Points deducted Points earned Scaled Score +25 -43.3
 56.7 / 100
 81.7

	Average $=81.7$		\#students	\%students
A	>90	16	33	
B	$80-90$	8	17	50
C	$70-80$	12	25	
D	$60-70$	5	10	
F	$50-60$	4	8	
F	<50	3	6	

EXAM and KEYS are on the class web page Let's review that now

What do we expect regarding the magnitude of leakage?

What will be the maximum extent of drawdown?

What controls the rate of drawdown cone development?

Greatest leakage where head difference is largest, decreasing away from the well.

Drawdown will be limited to the radius at which the entire Q leaks from the upper aquifer to the lower.

Will drawdown vs time at the red observation well look more like? .

Match
early time $\Gamma=0.06$
$W(u, \Gamma)=1$
$u_{A}=2.5 \times 10^{-2}\left(1 / 4 u_{A}=10\right)$
$\mathrm{t}=6 \mathrm{~min}$
$\mathrm{s}=0.55 \mathrm{ft}$
$Q=144.4 \mathrm{ft}^{3} / \mathrm{min}$
$\mathrm{r}=73 \mathrm{ft}$
$\mathrm{b}=100 \mathrm{ft}$
late time same Γ
slide horizontally same $\mathrm{s}=0.55$ $\mathrm{t}=53 \mathrm{~min}$ $u_{B}=0.25$
$\left(1 / 4 u_{B}=1\right)$

Calculate TS K $\mathrm{K}_{\mathrm{h}} \mathrm{S}_{\mathrm{y}}$
Early time match results:
$T=\frac{Q}{4 \pi s} W\left(u_{A}, \Gamma\right)=\frac{144.4 \frac{\mathrm{ft}^{3}}{\mathrm{~min}}}{4 \pi(0.55 f t)}(1)=20.9 \frac{\mathrm{ft}^{2}}{\mathrm{~min}}$
$S=\frac{4 \mathrm{u}_{\mathrm{A}} \mathrm{Tt}}{\mathrm{r}^{2}}=\frac{4\left(2.5 \times 10^{-2}\right)\left(20.9 \frac{\mathrm{ft}^{2}}{\mathrm{~min}}\right) 6 \mathrm{~min}}{(73 \mathrm{ft})^{2}}=2 \times 10^{-3}$
Late time match results:
T Same (match by sliding horizontally)
$S_{y}=\frac{4 u_{B} T t}{r^{2}}=\frac{4(0.25)\left(20.9 \frac{\mathrm{ft}^{2}}{\mathrm{~min}}\right) 53 \mathrm{~min}}{(73 \mathrm{ft})^{2}}=0.21$
$K_{H}=\frac{\mathrm{T}}{\mathrm{b}}=2 \times 10^{-1} \frac{\mathrm{ft}}{\mathrm{min}}$
$K_{V}=\frac{\Gamma b^{2} K_{H}}{r^{2}}=\frac{0.06(100 \mathrm{ft})^{2} 0.2 \frac{\mathrm{ft}}{\mathrm{min}}}{(73 \mathrm{ft})^{2}}=2 \times 10^{-2} \frac{\mathrm{ft}}{\mathrm{min}}$

