

For uplift to occur $\mathbf{j}>\gamma_{\text {submerged soil }}=\gamma_{t}-\gamma_{w}$
where: $\quad \gamma_{t}-$ unit saturated weight of soil
$\gamma_{w}-$ unit weight of water
then for uplift to occur:

$$
\mathbf{i} \gamma_{w}>\left(\gamma_{t}-\gamma_{w}\right)
$$

the critical gradient for uplift then is:

$$
i_{\text {critical }}=\frac{\gamma_{t}-\gamma_{w}}{\gamma_{w}}
$$

What is the critical gradient for a soil with 30% porosity and a particle density of $2.65 \mathrm{~g} / \mathrm{cc}\left(165 \mathrm{lb} / \mathrm{ft}^{3}\right)$?

We can use the flow net to identify areas where critical gradients may occur and determine the magnitude of the gradient at those locations

A PLAN VIEW FLOW NET BY CONTOURING USING FIELD HEADS AND DRAWING FLOW LINES PERPENDICULAR: can't assume constant K or b assuming no inflow from above or below, we can evaluate relative T :
$\mathbf{Q}=\mathrm{A}_{\mathrm{A}} \mathbf{V}_{\mathbf{1}}=\mathrm{A}_{\mathrm{B}} \mathbf{V}_{\mathbf{2}}$

$$
\begin{aligned}
& \mathbf{A}_{\mathbf{A}} \mathbf{K}_{\mathrm{A}} \frac{\Delta \mathbf{h}}{\mathbf{l}_{\mathbf{A}}}=\mathbf{A}_{\mathbf{B}} \mathbf{K}_{\mathbf{B}} \frac{\Delta \mathbf{h}}{\mathbf{l}_{\mathbf{B}}} \\
& \frac{A_{A} K_{A}}{l_{A}}=\frac{A_{B} K_{B}}{l_{\mathbf{B}}} \quad \frac{K_{A}}{K_{B}}=\frac{A_{B} l_{A}}{A_{A} l_{\mathbf{B}}}
\end{aligned}
$$

"Irregularities" in "Natural" flow nets
$A=w b \quad(b=$ aquifer thickness)
$\frac{K_{A}}{K_{B}}=\frac{\mathbf{w}_{B} b_{B} l_{A}}{\mathbf{w}_{A} b_{A} l_{B}}$
$\frac{K_{A} b_{A}}{K_{B} b_{B}}=\frac{\mathbf{w}_{B} \mathbf{l}_{A}}{\mathbf{W}_{A} \mathbf{l}_{B}}=\frac{\mathbf{T}_{A}}{T_{B}}$
varying K varying flow thickness recharge/discharge vertical components of flow Nature's flow nets provide clues to geohydrologic conditions

ANISOTROPY: How do anisotropic materials influence

In the case where
Flow lines will not meet equipotential lines @ right angles, but they will if we transform the domain into an equivalent isotropic section, draw the flow net, and transform it back.

For the material above, we would either expand z dimensions or compress x dimensions
To do this we establish revised coordinates

Kz is smaller:
stretch z
$\mathbf{x}^{\prime}=\mathbf{x} \quad \mathbf{z}^{\prime}=\frac{\mathbf{z} \sqrt{\mathbf{K}_{\mathbf{x}}}}{\sqrt{\mathbf{K}_{\mathbf{z}}}}$
or shrink x
$\mathbf{x}^{\prime}=\frac{\mathbf{x} \sqrt{\mathbf{K}_{\mathbf{z}}}}{\sqrt{\mathbf{K}_{\mathbf{x}}}} \quad \mathbf{z}^{\prime}=\mathbf{z}$

Most noticeable is the lack of orthogonality when the net is transformed back

Size of the transformed region depends on whether you choose to shrink or expand but the geometry is the same.

To calculate Q or V , work with the transformed sections But use "transformed" $K \quad K^{\prime}=\sqrt{\mathbf{K}_{x} K_{z}}$

If the pond elevation is 8 m , ground surface is 6 m , the drain is at 2 m (with 1 m diameter, so bottom is at 1.5 m and top is at 2.5 m), bedrock is at $0 \mathrm{~m}, \mathrm{~K}_{\mathrm{x}}$ is $16 \mathrm{~m} /$ day and $K_{z} 1 \mathrm{~m} /$ day, what is the flow at the drain?

Transform the flow field for this system and draw a flow net.

If you want to know flow direction at a specific point within an anisotropic medium, undertake the following construction on an equipotential line:

1 - Draw an INVERSE K ellipse for semi-axes

$$
\frac{1}{\sqrt{\mathrm{~K}_{\mathrm{x}}}} \text { and } \frac{1}{\sqrt{\mathrm{~K}_{\mathrm{z}}}}
$$

2 - Draw the direction of the hydraulic gradient through the center of the ellipse and note where it intercepts the ellipse 3 - Draw the tangent to the ellipse at this point
4 - Flow direction is perpendicular to this line
try it above for $K_{x}=16 \mathrm{ft} /$ day and $K_{z}=4 f t /$ day

Toth developed a classic application of the Steady State flow equations for a Vertical 2D section from a stream to a divide His solutions describe flow nets ... both are methods for solving the flow equations

he solved the Laplace Equation

left $\frac{\partial h}{\partial x}(0, z)=0$ right $\frac{\partial h}{\partial x}(s, z)=0$
lower $\frac{\partial h}{\partial z}(x, 0)=0$
upper water table $h\left(x, z_{0}\right)=z_{0}+c x=z_{0}+\tan (\alpha) x$

Toth's result:

$$
h(x, z)=z_{0}+\frac{c s}{2}-\frac{4 c s}{\pi^{2}} \sum_{\mathrm{m}=0}^{\infty} \mathrm{a}
$$

$$
a=\frac{\cos \left[(2 m+1) \frac{\pi x}{s}\right] \cosh \left[(2 m+1) \frac{\pi z}{s}\right]}{(2 m+1)^{2} \cosh \left[(2 m+1) \frac{\pi z_{0}}{s}\right]}
$$

Toth's result for system of differing depth:

Fig. 3. Two-dimensional theoretical potential distributions and flow patterns for different depths to the horizontal impermeable boundary.

Regional Flow (Classic Papers by Freeze and Witherspoon):

homogeneous \& isoptropic with and without hummocks

Fig. 1. Effect of water-table configuration on regional groundwater flow through homogeneous isotropic mediums.

Regional Flow (Classic Papers by Freeze and Witherspoon): Layered systems / High K at depth

Regional Flow (Classic Papers by Freeze and Witherspoon):

Layered systems / Low K at depth

Fig, 2. Regional groundwater flow through layered mediums with a simple water-table configuration.

Regional Flow (Classic Papers by Freeze and Witherspoon):

Layered systems / High K at depth and hummocks

Fig. 3. Regional groundwater flow through layered mediums with a hummocky water-table configuration.

Regional Flow (Classic Papers by Freeze and Witherspoon): Partial layers and lenses

Fig. 4. Regional groundwater flow through partial layers and lenses.

Regional Flow (Classic Papers by Freeze and Witherspoon):
Layered systems / sloping stratigraphy

Fig. 5. Regional groundwater flow in regions of sloping stratigraphy.

Regional Flow (Classic Papers by Freeze and Witherspoon): Anisotropic systems

 $\mathrm{Kh}=10$
 $K v=1$
 Kh=1
 Kv=10
 Kh=1
 $K v=10$
 $K h=10$
 $\mathrm{Kv}=1$
 Above transformed

 Fig. 6. Effect of anisotropy on regional groundwater flow

Explore the Flow Net Software at

http://www.mines.edu/~epoeter/_GW/11FlowNets/topodrive

[^0]: A sand filter has its base at 0 meters and is 10 meters high. It is the same from top to bottom. A plan view, to-scale diagram of it is shown below. There is an impermeable pillar in the center of the filter. Reservoirs on the left and right are separated from the sand by a screen that only crosses a portion of the reservoir wall. The head in the inlet reservoir on the left is 20 m and the outlet reservoir on the right is 12 m . Properties of the sand are: $K=1 \times 10^{-3} \mathrm{~m} / \mathrm{s} \mathrm{S}=1 \times 10^{-3} \quad \mathrm{SY}=0.2$. Draw and label a flow net. Calculate the discharge through the system using units of meters and seconds. What is the head at the location of the * at the top of the tank? What is the pressure at that location?

