

Suppose a groundwater analysis indicates $5x10^{-2}$ mol/L Ca²⁺ and $7x10^{-3}$ mol/L SO₄²⁻ (assume TDS = 300 mg/L) Is this water saturated with respect to anhydrite? Determine the ionic strength in solution based on TDS $I = (2.5 \times 10^{-5}) \times TDS(mg/L)$ I = 0.0075Determine activity coefficient for both Ca⁺² and SO₄⁻² $\log \gamma_{Ca^{+2}} = \log \gamma_{SO_4^{-2}} = -\frac{0.5(+2)^2(0.0075)^{1/2}}{1+(0.0075)^{1/2}} = -0.16$ $\gamma_{Ca^{+2}} = \gamma_{SO_4^{-2}} = 0.69$

Suppose a groundwater is analysis indicates $5x10^{-2}$ mol/L Ca²⁺ and 7x10⁻³ mol/L SO₄²⁻ (assume TDS = 300 mg/L) Is this water saturated with respect to anhydrite? $CaSO_4(s) \leftrightarrow Ca^{2+} + SO_4^{2-}$ $SI = log\left(\frac{IAP}{K_{SP}}\right) = log\left(\frac{(Ca^{2+})_{act}(SO_4^{2-})_{act}}{K_{SP}}\right)$ $= log\left(\frac{\gamma_{Ca}[Ca^{2+}]\gamma_{SO_4}[SO_4^{2-}]}{K_{SP}}\right)$ $IAP = 0.69(5x10^{-2})0.69(7x10^{-3}) = 1.68x10^{-4} = 10^{-3.77} mol^2 L^{-2}$ $K_{SP} = 10^{-4.24} mol^2 L^{-2}$ $(IAP) = (10^{-3.77})$

SI = log
$$\left(\frac{1AP}{K_{SP}}\right)$$
 = log $\left(\frac{10^{-3.77}}{10^{-4.24}}\right)$ = 0.47

In this case, SI > 0, i.e., $IAP > K_{SP}$, so the solution is supersaturated and anhydrite should precipitate

Consider the acid-base reaction $H_2CO_3 \leftrightarrow HCO_3^- + H^+$ $K = 10^{-6.35}$ Which way should the reaction go if pH = 7 $a_{H_2CO_3} = 10^{-4}$ $a_{HCO_3^-} = 10^{-3}$? First, calculate the *IAP* Recall $pH = -\log a_{H^+}$ so $a_{H^+} = 10^{-7}$ $IAP = \frac{a_{HCO_3^-}a_{H^+}}{a_{H_2CO_3}} = \frac{(10^{-3})(10^{-7})}{(10^{-4})} = 10^{-6}$ *IAP* > *K* (10⁻⁶ > 10^{-6.35}) The reaction will shift to the left until *IAP* = *K* so more H_2CO_3 will be formed

CORRECTION on Check Correctness of Analysis: Calculate TDS		
Solute	Measured Conc (mg/L)	Calculated TDS = 0.6Alkalinity + Na + K + Ca + Mg +
Ca ²⁺	92.0	$CI + SO_4 + SIO_2 + NO_3 - N + F$
Mg ²⁺	34.0	0.6Alkalinity because CO ₃ 60% of CaCO ₃ by weight
Na +	8.2	Reported Alkalinity <u>OR</u>
K +	1.4	[HCO ₃ -] * <u>50g/eq CaCO</u> 3 = 266.4mg/L
Fe(III)	0.1	61g/eq HCO ₃ ⁻
HCO ₃ -	325.0	What is the Calculated TDS? Measured TDS > Calculated TDS because some species not included in the calculation (e.g. Fe ⁺³)
SO ₄ ²⁻	84.0	
CI -	9.6	
NO ₃ -	13.0	measured TDS
acceptable range: $1.0 < \frac{1.2}{\text{calcuated TDS}} < 1.2$		
If the ratio is out of the range, reanalyzeMeasured value in this case 603.5 mg/L What is the ratio? Is it acceptable?		