

$$
\begin{aligned}
& \text { Match } \\
& \text { early time } \Gamma=0.06 \\
& \qquad \begin{array}{l}
W(u, \Gamma)=1 \\
u_{A}=2.5 \times 10^{-2}\left(1 / 4 u_{A}=10\right) \\
t=6 \mathrm{~min} \\
s \\
s=0.55 \mathrm{ft} \\
Q \\
\mathrm{Q}=144.4 \mathrm{ft}^{3} / \mathrm{min} \\
r
\end{array}=73 \mathrm{ft} \\
& \mathrm{~b}=100 \mathrm{ft}
\end{aligned}
$$

late time same 「
slide horizontally
same $\mathrm{s}=0.55$
$\mathrm{t}=53 \mathrm{~min}$
$\mathrm{u}_{\mathrm{B}}=0.25$

$$
\begin{aligned}
& \mathrm{T} . \ldots . \text { Same (match by sliding horizontally) } \\
& \mathrm{S}_{\mathrm{y}}=\frac{4 \mathrm{u}_{\mathrm{B}} \mathrm{Tt}}{\mathbf{r}^{2}}=\frac{4(0.25)\left(20.9 \frac{\mathrm{ft}^{2}}{\mathrm{~min}}\right) 53 \mathrm{~min}}{(73 \mathrm{ft})^{2}}=0.21 \\
& \mathbf{K}_{\mathrm{H}}=\frac{\mathrm{T}}{\mathrm{~b}}=2 \times 10^{-1} \frac{\mathrm{ft}}{\mathrm{~min}} \\
& \mathrm{~K}_{\mathrm{V}}=\frac{\Gamma \mathrm{b}^{2} \mathrm{~K}_{\mathrm{H}}}{\mathbf{r}^{2}}=\frac{0.06(100 \mathrm{ft})^{2} 0.2 \frac{\mathrm{ft}}{\mathrm{~min}}}{(7 \mathrm{ft})^{2}}=2 \times 10^{-2} \frac{\mathrm{ft}}{\mathrm{~min}}
\end{aligned}
$$

Late time match results:
$\mathrm{u}_{1}=\left(\mathrm{r}^{2} \mathrm{~S}\right) /(4 \mathrm{~T} \mathrm{t})=\left((100 \mathrm{ft})^{2} 1 \times 10^{-5}\right) /\left(41 \mathrm{ft}^{2} /\right.$ day 10 day $\left.)\right)$ $=\left((100)^{2} \cdot 2.5 \times 10^{-7}\right.$ $=2.5 \times 10^{-3}$
$\mathrm{W}(\mathrm{u})_{1} \sim 5.44$
$\mathrm{s}_{1}=(\mathrm{Q} \mathrm{W}(\mathrm{u})) /(4 \pi \mathrm{~T})=\left(40 \mathrm{ft}^{3} /\right.$ day 5.44$) /\left(4 \mathrm{TI} \mathrm{ft}^{2} /\right.$ day $)$
$=5.44$ * 3.183 ft
$\mathrm{s}_{1}=17.3 \mathrm{ft}$
$u_{2}=\left((500)^{2}{ }^{*} 2.5 \times 10^{-7}\right.$
$=6.25 \times 10^{-2} \quad \mathrm{~T}=1 \times 10^{0} \mathrm{ft}^{2} / \mathrm{day}$
$\mathrm{W}(\mathrm{u})_{2} \sim 2.34$
$\mathrm{s}_{2}=2.344^{*}-3.183 \mathrm{ft}$
$\mathrm{s}_{2}=-7.45 \mathrm{ft}$
$S=1 \times 10^{-5}$
$Q @ r_{1}=40 \mathrm{ft}^{3} / \mathrm{day}$
Q @ $r_{2}=-40 \mathrm{ft}^{3} / \mathrm{day}$
What is the drawdown at the location of interest after 10 days?
TOTAL $\mathrm{s}=9.85 \mathrm{ft}$

For the following situation with pumping well Q make your qualitative estimates of the relative drawdown.

Sketch the cone of depression due to pumping of well Q assuming the aquifer is infinite

Sketch the cone of depression due to pumping of well Q assuming A-A' is a no flow boundary

Sketch the cone of depression due to pumping of well Q assuming A-A' is a constant head boundary

-multiple boundaries require multiple reflections -reflect image wells also -each boundary should be drawn to infinity and all reflections made
recharge opposite sign no-flow same sign

etc etc until the addition is insignificant at the time of interest


```
-After }10\mathrm{ days
    u
    =2.5\times10-3
W(u)
```



```
S
After 5 days
u
        =((100)2* 5x10-7
        =5\times10-3
W(u)
```



```
S-30cfd5days}=-11.3 f
S 40cfd5days&10cfd5days}=6 f
```

locationof		
erest		$\mathrm{Q}=40 \mathrm{ft}^{3} /$ day for 5 day
		$\mathrm{Q}=10 \mathrm{ft}^{3} /$ day for the next 5 days
pumping		Pumping continues for 10 days

