

Left side: $(r, h)(5$, avoid using pumping well) $(12.5,21.5)(19.5,22)(27,25.5)$
Right side:(r,h) $(5$, avoid using pumping well) $(13,18.5)(19.5,22)(27,25.5)$ Q = $1015 \mathrm{ml} / 18 \mathbf{~ s e c}$

$3.14\left((25.5 \mathrm{~cm})^{2}-(21.5 \mathrm{~cm})^{2}\right)$

$$
K=0.07 \mathrm{~cm} / \mathrm{sec}
$$

$3.14\left((20.5 \mathrm{~cm})^{2}-(18.5 \mathrm{~cm})^{2}\right)$
$K=0.1 \mathrm{~cm} / \mathrm{sec}$

Suppose you are given a concentrated solution of HCl labeled as $37.0 \% \mathrm{HCl}$, with a solution density of $1.19 \mathrm{~g} / \mathrm{mL}$ What is the Molarity of HCl ?
(1) Begin with the assumption of 100 g of solution

$$
\frac{37 \mathrm{~g} \text { of solutes }}{100 \mathrm{~g} \text { of solution }(37 \mathrm{~g} \text { of solutes }+63 \mathrm{~g} \text { of solvent })}
$$

(2) To find molarity, we need to determine the moles of HCl (solute)

$$
\operatorname{moles}(\mathrm{mol})=\frac{\operatorname{mass}(\mathrm{g})}{\operatorname{molar} \text { mass }\left(\frac{\mathrm{g}}{\mathrm{~mol}}\right)}=\frac{37 \mathrm{~g}}{36.5\left(\frac{\mathrm{~g}}{\mathrm{~mol}}\right)}=1.01 \mathrm{~mol}
$$

(3) Convert the known mass of solution, $\mathbf{1 0 0} \mathbf{g}$ solution, to liters of solution, using the density of the solution:

$$
\frac{100 \mathrm{~g}}{1.19\left(\frac{\mathrm{~g}}{\mathrm{~mL}}\right)} \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.084 \mathrm{~L} \text { solution }
$$

(4) Calculate the molarity (M)

$$
\frac{1.01 \mathrm{~mol} \mathrm{HCl}}{0.084 \mathrm{~L} \text { solution }}=12.0 \frac{\mathrm{~mol}}{\mathrm{~L}}
$$

UNITS OF EXPRESSION

Equivalents and Normality (N) - units : equivalents/liter
Equivalents (eq) are similar to moles, but take into account the valence of an ion (i.e. \# of reactive units)
$0.002 \mathrm{~mol} \mathrm{~L}^{-1}$ of $\mathrm{Ca}^{2+}=0.004 \mathrm{eq} \mathrm{L}^{-1} \mathrm{Ca}^{2+}$
$0.001 \mathrm{~mol} \mathrm{~L}^{-1}$ of $\mathrm{Na}^{+}=0.001 \mathrm{eq} \mathrm{L}^{-1} \mathrm{Na}^{+}$ $0.003 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Al}^{3+}=0.009 \mathrm{eq} \mathrm{L}^{-1} \mathrm{Al}^{3+}$

Normality (N) is another name for eq L^{-1}
Alkalinity and Hardness are important parameters that are expressed as eq L-1 or meq L-1 (more on these later)
Say a laboratory reports the concentration of $\mathbf{C a}^{2+}$ in a water sample as $92 \mathrm{mg} / \mathrm{L}$. What is the normality of Ca^{2+} ?

Given the following ground water analysis:

Constituents	Conc.(ppm)
Na^{+}	145
Ca^{2+}	134
Mg^{2+}	44
$\mathrm{HCO}_{3}{ }^{-}$	412
$\mathrm{SO}_{4}{ }^{2-}$	429
Cl^{-}	34
TDS	1049.9
pH	5.5

Calculate the $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$of the sample
Since pH is the negative logarithm of [$\mathrm{H}+$]
the value of $[\mathrm{H}+]$ is $10^{-5.5}$
$[\mathrm{H}+][\mathrm{OH}-]=10^{-14}$
$[\mathrm{OH}-]=10^{-14}[\mathrm{H}+]=10^{-14} / 10^{-5.5}=10^{-8.5}$

