beta	erf(beta)		
	1.00E-07	1.13E-07	
	1.00E-06	1.13E-06	
	1.00E-05	1.13E-05	
	1.00E-04	0.000113	
	1.00E-03	0.001128	
	1.00E-02	0.011283	
	0.1	0.112463	
	1	0.842701	
	2	0.995322	
	3	0.999978	
	4	1	
	5	1	
	6	1	
	10	1	

Capture Zone in an Unconfined Aquifer:

Maximum Width:

$$\mathbf{y}_{\max} = \frac{\pm \mathbf{QL}}{\mathbf{K} \left(\mathbf{h}_1^2 - \mathbf{h}_2^2 \right)}$$

L = distance between pre-pumping up&down gradient heads h_1 and h_2

substitute smaller y values to find x location of various widths

$$\chi = \frac{-y}{\tan\left(\frac{\pi K \left(h_1^2 - h_2^2\right)y}{QL}\right)}$$

NOTE: tangent is for angle in radians

down gradient distance to stagnation point

$$\mathbf{x}_{\mathrm{p}} = \frac{-\mathrm{QL}}{\pi \mathrm{K} \left(\mathrm{h}_{1}^{2} - \mathrm{h}_{2}^{2} \right)}$$

