

This would be treated as isotropic (same K in every direction)

Calculate Flow and Heads between boundaries

$\begin{aligned} & \mathrm{H} 1=20 \mathrm{~cm} \\ & \mathrm{H} 2=10 \mathrm{~cm}\end{aligned} \quad K_{\text {eq }}=$ Weighted Aritmetic Average $=\frac{1 \mathrm{~cm} 1 \frac{\mathrm{~cm}}{\mathrm{sec}}+1 \mathrm{~cm} 0.2 \frac{\mathrm{~cm}}{\mathrm{sec}}}{2 \mathrm{~cm}}=0.6 \frac{\mathrm{~cm}}{\mathrm{sec}}$
$\mathrm{K} 1=1 \mathrm{~cm} / \mathrm{sec} \quad Q=K i A$, no width is given so calculate per unit width
$\begin{aligned} & \mathrm{K} 2=0.2 \mathrm{~cm} / \mathrm{sec} \\ & \mathrm{L} 1=30 \mathrm{~cm}\end{aligned} \quad Q=0.6 \frac{\mathrm{~cm}}{\mathrm{sec}} \frac{20 \mathrm{~cm}-10 \mathrm{~cm}}{60 \mathrm{~cm}} 2 \mathrm{~cm}=0.1 \frac{\mathrm{~cm}}{\mathrm{sec}} 2 \mathrm{~cm}=0.2 \frac{\mathrm{~cm}^{2}}{\mathrm{sec}}$ per unit width
$\mathrm{L} 2=30 \mathrm{~cm}$
$D=2 \mathrm{~cm}$
Q @ H2 = ??
H3 = ??, H4 = ??
by inspection gradient is linear,
and $H_{3}=H_{4}$
and they are at the midpoint
$H_{3}=H_{4}=\frac{20 \mathrm{~cm}-10 \mathrm{~cm}}{2}+10 \mathrm{~cm}=15 \mathrm{~cm}$

Calculate Flow and Heads between boundaries

Review keys for homework from September 13 exercises 6c 6d 6e

Remember to continually work on your cheat sheets

And
Work the sample exam problems

