

Take the 10x exaggeration figure and shrink to 0.1 x

try it for $K_{x}=16 \mathrm{ft} /$ day and $K_{z}=4 \mathrm{ft} /$ day
 ellipse and note where it intercepts the ellipse
3 - Draw the tangent to the ellipse at this point
4 - Flow direction is perpendicular to this line
http://inside.mines.edu/~epoeter/_GW/09FlowNets/Exercises_9dkey.html

A PLAN VIEW FLOW NET BY CONTOURING USING FIELD HEADS AND DRAWING FLOW LINES PERPENDICULAR: can't assume constant K or b assuming no inflow from above or below, we can evaluate relative T :

$$
\mathbf{Q}=\mathbf{A}_{\mathbf{A}} \mathbf{V}_{1}=\mathrm{A}_{\mathrm{B}} \mathbf{V}_{2}
$$

$$
\begin{aligned}
& \mathbf{A}_{\mathbf{A}} \mathbf{K}_{\mathbf{A}} \frac{\Delta \mathbf{h}}{\mathbf{l}_{\mathbf{A}}}=\mathbf{A}_{\mathbf{B}} \mathbf{K}_{\mathbf{B}} \frac{\Delta \mathbf{h}}{\mathbf{l}_{\mathbf{B}}} \\
& \frac{A_{A} K_{A}}{l_{A}}=\frac{A_{B} K_{B}}{l_{\mathbf{B}}} \quad \frac{K_{A}}{K_{B}}=\frac{A_{B} l_{A}}{A_{A} l_{\mathbf{B}}}
\end{aligned}
$$

"Irregularities" in "Natural" flow nets
$\mathbf{A}=\mathbf{w b} \quad$ ($b=$ aquifer thickness)
$\frac{K_{A}}{K_{B}}=\frac{\mathbf{w}_{B} b_{B} l_{A}}{\mathbf{w}_{A} b_{A} \mathbf{l}_{B}}$
$\frac{K_{A} b_{A}}{K_{B} b_{B}}=\frac{w_{B} l_{A}}{w_{A} l_{B}}=\frac{T_{A}}{T_{B}}$
varying K varying flow thickness recharge/discharge vertical components of flow Nature's flow nets provide clues to geohydrologic conditions

u
Work with a partner to calculate T, K, S, S_{s}

$$
\begin{aligned}
& T=\frac{Q}{4 \pi s} W(u)=\frac{500 \frac{g a l}{\min } \frac{1 f^{3}}{7.48 \mathrm{gal}} \frac{60(24) \mathrm{min}^{2}}{\text { day }} 2.15}{4 \pi 1.2 \mathrm{ft}}=13724 \mathrm{ft}^{2} / d a y \approx 1.4 \times 10^{4} \frac{\mathrm{f}^{2}}{\text { day }} \\
& K=T / b=140 \mathrm{ft} / \text { day } \\
& S=\frac{4 T u}{\left(r^{2} t t\right)}=\frac{4\left(13724 f^{2} / \text { day }\right)\left(7 \times 10^{-2}\right)}{1.95 \times 10^{7} f^{2} / d a y}=2 \times 10^{-4} \\
& \text { specific storage }=\frac{S}{b}=2 \times 10^{-6} \mathrm{ft}^{-1} \\
& \text { Any point can be used. It need not be on the curve. Why? } \\
& S=1.95 \times 10^{-4} \quad \text { approx. } 2 \times 10^{-4}
\end{aligned}
$$

Alternatively, Plot s vs.t \& match with W(u) vs. $1 / u$

For the Ohio example $\mathrm{Q}=500 \mathrm{GPM}, \mathrm{b}=100 \mathrm{ft}, \mathrm{r}=200 \mathrm{ft}$ Plot s vs t
 With a partner, take 2 minutes to calculate T and S

$$
T=\frac{2.3 Q}{4 \pi \Delta h} S=\frac{2.25 T t_{0}}{r^{2}}
$$

$$
\begin{gathered}
T=\frac{2.3 Q}{4 \pi \Delta h} \quad \begin{aligned}
& \Delta \mathrm{h}=\text { drawdown over } 1 \text { log cycle of time } \\
&=\frac{(2.3) \frac{500 \frac{\mathrm{gal}}{\mathrm{~min}} \frac{1 \mathrm{ft}^{3} 7.48 \mathrm{gal}}{60(24) \mathrm{min}} \mathrm{day}}{4 \pi 1.3 \mathrm{ft}}}{} \\
&=13,552 \mathrm{ft}^{2} / \mathrm{day} \sim 1.4 \times 10^{4} \mathrm{ft}^{2} / \mathrm{day}
\end{aligned} \\
\begin{aligned}
& S=\frac{2.25 T t_{\mathrm{a}}}{r^{2}} \quad \mathrm{t}_{\mathrm{o}}=\text { time intercept for zero drawdown } \\
&=\underline{2.25 * 13,552 \mathrm{ft}^{2} / \mathrm{day} * 2.6 \times 10^{-4} \text { day }} \\
&(200 \mathrm{ft})^{2}
\end{aligned} \\
\\
\end{gathered}
$$

