A canal parallels a river 50 m to its west. The maximum ground surface elevation between them is 6 meters. Both the river and the canal fully penetrate an aquifer having a hydraulic conductivity of 0.01 m/day. Precipitation is 0.5 m/year, evapotranspiration is 0.4 m/year. The river is 5.1 m deep while the canal is 2.7 m deep.

River 5.1m K=0.01m/day Canal 2.7m

<u>Group 1</u> Calculate d, h_{max} , $h_{x=12.5}$, $h_{x=37.5}$, q at the river, and q at the canal. Sketch a diagram illustrating the shape of the water table and indicating the discharges.

Group 2 do the same except, $K = 1 \times 10^{-4} \text{ m/day}$

Group 3 do the same except, $K = 1 \times 10^0 \text{ m/day}$

Group 4 do the same except, ET = 0.55 m/year and K = 0.01 m/day

<u>Group 5</u> do the same except, ET = 0.5 m/year and K = 0.01 m/day

Meters and Days						
	d	h _{max}	$h_{x=12.5}$	$h_{x=37.5}$	qriv	qcan
Group 1						
K=0.01	18.17	5.92	5.85	4.98	-0.00498	+0.00872
w=0.000274						
Group 2						
K=1x10 ⁻⁴	24.93	41.58	36.13	36.00	-0.00683	+0.00687
w=0.000274						
Group 3						
K=1x10 ⁰	-658.28	12.03	4.63	3.48	+0.18035	+0.19405
w=0.000274						
Group 4		(min)				
K=0.01	38.66	2.35	3.86	2.36	+0.00530	-0.00155
w= -0.000137						
Group 5						
K=0.01	-infinity	infinity	4.62	3.46	+0.00187	+0.00187
w=0.0						
Group 5: q same as using Dupuit approx dh/dx with avg h for b						
_	-		-			_

A PLAN VIEW FLOW NET BY CONTOURING USING FIELD HEADS AND DRAWING FLOW LINES PERPENDICULAR: can't assume constant K or b

assuming no inflow from above or below, we can evaluate relative T:

$$A_A K_A \frac{\Delta h}{l_A} = A_B K_B \frac{\Delta h}{l_B}$$

$$\frac{A_A K_A}{l_A} = \frac{A_B K_B}{l_B} \quad \frac{K_A}{K_B} = \frac{A_B l_A}{A_A l_B}$$

A = wb (b = aquifer thickness)

$$\frac{\mathbf{K}_{\mathbf{A}}}{\mathbf{K}_{\mathbf{B}}} = \frac{\mathbf{w}_{\mathbf{B}} \mathbf{b}_{\mathbf{B}} \mathbf{l}_{\mathbf{A}}}{\mathbf{w}_{\mathbf{A}} \mathbf{b}_{\mathbf{A}} \mathbf{l}_{\mathbf{B}}}$$

$$\frac{\mathbf{K}_{\mathbf{A}}\mathbf{b}_{\mathbf{A}}}{\mathbf{K}_{\mathbf{B}}\mathbf{b}_{\mathbf{B}}} = \frac{\mathbf{w}_{\mathbf{B}}\mathbf{l}_{\mathbf{A}}}{\mathbf{w}_{\mathbf{A}}\mathbf{l}_{\mathbf{B}}} = \frac{\mathbf{T}_{\mathbf{A}}}{\mathbf{T}_{\mathbf{B}}}$$

"Irregularities" in "Natural" flow nets

varying K varying flow thickness recharge/discharge vertical components of flow Nature's flow nets provide clues to geohydrologic conditions

A longer narrower shape indicates higher T, a shorter wider shape, low T

The pond elevation is 8m, ground surface is 6m, the drain is at 2m (1.5 to 2.5), bedrock is at 0m, $\rm K_x$ is 16m/day, and $\rm K_z$ is 1m/day.

$$\mathbf{x'} = \mathbf{x} \quad \mathbf{z'} = \frac{\mathbf{z}\sqrt{\mathbf{K}_x}}{\sqrt{\mathbf{K}_z}}$$

~ 5 flow tubes and 6 head drops

If the pond elevation is 8m, ground surface at 6m, the drain at 2m, bedrock at 0m and $\rm K_z$ is 16m/day and $\rm K_z$ is 1m/day , what is the flow at the drain? Recall:

$$K' = \sqrt{K_x K_z}$$

$$\mathbf{Q} = \mathbf{q}_{\mathbf{A}} \mathbf{n}_{\mathbf{f}} = \mathbf{K} \mathbf{H} \frac{\mathbf{n}_{\mathbf{f}}}{\mathbf{n}_{\mathbf{d}}}$$

 $Q = 4 \text{ m/day } 6 \text{ m } 5/6 = ~ 20 \text{m}^3/\text{day per m}$

try it for $K_x = 16 ft / day$ and $K_z = 4 ft / day$

- 1 Draw an INVERSE K ellipse for semi-axes $\sqrt{K_x}$ and $\sqrt{K_y}$
- 2 Draw the direction of the hydraulic gradient through the center of the ellipse and note where it intercepts the ellipse
- 3 Draw the tangent to the ellipse at this point
- 4 Flow direction is perpendicular to this line

Explore the Flow Net Software at

http://inside.mines.edu/~epoeter/_GW/09FlowNets/topodrive/index.html

Before leaving class use the software to simulate a regional system with similar boundary conditions as one of those presented by Toth Freeze or Witherspoon but different heterogeneity

Submit in the homework box WITH YOUR NAME ON IT:

An image of your system showing the flow pattern (make it the active window then ALT PrintScreen then paste on MSWord) and 2 paragraphs as follows

1st paragraph: describing the system boundary conditions and properties

2nd paragraph describing why the flow moves as shown in the image