NOTE: Supplemental Materials pages 9-12 Page 9 Piper Graph Paper Page 10-11 Chemical Constants Page 12 Well Functions

PROBLEM #1 - 25 points USE UNITS of FEET and DAYS

WRITE YOUR ANSWER TO THE FOLLOWING QUESTION ON THE NEXT PAGE, SHOW YOUR WORK. The question is repeated on the next page for your convenience.

USE UNITS of FEET and DAYS

The pumping well in the figure below withdraws 40,000 ft³/day of groundwater beginning on Nov 1st at noon. At noon on Nov 4 the withdrawal of groundwater is decreased to a rate of 25,000 ft³/day. What is the drawdown at the observation well on Nov 6 @ noon?

PROVIDE CALCULATIONS AND ANSWERS TO PROBLEM 1 HERE

USE UNITS of FEET and DAYS SHOW YOUR WORK!!!!

The pumping well in the figure on the previous page withdraws 40,000 ft³/day of groundwater beginning on Nov 1st at noon. At noon on Nov 4 the withdrawal of groundwater is decreased to a rate of 25,000 ft³/day. What is the drawdown at the observation well on Nov 6 @ noon?

PROBLEM #2 – 25 points USE UNITS of FEET SECONDS

WRITE YOUR ANSWER TO THE FOLLOWING QUESTIONS ON THE NEXT PAGE, SHOW YOUR WORK. The question is repeated on the next page for your convenience.

USE UNITS of FEET SECONDS

An aquifer test was conducted and data are shown below. The fully penetrating observation well where the drawdown data were collected was 190 ft from the pumping well. Initial saturated thickness of the aquifer was = 88 ft. The pumping rate was 35 GPM which is 0.078 ft³/sec. Tell me everything you can about the aquifer using these data.

PROVIDE CALCULATIONS AND ANSWERS TO PROBLEM 2 HERE

USE UNITS of FEET SECONDS SHOW YOUR WORK!!!!

An aquifer test was conducted and data are shown on the previous page. The fully penetrating observation well where the drawdown data were collected was 190 ft from the pumping well. Initial saturated thickness of the aquifer was = 88 ft. The pumping rate was 35 GPM which is 0.078 ft³/sec. Tell me everything you can about the aquifer using these data.

PROBLEM #3 – 25 points

WRITE ANSWERS TO THE FOLLOWING QUESTIONS ON THE NEXT PAGE, SHOW YOUR WORK. These questions are repeated on the next page for your convenience.

Evaluate the water analysis shown below. Provide calculations to support your answer.

- a) (15) Is the water analysis shown below of sufficient quality to use for an aquifer water chemistry study?
- b) (5pts) Plot the analysis on the attached Piper Diagram (page 9 of this exam).
- c) (2pts) What type of water is this sample?
- d) (3pts) If the analysis of another sample from a well 50 miles down gradient in the same aquifer plotted at location [A] on the piper diagram of page 9 what could you say about groundwater in the aquifer?

TEMP	15	С
HCO ₃ ⁻	198.4	mg/L
Cľ	114.9	mg/L
K ⁺	9.9	mg/L
Ca ⁺²	74.4	mg/L
Mg ⁺²	18.1	mg/L
Na⁺	130	mg/L
SO ₄ ⁻²	227.1	mg/L
Total Dissolved Solids	733	mg/L
Alkalinity as CaCO ₃	162.6	mg/L
pН	7.37	units

PROVIDE CALCULATIONS AND ANSWERS TO PROBLEM 3 HERE

a) (15) Is the water analysis on the previous page of sufficient quality to use for an aquifer water chemistry study?

b) (5pts) Plot the analysis on the attached Piper Diagram (page 9 of this exam).

- c) (2pts) What type of water is this sample?
- d) (3pts) If the analysis of another sample from a well 50 miles down gradient in the same aquifer plotted at location [A] on the piper diagram of page 9 what could you say about groundwater in the aquifer?

PROBLEM #4 - 25 points USE UNITS of METERS SECONDS and GRAMS

WRITE ANSWERS TO THE FOLLOWING QUESTIONS ON THE NEXT PAGE, SHOW YOUR WORK. These questions are repeated on the next page for your convenience.

NOTE: THIS IS THE SAME WATER ANALYSIS THAT YOU EVALUATED IN PROBLEM #3

- a) (5pts) All of the alkalinity is comprised of HCO_3 . Why does the value for alkalinity differ from the concentration of HCO_3 ? Provide calculations to support your answer.
- b) (12pts) Is the water saturated with calcium sulfate (CaSO₄)? Provide calculations to support your answer.
- c) (5pts) Will calcium carbonate (CaCO₃) precipitate from this sample? Provide calculations to support your answer.
- d) (3pts) Will this water cause corrosion? Provide calculations to support your answer.

TEMP	15	С
HCO ₃ ⁻	198.4	mg/L
Cľ	114.9	mg/L
K ⁺	9.9	mg/L
Ca ⁺²	74.4	mg/L
Mg ⁺²	18.1	mg/L
Na⁺	130	mg/L
SO ₄ -2	227.1	mg/L
Total Dissolved Solids	733	mg/L
Alkalinity as CaCO ₃	162.6	mg/L
рН	7.37	units

PROVIDE CALCULATIONS AND ANSWERS TO PROBLEM 4 HERE

- a) (5pts) All of the alkalinity is comprised of HCO₃. Why does the value for alkalinity differ from the concentration of HCO₃? Provide calculations to support your answer.
- b) (12pts) Is the water saturated with calcium sulfate (CaSO₄)? Provide calculations to support your answer.

c) (5pts) Will calcium carbonate (CaCO₃) precipitate from this sample? Provide calculations to support your answer.

d) (3pts) Will this water cause corrosion? Provide calculations to support your answer.

т, [.] С	K _m	K ₁	K ₂	K_{sp}						
5		3.02 x 10 ⁻⁷	2.75 x 10 ⁻¹¹	8.13 x 10 ⁻⁹						
10		3.46 x 10 ⁻⁷	3.24 x 10 ⁻¹¹	7.08 x 10 ⁻⁹						
15		3.80 x 10 ⁻⁷	3.72 x 10 ⁻¹¹	6.03 x 10 ⁻⁹						
20		4.17 x 10 ⁻⁷	4.17 x 10 ⁻¹¹	5.25 x 10 ⁻⁹						
25	1.58 x 10 ⁻³	4.47 x 10 ⁻⁷	4.68 x 10 ⁻¹¹	4.57 x 10 ⁻⁹						
40		5.07 x 10 ⁻⁷	6.03 x 10 ⁻¹¹	3.09 x 10 ⁻⁹						
60		5.07 x 10 ⁻⁷	7.24 x 10 ⁻¹¹	1.82 x 10 ⁻⁹						
$K_{m} = \frac{[H_{2}CO_{3}]}{[CO_{2}]_{aq}} K_{1} = \frac{[H^{+}][HCO_{3}]}{[H_{2}CO_{3}]} K_{2} = \frac{[H^{+}][CO_{3}]^{-2}}{[HCO_{3}]}$										

Carbonate Equilibrium Constants as a Function of Temperature

K _{en} =	Solubility	product for	CaCO ₃
'sp -	Colubility	production	Cucc3

1 H Hydrogen 1.00794	2 IIA		13 IIIA		14 IVA		15 VA		16 VIA		17 VIIA		2 He Helium 4.002602	2
3 Li Lithium 6.941	4 Be Beryllium 9.012182	2 2	5 B Boron 10.811	23	6 C Carbon 12.0107	2 4	7 N Nitrogen 14.00674	2 5	8 O Oxygen 15.9994	2 6	9 F Fluorine 18.9984032	27	10 Ne Neon 20.1797	2 8
11 Na Sodium 22.989770	12 Mg Magnesium 24.3050	2 8 2	13 Al Aluminum 26.981538	2 8 3	14 Si Silicon 28.0855	2 8 4	15 P Phosphorus 30.973761	2 8 5	16 S Sulfur 32.066	2 8 6	17 Cl Chlorine 35.4527	2 8 7	18 Ar Argon 39.948	2 8 8
19 K Potassium 39.0983	20 Ca Calcium 40.078	2 8 8 2	31 Ga Gallium 69.723	2 8 18 3	32 Ge Germanium 72.61	2 8 18 4	33 As Arsenic 74.92160	2 8 18 5	34 Se Selenium 78.96	2 8 18 6	35 Br Bromine 79.904	2 8 18 7	36 Kr Krypton 83.80	2 8 18 8
37 Rb Rubidium 85.4678	38 Sr Strontium 87.62	2 8 18 8 2	49 In Indium 114.818	2 8 18 18 3	50 Sn Tin 118.710	2 8 18 18 4	51 Sb Antimony 121.760	2 8 18 18 5	52 Te Tellurium 127.60	2 8 18 18 6	53 lodine 126.90447	2 8 18 18 7	54 Xe Xenon 131.29	2 8 18 18 8
55 Cs Cesium 132.90545	56 Ba Barium 137.327	2 8 18 18 8 2	81 TI Thallium 204.3833	2 8 18 32 18 3	82 Pb Lead 207.2	2 8 18 32 18 4	83 Bi Bismuth 208.98038	2 8 18 32 18 5	84 Po Polonium (209)	2 8 18 32 18 6	85 At Astatine (210)	2 8 18 32 18 7	86 Rn Radon (222)	2 8 18 32 18 8

GW Engineering EXAM II FALL 2010

	Gibbs
	Δ _f G (kJ)mol
Substance (form)	1
AI (s)	0
Al ₂ SiO ₅ (kyanite)	-2443.88
Al₂SiO₅ (andalusite)	-2442.66
Al ₂ SiO ₅ (sillimanite)	-2440.99
Ar (g)	0
C (graphite)	0
C (diamond)	2.9
	-50.72
$C_2 H_6 (g)$	-32.02
	-23.45
C ₂ H₅OH (I)	-174.70
C ₆ H ₁₂ O ₆ (glucose)	-910
	-394.36
$CO_{2}(g)$	-527.81
	-623.08
	-586 77
$C_{2}^{2+}(2\pi)$	-552 59
Ca (aq)	-1128.8
$CaCO_3$ (calcite)	120.0
CaCO ₂ (aragonite)	-1127.8
CaCl. (s)	-748 1
$Cl_{\alpha}(q)$	0
	-131 23
Cu (s)	0
Fe (s)	0
H ₂ (g)	0
H (g)	203.25
H⁺ (aq)	0
H ₂ O (I)	-237.13
H ₂ O (g)	-228.57
He (g)	0
ng (i)	0
	-16.45
$N_{13}(g)$	261.94
Na (aq)	-201.91
NaAlSi ₂ O ₂ (albite)	-3711.5
NaAlSi ₂ O ₂ (iadeite)	-2852.1
Ne (a)	0
	0
	16.4
0 ₂ (aq)	16.4
OH [*] (aq)	-157.24
Pb (s)	0
PbO ₂ (s)	-217.33
PbSO ₄ (s)	-813
SO42- (aq)	-744.53
HSO, (ag)	-755.91
SiO (a quartz)	-856 64
SiO_2 (a quartz)	1207.67
H ₄ SIO ₄ (aq)	-1307.67

NAME_____

Values of R	Units (V·P·T ⁻¹ ·n ⁻¹)
8.314472	J·K ⁻¹ ·mol ⁻¹
0.0820574587	L·atm·K ⁻¹ ·mol ⁻¹
83.14472	cm ³ ·bar·mol ⁻¹ ·K ⁻¹
8.20574587 × 10 ⁻⁵	m ³ ∙atm·K ⁻¹ ·moΓ ¹
8.314472	cm ³ ·MPa·K ⁻¹ ·mol ⁻¹
8.314472	L·kPa·K ⁻¹ ·mol ⁻¹
8.314472	m ³ ·Pa·K ^{−1} ·moΓ ¹
62.36367	L∙mmHg∙K ⁻¹ ∙moΓ ¹
62.36367	L·Torr·K ⁻¹ ·moΓ ¹
83.14472	L·mbar·K ⁻¹ ·moΓ ¹
0.08314472	L·bar·K ⁻¹ ·moΓ ¹
1.987	cal·K ⁻¹ ·mol ⁻¹
6.132440	lbf·ft·K ⁻¹ ·g-mol ⁻¹
10.73159	ft ³ ·psi· °R ⁻¹ ·lb-mol ⁻¹
0.7302413	ft ³ ·atm·°R ⁻¹ ·lb-mol ⁻¹
998.9701	ft ³ ·mmHg·K ⁻¹ ·lb-mol ⁻¹
8.314472 × 10 ⁷	erg·K ⁻¹ ·mol ⁻¹

heavy	scale	scale	IIennal	corrosive	very corrosive	
	5.5	6.2	6.8 RI		8.5	-

<i>u</i>	W(u)	u	W(u)	и	W(u)	u	W(u)	
1×10^{-10}	22.45	7×10^{-8}	15.90	4×10^{-5}	9.55	1×10^{-2}	4.04	
2	21.76	8	15.76	5	9.33	2	3.35	
3	21.35	9	15.65	6	9.14	3	2.96	
4	21.06	1×10^{-7}	15.54	7	8.99	4	2.68	
5	20.84	2	14.85	8	8.86	5	2.47	
6	20.66	3	14.44	9	8.74	6	2.30	
7	20.50	4	14.15	1×10^{-4}	8.63	7	2.15	
8	20.37	5	13.93	2	7.94	8	2.03	
9	20.25	6	13.75	3	7.53	9	1.92	
$1 imes 10^{-9}$	20.15	7	13.60	4	7.25	1×10^{-1}	1.823	
2	19.45	8	13.46	5	7.02	2	1.223	
3	19.05	9	13.34	6	6.84	3	0.906	
4	18.76	1×10^{-6}	13.24	7	6.69	4	0.702	
5	18.54	2	12.55	8	6.55	5	0.560	
6	18.35	3	12.14	9	6.44	6	0.454	
7	18.20	4	11.85	$1 imes 10^{-3}$	6.33	7	0.374	
8	18.07	5	11.63	2	5.64	8	0.311	
9	17.95	6	11.45	3	5.23	9	0.260	
$1 imes 10^{-8}$	17.84	7	11.29	4	4.95	$1 imes 10^{0}$	0.219	
2	17.15	8	11.16	5	4.73	2	0.049	
3	16.74	9	11.04	6	4.54	3	0.013	
4	16.46	$1 imes 10^{-5}$	10.94	7	4.39	4	0.004	
5	16.23	2	10.24	8	4.26	5	0.001	
6	16.05	3	9.84	9	4.14			

				Ар	pend	lix 3	Value	s of th	e func	tions V	V(u, r/l	B) for v	arious va	alues of	u				
r/B II	0.002	0.004	0.006	0.008	0.01	0.02	0.04	0.06	0.08	0.1	0.2	0.4	0.6	0.8	1	2	4	6	8
0	12.7	11.3	10.5	9.89	9.44	8.06	6.67	5.87	5.29	4.85	3.51	2.23	1.55	1.13	0.842	0.228	0.0223	0.0025	0.0003
0.000002	12.1	11.2	10.5	9.89	9.44					1								1	
0.000004	11.6	11.1	10.4	9.88	9.44			1		-								100	
0.000006	11.3	10.9	10.4	9.87	9.44						1000	12. 16. 20	19 10 10	6470 P.			100		
0.000008	11.0	10.7	10.3	9.84	9.43					100	1.	2 6 2	Per la	214-	11 12 13		192		
0.00001	10.8	10.6	10.2	9.80	9.42	8.06		1.1	1.5				6 C					1.1	
0.00002	10.2	10.1	9.84	9.58	9.30	8.06			1.15	-			1.1.1.1	-					
0.00004	9.52	9.45	9.34	9.19	9.01	8.03	6.67						1		-				
0.00006	9.13	9.08	9.00	8.89	8.77	7.98	6.67		-										
0.00008	8.84	8.81	8.75	8.67	8.57	7.91	6.67			1000	100		120	15.031055	and been	8			
0.0001	8.62	8.59	8.55	8.48	8.40	7.84	6.67	5.87	5.29		1 12	1	1						
0.0002	7.94	7.92	7.90	7.86	7.82	7.50	6.62	5.86	5.29	21.0	13 200	(a () b	100 100	200		1-1-5	100 10 1		
0.0004	7.24	7.24	7.22	7.21	7.19	7.01	6.45	5.83	5.29	4.85	in north		100	OV NEW	1	and a			
0.0006	6.84	6.84	6.83	6.82	6.80	6.68	6.27	5.77	5.27	4.85	10000								
0.0008	6.55	6.55	6.54	6.53	6.52	6.43	6.11	5.69	5.25	4.84								1	
0.001	6.33	6.33	6.32	6.32	6.31	6.23	5.97	5.61	5.21	4.83	3.51	2.2	1991						1.10
0.002	5.64	5.64	5.63	5.63	5.63	5.59	5.45	5.24	4.98	4.71	3.50		100	1.0				100	
0.004	4.95	4.95	4.95	4.94	4.94	4.92	4.85	4.74	4.59	4.42	3.48	2.23	111	1.1	1.12		V David	- 11	-
0.006	4.54 -		- A. 200 11		- 4.54	4.53	4.48	4.41	4.30	4.18	3.43	2.23	184 191 111	23448	31.2			12 102	200
0.008	4.26 -	-	about a		- 4.26	4.25	4.21	4.15	4.08	3.98	3.36	2.23	1.0	0.000	2 202	239 22 19	1.1.1.1	10.25	0.1
0.01	4.04 -	-	A REAL PROPERTY.	12.05	- 4.04	4.03	4.00	3.95	3.89	3.81	3.29	2.23	1.55	1.13	110	201	1011145	18-21	
0.02	3.35 -			1. 1983	- 3.35	3.35	3.34	3.31	3.28	3.24	2.95	2.18	1.55	1.13	1.11	1	1 Trisa	10.94	
0.04	2.68 -		in the	-	- 2.68	2.68	2.67	2.66	2.65	2.63	2.48	2.02	1.52	1.13	0.842	100	1.00	-	
0.06	2.30 -	-	-		- 2.30	2.29	2.29	2.28	2.27	2.26	2.17	1.85	1.46	1.11	0.839		- suman		
0.08	2.03 -	-	-		in the second	- 2.03	2.02	2.02	2.01	2.00	1.94	1.69	1.39	1.08	0.832				
0.1	1.82 -		a balance in	-0110			- 1.82	1.82	1.81	1.80	1.75	1.56	1.31	1.05	0.819	0.228			
0.2	1.22 -		CINES	10124		1.181	- 1.22	1.22	1.22	1.22	1.19	1.11	0.996	0.857	0.715	0.227	A STREET		
0.4	0.702 -		-	-	_		-0.702	0.702	0.701	0.700	0.693	0.665	0.621	0.565	0.502	0.210		-	
0.6	0.454 -	_		11.00		11.62	-0.454	0.454	0.454	0.453	0.450	0.436	0.415	0.387	0.354	0.177	0.0222		
0.8	0.311 -	-	_		111		-0.311	0.310	0.310	0.310	0.308	0.301	0.289	0.273	0.254	0.144	0.0218		110
1	0.219 -				1	-				- 0.219	0.218	0.213	0.206	0.197	0.185	0.114	0.0207	0.0025	
2	0.049 -		1	_	-		_				- 0.049	0.048	0.047	0.046	0.044	0.034	0.011	0.0021	0.0003
4	0.0038-	1	-				-			1.12		- 0.0038	0.0037	0.0037	0.0036	0.0031	0.0016	0.0006	0.0002
6	0.0004-		-					_		-		0.0000		0.000	0.0004	0.0003	0.0002	0.0001	0
8	0		_		-								_					Sec. S.	0

Source: After M. S. Hantush, "Analysis of Data from Pumping Test in Leaky Aquifers," Transactions, American Geophysical Union, 37 (1956):702-14.