

Capture Zone in an Unconfined Aquifer:
Maximum Width:

$$
\mathbf{y}_{\text {max }}=\frac{ \pm \mathbf{Q L}}{\mathbf{K}\left(\mathbf{h}_{1}^{2}-\mathbf{h}_{2}^{2}\right)}
$$

$L=$ distance between pre-pumping up\&down gradient heads h_{1} and h_{2} substitute smaller y values to find x location of various widths

$$
X=\frac{-y}{\tan \left(\frac{\pi K\left(h_{1}^{2}-h_{2}^{2}\right) y}{Q L}\right)}
$$

NOTE: tangent is for angle in radians

down gradient distance to stagnation point

$$
\mathbf{x}_{\mathrm{p}}=\frac{-\mathrm{QL}}{\pi K\left(\mathrm{~h}_{1}^{2}-h_{2}^{2}\right)}
$$

$$
\begin{aligned}
& \text { Confined } \\
& \mathbf{y}_{\text {max }}=\frac{ \pm \mathbf{Q}}{2 K b i} \quad \mathbf{x}_{\mathbf{p}}=\frac{-\mathbf{Q}}{2 \pi \mathbf{K b i}} \quad \mathbf{y}_{\max }=\frac{ \pm \mathbf{Q L}}{\mathbf{K}\left(\mathbf{h}_{1}^{2}-\mathbf{h}_{2}^{2}\right)} \quad \mathbf{x}_{\mathbf{p}}=\frac{-\mathbf{Q L}}{\pi K\left(\mathbf{h}_{1}^{2}-\mathbf{h}_{2}^{2}\right)}
\end{aligned}
$$

Let's explore this
$K=0.01 \mathrm{~m} / \mathrm{sec}$ effective porosity $=0.26$
$\mathrm{b}=20 \mathrm{~m}$
$i=0.001$
plume $\sim 300 \mathrm{~m}$ across $\sim 1200 \mathrm{~m}$ long
volume of water currently contaminated is the minimum volume to be collected
minimum volume to be collected $=300 \mathrm{~m} * 1200 \mathrm{~m} * 20 \mathrm{~m} * 0.26=1.9 \times 10^{6} \mathrm{~m}^{3}$
Time to pump that volume $=$ Volume $/ \mathrm{Q}$
Time to pump that volume at $Q=0.072 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}=3.1 \times 10^{7} \mathrm{sec} \sim 301$ days
Can we support that pumping rate? What will the drawdown be?
Removal of one volume will not capture all, estimate drawdown near well at 2 years

$$
\begin{aligned}
& s=\frac{Q}{4 \pi T} W\left(\left(r^{2} s\right) /(4 \mathrm{~T} t)\right)=\frac{0.072 \mathrm{~m}^{3} / \mathrm{s}}{43.140 .2 \mathrm{~m}^{2} / \mathrm{s}} W\left[\left((0.1 \mathrm{~m})^{2} 0.26\right) /\left(40.2 \mathrm{~m}^{2} / \mathrm{s} 365 \mathrm{~d} 2 \mathrm{y} 86400 \mathrm{~s}\right)\right]= \\
&=0.029 \mathrm{~m} W\left(5.15 \times 10^{-11}\right)=0.029 \mathrm{~m} 23.1=0.67 \mathrm{~m} \\
&\quad \text { (in the confined case } W(u) \sim 33.2 \mathrm{~s} \sim 1 \mathrm{~m})
\end{aligned}
$$

What could we do if this drawdown were too large?

