

A PLAN VIEW FLOW NET BY CONTOURING USING FIELD HEADS AND DRAWING FLOW LINES PERPENDICULAR: can't assume constant K or b assuming no inflow from above or below, we can evaluate relative T :
$\mathbf{Q}=\mathbf{A}_{\mathbf{A}} \mathbf{V}_{\mathbf{1}}=\mathbf{A}_{\mathbf{B}} \mathbf{V}_{\mathbf{2}}$
$\mathbf{A}_{\mathbf{A}} \mathbf{K}_{\mathbf{A}} \frac{\Delta \mathbf{h}}{\mathbf{1}_{\mathbf{A}}}=\mathbf{A}_{\mathbf{B}} \mathbf{K}_{\mathbf{B}} \frac{\Delta \mathbf{h}}{\mathbf{1}_{\mathbf{B}}}$
$\frac{A_{A} K_{A}}{l_{A}}=\frac{A_{B} K_{B}}{l_{\mathbf{B}}} \frac{K_{A}}{K_{B}}=\frac{A_{B} l_{A}}{A_{A} l_{\mathbf{B}}}$
$\mathbf{A}=\mathbf{w b} \quad$ ($\mathbf{b}=$ aquifer thickness)
$\frac{K_{A}}{K_{B}}=\frac{W_{B} b_{B} l_{A}}{\mathbf{w}_{A} b_{A} \mathbf{l}_{B}}$
$\frac{K_{A} b_{A}}{K_{B} b_{B}}=\frac{W_{B} l_{A}}{\mathbf{w}_{A} l_{B}}=\frac{T_{A}}{T_{B}}$

The pond elevation is 8 m , ground surface is 6 m , the drain is at 2 m (1.5 to 2.5), bedrock is at $0 \mathrm{~m}, \mathrm{~K}_{\mathrm{x}}$ is $16 \mathrm{~m} / \mathrm{day}$, and K_{z} is $1 \mathrm{~m} /$ day.

$$
\mathbf{x}^{\prime}=\mathbf{x} \quad \mathbf{z}^{\prime}=\frac{\mathbf{z} \sqrt{\mathbf{K}_{x}}}{\sqrt{\mathbf{K}_{\mathbf{z}}}}
$$

~ 5 flow tubes and 6 head drops

If the pond elevation is 8 m , ground surface at 6 m , the drain at 2 m , bedrock at 0 m and K_{x} is $16 \mathrm{~m} /$ day and K_{z} is 1m/day, what is the flow at the drain? Recall:

$$
\mathbf{K}^{\prime}=\sqrt{\mathbf{K}_{\mathbf{x}} \mathbf{K}_{\mathbf{z}}}
$$

$$
\mathbf{Q}=\mathbf{q}_{\mathrm{A}} \mathbf{n}_{\mathrm{f}}=K \mathbf{H} \frac{\mathbf{n}_{\mathbf{f}}}{\mathbf{n}_{\mathrm{d}}}
$$

$$
\mathrm{Q}=4 \mathrm{~m} / \text { day } 6 \mathrm{~m} 5 / 6=\sim 20 \mathrm{~m}^{3} / \text { day per } \mathrm{m}
$$

$$
\text { try it for } K_{x}=16 \mathrm{ft} / \text { day and } K_{z}=4 \mathrm{ft} / \text { day }
$$

1 - Draw an INVERSE K ellipse for semi-axes $\frac{1}{\sqrt{\mathbf{K}_{\mathrm{x}}}}$ and $\frac{1}{\sqrt{\mathbf{K}_{\mathrm{z}}}}$ 2 - Draw the direction of the hydraulic gradient through the center of the ellipse and note where it intercepts the ellipse
3 - Draw the tangent to the ellipse at this point
4 - Flow direction is perpendicular to this line
http://inside.mines.edu/~epoeter/_GW/09FlowNets/topodrive/index.html
Before leaving class use the software to simulate a regional system with similar boundary conditions as one of those presented by Toth Freeze or Witherspoon but different heterogeneity

Submit in the homework box WITH YOUR NAME ON IT:
An image of your system showing the flow pattern
(make it the active window then ALT PrintScreen then paste on MSWord) and 2 paragraphs as follows

1st paragraph:
describing the system boundary conditions and properties
$2^{\text {nd }}$ paragraph
describing why the flow moves as shown in the image

