If we only consider advection and

 start with a "point" of material with $\mathrm{C}_{0}=1000 \mathrm{mg} / \mathrm{I}$A point has no volume so can it have a concentration? So why do we say a "point"?

$$
\begin{gathered}
\mathrm{K}=0.1 \mathrm{~cm} / \mathrm{sec} \\
\mathrm{dh}=10 \mathrm{~cm} \\
\mathrm{dI}=100 \mathrm{~cm} \\
\phi=0.2
\end{gathered}
$$

How long will it take for the material to move 50 cm ?
What will the concentration be at that location at that time?
in the down gradient direction

$$
\begin{aligned}
& \overline{\mathrm{v}}=\frac{\mathrm{Kdh}}{\phi \mathrm{dl}}=\frac{0.1 \frac{\mathrm{~cm}}{\mathrm{sec}}}{0.2} \frac{10 \mathrm{~cm}}{100 \mathrm{~cm}}=0.05 \frac{\mathrm{~cm}}{\mathrm{sec}} \\
& \mathrm{~d}=\overline{\mathrm{v}} \mathrm{t} \\
& t=\frac{\mathrm{d}}{\overline{\mathrm{v}}}=\frac{50 \mathrm{~cm}}{0.05 \frac{\mathrm{~cm}}{\mathrm{sec}}}=1000 \mathrm{sec}=0.28 \mathrm{hr} \\
& C=C_{0}=1000 \frac{\mathrm{mg}}{\mathrm{l}}
\end{aligned}
$$

Suppose that source enters the up gradient end of a column At a continuous concentration of $C_{0}=1000 \mathrm{mg} / \mathrm{I}$

$$
\begin{gathered}
\mathrm{K}=0.1 \mathrm{~cm} / \mathrm{sec} \\
\mathrm{dh}=10 \mathrm{~cm} \\
\mathrm{dI}=100 \mathrm{~cm} \\
\phi=0.2
\end{gathered}
$$

duhat will the concentration be at 50 cm after 1000sec 3
average linear velocity

$$
\bar{v}=\frac{K d h}{\phi d l}=\frac{0.1 \frac{\mathrm{~cm}}{\mathrm{sec}}}{0.2} \frac{10 \mathrm{~cm}}{100 \mathrm{~cm}}=0.05 \frac{\mathrm{~cm}}{\mathrm{sec}}
$$

distance traveled in 1000sec?

$$
d=\bar{v} t=0.05 \frac{\mathrm{~cm}}{\mathrm{sec}} 1000 \mathrm{sec}=50 \mathrm{~cm}
$$

By inspection we know that the concentration should be $0.5^{*} C_{0}=500 \mathrm{mg} / \mathrm{I}$ But let's carry out the calculation

ALERT! ALERT! CORRECTION IN SUBSEQUENT LECTURE

Experiment with the spreadsheet

http://inside.mines.edu/~epoeterI_GW/22ContamTrans/C1d.xIs

Note the values of C using only the first term and then both terms at times and locations where your intutition allows you to know the concentration.

When is use of the second term important? When does excel cause it to be in error?

Try $x=50,49,51,0,100$ then 10, 30, 200
Consider other times
TRY 10000sec $x=500,490,510,0,1000$
then $\mathrm{x}=100,200, \mathbf{3 0 0}, 400,450$, compare 450 to 550 ?symmetrical?
Where and when can you know the correct \mathbf{C} ?
The second term is important for calculating C @ early times near the source.

$$
\left\lvert\, \begin{gathered}
\bar{v}=0.05 \frac{\mathrm{~cm}}{\mathrm{sec}} \quad x=0.05 \frac{\mathrm{~cm}}{\mathrm{sec}} 1000 \mathrm{sec}=50 \mathrm{~cm} \quad \text { so } \quad X=Y=Z=0 \text { and we want } C_{\max } \\
D_{x}=\bar{v} \alpha_{x}+D^{*}=0.05 \frac{\mathrm{~cm}}{\mathrm{sec}} 5 \mathrm{~cm}+1 \times 10^{-10} \frac{\mathrm{~m}^{2}}{\mathrm{sec}} \frac{10000 \mathrm{~cm}^{2}}{1 \mathrm{~m}^{2}}=0.25 \frac{\mathrm{~cm}^{2}}{\mathrm{sec}} \\
D_{y}=\bar{v} \alpha_{x} \frac{1}{5}+D^{*}=0.05 \frac{\mathrm{~cm}}{\mathrm{sec}} 5 \mathrm{~cm} \frac{1}{5}+1 \times 10^{-10} \frac{\mathrm{~m}^{2}}{\mathrm{sec}} \frac{10000 \mathrm{~cm}^{2}}{1 \mathrm{~m}^{2}}=0.05 \frac{\mathrm{~cm}^{2}}{\mathrm{sec}} \\
D_{z}=\bar{v} \alpha_{x} \frac{1}{10}+D^{*}=0.05 \frac{\mathrm{~cm}}{\mathrm{sec}} 5 \mathrm{~cm} \frac{1}{10}+1 \times 10^{-10} \frac{\mathrm{~m}^{2}}{\mathrm{sec}} \frac{10000 \mathrm{~cm}^{2}}{1 \mathrm{~m}^{2}}=0.025 \frac{\mathrm{~cm}^{2}}{\mathrm{sec}} \\
C=\frac{M}{8(\pi t)^{\frac{3}{2}} \sqrt{D_{x} D_{y} D_{z}}} \\
C=\frac{1000 \mathrm{mg}}{8(\pi 1000 \mathrm{sec})^{\frac{3}{2}} \sqrt{0.25 \frac{\mathrm{~cm}^{2}}{\mathrm{sec}} 0.05 \frac{\mathrm{~cm}^{2}}{\mathrm{sec}} 0.025 \frac{\mathrm{~cm}^{2}}{\mathrm{sec}}}} \\
C=0.0402 \frac{\mathrm{mg}}{\mathrm{~cm}^{3}} \frac{1000 \mathrm{~cm}^{3}}{\mathrm{l}}=40.2 \frac{\mathrm{mg}}{\mathrm{l}} \sim 40 \frac{\mathrm{mg}}{\mathrm{l}}
\end{gathered}\right.
$$

