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A Non-Uniform Sampler for Wideband
Spectrally-Sparse Environments

Michael Wakin, Stephen Becker, Eric Nakamura, Michael Grant, Emilio Sovero,
Daniel Ching, Juhwan Yoo, Justin Romberg, Azita Emami-Neyestanak, Emmanuel Candès

Abstract—We present the first custom integrated circuit imple-
mentation of the compressed sensing based non-uniform sampler
(NUS). By sampling signals non-uniformly, the average sample
rate can be more than a magnitude lower than the Nyquist rate,
provided that these signals have a relatively low information
content as measured by the sparsity of their spectrum. The
hardware design combines a wideband Indium-Phosphide (InP)
heterojunction bipolar transistor (HBT) sample-and-hold with
a commercial off-the-shelf (COTS) analog-to-digital converter
(ADC) to digitize an 800 MHz to 2 GHz band (having 100 MHz
of non-contiguous spectral content) at an average sample rate of
236 Msps. Signal reconstruction is performed via a non-linear
compressed sensing algorithm, and an efficient GPU implemen-
tation is discussed. Measured bit-error-rate (BER) data for a
GSM channel is presented, and comparisons to a conventional
wideband 4.4 Gsps ADC are made.

Index Terms—Non-uniform sampler, compressed sensing,
wideband ADC, indium-phosphide HBT, sample-and-hold.

I. INTRODUCTION

In such far-ranging fields as radio, telephony, radar, image,
audio and seismic acquisition, most analysis techniques follow
the same pattern: (1) digitize an analog signal, (2) perform
DSP, and, optionally, (3) convert back to the analog domain.
The common piece of hardware in this chain is the analog-
to-digital converter (ADC). The current trend in systems is
wider bandwidths and larger dynamic ranges, and designing a
single ADC to meet both of these requirements simultaneously
is difficult. To get around this, systems typically use time-
interleaved ADCs or channelize the band and digitize each
channel separately. However, these approaches do nothing to
reduce the output data rate and can require prohibitively high
power.
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A. A new paradigm

The effective instantaneous bandwidth (EIBW) of an ADC
is the total bandwidth of the spectrum that can be unambigu-
ously recovered. Although it is generally desirable to design
receivers with high EIBW—say, for applications involving
cognitive radio or communications intelligence—it may also
often be the case that, at any given time instant, much of
the spectrum within this bandwidth is unoccupied. One can
define the information bandwidth of such signals to be the
actual amount of occupied spectrum. In this paper, we present
a receiver design intended for signals with high EIBW but low
information bandwidth. We do so by adopting concepts from
the field of compressed sensing (CS).

The theory of CS [7], [14] suggests that randomized low-
rate sampling may provide an efficient alternative to high-rate
uniform sampling. For a survey of the modern CS literature,
the reader is referred to [8].

To put CS on a concrete footing, we give an explicit (but
for the moment, discrete-time) example. Let x be a length-N
signal, and suppose the Discrete Fourier Transform (DFT) of
x, denoted X , is K-sparse, meaning that it has only K � N
nonzero entries.

Now, collect only a subset Ω of all the entries of x. Suppose
the sample locations Ω are chosen uniformly at random, and
let M be the size of Ω. Because M < N ,1 it is generally not
possible to recover x using a linear method. The remarkable
fact of CS is that if M is merely proportional to K logN , then
with very high probability (which can be made precise [7]), it
is possible to exactly recovery x by solving the linear program

min
x′
‖X ′‖1 subject to ∀k ∈ Ω, x′(k) = x(k).

Here, ‖X‖1 =
∑N
k=1 |X(k)|. There are related approaches,

such as greedy methods, that offer similar guarantees; see [25]
for a survey.

This result itself has limited application to signal processing
since (1) it is unlikely that a digital signal has an exactly
sparse DFT, and (2) the model does not account for noise.
Fortunately, there are robust versions of the above statement,
which allow signals to be only approximately sparse, and
which allow noise [6]. In this case, exact recovery is not
possible, but the recovered signal agrees with the true signal
up to the noise level.

This finite dimensional model does not fully cover the
continuous case since an analog signal, unless it is bandlimited

1In our implementation, M is approximately 19× smaller than N .

The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.
This is in accordance with DoDI 5230.29, January 8, 2009.

Statement "A" (Approved for Public Release, Distribution Unlimited) [DISTAR case #18837]



2

Nyquist-
rate 
ADC

signal input

discard

CPU/GPU

PRBS

output

Fig. 1: Conceptually, the NUS takes Nyquist-rate samples of the
input signal and then randomly discards most of the samples. The
implemented version uses a clock rate of 4.4 GHz and effectively
keeps only one of every 19 samples (on average) for a mean output
sample rate of 236 MHz.

and periodic, must be treated in an infinite dimensional setting.
The infinite dimensional setting may be attacked directly,
and there is recent theory [2], [13] that connects the finite
and infinite dimensional problems. On a practical side, some
non-periodic (also known as multi-coset) sampling results for
multi-band signals [17] have recently been extended to multi-
band signals when the band locations are unknown [18]. The
approach in [18], [19] is a hybrid finite-infinite approach that
solves a finite dimensional problem to determine the band
locations and then processes the samples directly in analog.

The approach taken in this paper deals with the infinite
dimensional problem indirectly. Through extensive numerical
simulation, and by using standard signal processing techniques
such as windowing, it is shown that the error incurred by using
a large but finite number of samples is insignificant compared
to circuit non-idealities. Numerical simulations are required
regardless since CS theories rely on possibly conservative
constants and also on signal-dependent parameters, such as
the sparsity of the signal.

B. Approach

1) Overview: The CS example suggests that signals with
high EIBW but low information bandwidth can be efficiently
captured using non-uniform samples. Our implementation is
such a non-uniform sampling (NUS) approach, which we
describe here and treat in more detail in Section II. The
key ideas are to leverage the high resolution that can be
achieved with lower-rate ADCs and to exploit the fact that
the electromagnetic spectrum in our bandwidth is typically
not full.

There are two sets of signal restrictions for the NUS.
The first is a familiar restriction requiring the EIBW to
be less than half the equivalent Nyquist sampling rate. The
second restriction is an algorithmic one: CS theory dictates
that the input signal should have spectral sparsity in order
to achieve accurate reconstruction. Roughly speaking, in our
implementation the information bandwidth may be up to 10%
of the EIBW.

The idea behind the NUS is explained in Figure 1. For our
setup, the maximum EIBW is 2.2 GHz because of an under-
lying “Nyquist rate” clock with a frequency of fs = 4.4 GHz.
For the sake of explanation, assume there is a Nyquist rate
ADC which samples the input signal—the actual implemen-
tation does not use a Nyquist rate ADC, since the point of
the NUS is to avoid a high-rate ADC. A pseudo-random
bit sequence (PRBS), generated off-chip, controls which of
these samples are collected and which samples are ignored.

Of every 8192 Nyquist-rate samples, only 440 are collected.
Note that our method of “on grid” non-uniform sampling is
very different from allowing arbitrarily spaced samples that
are not integer multiples of the underlying Nyquist rate, since
the latter approach would be nearly impossible to calibrate.

The actual implementation, shown in Figure 2, replaces
the theoretical sub-sampled Nyquist-rate ADC with a non-
uniformly clocked sample-and-hold (S/H). The sample times
of the S/H are controlled by the PRBS sequence, and the same
sequence controls a single low-rate ADC which performs the
final quantization step. The custom S/H is necessary because
the ADC is not designed for 2.2 GHz bandwidth signals.

Reconstruction—that is, interpolation of the omitted
Nyquist-rate samples—is performed on a desktop personal
computer using a block algorithm described in Section III.
In addition to delay due to processing, there is a small latency
while the whole block is acquired. Each block is composed of
N = 65536 Nyquist-rate samples, which corresponds to a time
interval of length T = 14.9 µs. When calculating the occupied
bandwidth, the entire time interval must be considered, so the
algorithm-based restriction is that at most 10% of the length-N
DFT of the sample block should be non-negligible. Extremely
short duration signals are automatically excluded from the
signal model since they have a broad frequency spectrum
which ruins the sparsity. Our block-by-block reconstruction
strategy allows for the capture of frequency hopping signals,
although for the specific tests reported in Section IV we require
some stationarity of the spectrum (over, say, a period of 2 ms)
to allow the spectral support to be identified.

2) Hardware specifications: The NUS IC is designed in an
InP HBT technology. A TI ADS5474 14-bit 400 Msps ADC
(10.9 ENOB at 230 MHz) is used to digitize the samples, and
the data is transferred to a computer for processing.

The specifications of the NUS are described in Table I.
Power consumption is relatively high because the front-end
is designed for wide bandwidth and high dynamic range.
However, lower system power is possible for applications that
require data transmission, since the NUS produces 19× fewer
samples.

Comparing the NUS to a Nyquist ADC is difficult since
recovery error depends on spectral sparsity. To measure the
resolution of the samples, the NUS can be operated in a
uniform sampling mode. This measurement shows that the
NUS has 8.8 ENOB performance across the frequency band
from 800 MHz to 2 GHz. It is important to note that this
measurement does not assess the reconstruction accuracy and
does not directly relate to ADC ENOB. Instead of a direct
comparison, the results in Section IV show promising GSM
bit error rate (BER) performance.

C. Related work in compressed sensing

1) Non-uniform samplers: To the best of our knowledge,
there have been no IC implementations of the NUS that fully
reconstruct the signal. The interesting work [3] on optical sub-
Nyquist sampling is similar in spirit, but it works in the optical
domain with COTS components and uses a least-squares fit
to reconstruct pure tones rather than a CS-based recovery
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Bandwidth Occupied spectrum Power consumption Resolution of samples

NUS 2.0 GHz 100 MHz 5.8 W 8.8 ENOB, 55 dB SNDR

TABLE I: NUS specifications at a glance. The power includes the commercial ADC, but not the clock or the PRBS pattern generation. The
chip allows up to 2.2 GHz of bandwidth though we do not have SNDR measurements for this range. The amount of occupied spectrum is
conservatively estimated, and furthermore the amount of occupied spectrum can be increased when lower-fidelity recovery is acceptable.

algorithm to reconstruct an information-carrying modulated
signal.

2) Other CS devices: The random modulation pre-
integrator (RMPI), a type of random demodulator (RD), is
a CS receiver and digitizer which has recently been im-
plemented in [26]; see also [26] for references and related
approaches. The RMPI uses a far more powerful CS approach
that takes nearly random linear combinations of samples, akin
to multiplying the digital vector x by a random matrix. The
theory predicts that such an approach is optimal for nearly all
types of sparse signals, not just signals that are sparse in the
Fourier domain. The cost of this generality is that the RMPI
is more difficult to implement, the signal processing is less
straightforward, there is nontrivial calibration, and recovery is
slower than for the NUS. The NUS also allows simple post-
processing windowing techniques.

3) Xampling: The modulated wideband converter (MWC)
[20], which follows the principles of xampling [19], works
directly in the analog domain when possible. The approach
requires signals that have a few dense bands of spectrum, such
as three or four bands. The digital step is a continuous-to-finite
(CTF) block that finds the location of the bands and must be
run every time the band structure changes. However, the MWC
does not naturally handle our sparse spectral model since the
signals may not be easy to group into contiguous blocks. The
hardware prototype in [20] has yet to be extended to an IC
implementation.

In summary, these other CS and xampling approaches all
have their own merits, but for the sparse spectral sensing model
defined in the preceding subsection, we believe that the NUS
is the best candidate.

D. Outline

In Section II, the implementation of our approach is de-
scribed. Because signal recovery is non-standard, Section III
covers the recovery process in detail, describing the general
CS recovery method as well as the necessary changes and
improvements for our specific architecture. Experimental hard-
ware results are presented in Section IV, and the results of the
prototype compare with previous state-of-the-art ADCs. The
paper concludes in Section V with some learned wisdom and
with a discussion of future challenges.

II. HARDWARE IMPLEMENTATION

A simplified block diagram of the non-uniform sampler
(NUS) receiver is shown in Figure 2. The low-jitter 4.4 GHz
clock is used to re-clock the non-uniform pattern to accurately
set the sampling instances. For flexibility in testing, the NUS
pattern is set by a repeating pseudo-random bit sequence (8192
bits in length) provided by an external pattern generator. A

Fig. 2: Simplified block diagram of non-uniform sampler (NUS)
receiver. The NUS sampler IC (left block) was implemented with the
Northrop Grumman Aerospace Systems (NGAS) InP HBT process.

commercial 400 Msps ADC (TI ADS5474 [23]) is used to
digitize the samples which are captured by a logic analyzer.
In order to recover the signal, the samples must be aligned to
the NUS pattern; this is accomplished with a synchronization
pulse from the pattern generator.

The main building blocks of the NUS receiver are the master
and slave sample-and-hold circuits, the timing generator, and
the output buffer. In order to achieve the full bandwidth
required, the master sample-and-hold circuit was designed
with a 2.4 GHz bandwidth. The function of the NUS timing
generator is to re-clock the NUS pattern (NIN) with the
Nyquist clock (CIN). The output of the master-slave sample-
and-hold is then buffered and amplified so that the signal
can drive the external ADC. The output buffer bandwidth
determines the settling time of the step-and-settle interface.
The chip is designed for a full-scale input amplitude of 0.8 Vp-
p differential and a 2.2 Vp-p differential at the output. The
NUS IC is designed to perform a sample-and-hold function
at a period as long as 6.1 ns and as short as 2.7 ns between
consecutive samples, which is under the 400 MHz sampling
limit of the ADC.

A. Circuit description

The main function of the timing generator, shown in Fig-
ure 3, is to generate timing signals for the master and slave
sample-and-holds. This is accomplished by using a low-jitter
clock to re-time and delay the NUS pattern input in a chain
of flip-flops. Four flip-flops delays are used to delay the ADC
clock to give adequate time for sampled signal to settle.

The master and slave sample-and-hold bridge circuits both
use diode sampling bridges but have different power consump-
tion based on bandwidth/spur requirements. Figure 4 shows the
basic design of the sampling element. The circuit is controlled
by the re-timed NUS pattern coming from the timing generator
to switch the bridge on or off. The schematic shown is only
for one of the two pseudo-differential circuits.
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Fig. 3: Schematic of Timing Generator (TG) circuit.

Fig. 4: Sample-and-hold circuit. The Master sample-and-hold (MSH)
and Slave (SSH) are functionally identical. All signal paths and
circuits are differential with the exception of the diode bridges. The
diode bridges are implemented as two single-ended bridges. The
graph shows the output at the transition from the tracking to the
holding state (at the MSH output).

The analog input/output interface of the NUS IC was
carefully designed to optimize performance. Figure 5(a) shows
the NUS IC input receiver, which acts as a 50 Ohm load
termination for the analog input signal and provides a low
impedance drive to the subsequent sampling bridge. The
analog output driver (Figure 5(b)) is a differential quartet
design [10]; this was chosen because it offered the required
performance while satisfying our finite power consumption
goal. The driver was optimized for a large dynamic range and
designed to be DC coupled to the TI ADS5474. The gain of the
buffer is 2× (6dB), and it was designed to have a SFDR better
than 70 dB and 500 MHz bandwidth. To increase simulation
accuracy, a detailed interconnect model was used on the step-
and-settle ADC interface. This model included bondwires and
pallet traces for the NUS packaging, transmission line models
for PCB traces, a termination network, and the equivalent
loading model from the ADC datasheet.

The overall timing relationship between the NUS circuit
and the external ADC is shown in the left panel of Figure 6.
Also displayed in the right panel of Figure 6 is a simulation
showing the NUS operation with a 1.6 GHz input sine wave
and the resulting NUS samples.

Fig. 5: NUS IC input/output interface circuits. (a) The analog input
receiver is a differential 50 Ohm terminated emitter follower. This is
a simplified version of the circuit called EF BUF shown in the MSH
circuit in Figure 4. (b) The output buffer is a differential quartet
design.

B. Circuit fabrication

The NUS IC is fabricated in Northrop Grumman Aerospace
Systems’ (NGAS) 0.45 µm InP HBT technology featuring
fT and fmax > 300 GHz, 4-layer metal stack and pre-
cision TFR and MIM caps [16]. A die photograph of the
4.0 mm × 2.6 mm NUS IC is shown in Figure 7. The NUS
die is larger than it needs to be to allow the dicing of other
die on the wafer. Pictured in Figure 8 is the NUS test fixture
containing the NUS IC and TI ADS5474 along with various
signal and power connectors. The PCB draws a total of 5.8 W:
3.2 W for the NUS IC and 2.6 W for the ADC.

C. Non-uniform sample pattern

The NUS sampling pattern is a pulse train with non-uniform
spacing between pulses. It is selected to meet a list of certain
criteria. First, the pattern is clocked at 4.4 GHz, and recon-
struction produces the equivalent of Nyquist samples taken at
this rate. Second, the pulse widths and spacings must satisfy
the clocking requirements of the ADS5474. Specifically, the
minimum pulse width is 6 clock cycles, the minimum spacing
(Tmin) between pulses is 12 clock cycles, and the maximum
spacing (Tmax) between pulses is 27 clock cycles. An example
pattern illustrating these specifications is shown in Figure 9. In
effect, as the sample spacings vary between 12 and 27 clock
cycles, the instantaneous sampling rate of the NUS receiver
varies between 163 MHz and 367 MHz, which is within the
range of the 400 MHz ADC.

We designed the NUS pattern to repeat every 8192 Nyquist
samples, during which time there are 440 pulses which set the
sampling locations. This corresponds to an average sample rate
of 236 MHz. We evaluate the quality of our pattern using a
third criterion: the Fourier transform of favorable patterns will
tend to have a flat, noise-like spectrum. Figure 10 compares
two NUS patterns with different inter-sample spacings. The
pattern shown in the top plots has strong resonances across
the Nyquist band. In contrast, the pattern shown in the bottom
plots, which has undergone a randomization of its sample
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Fig. 6: NUS IC sampling timing and waveforms. Left panel: Interface timing between NUS die and ADC. Right panel: Simulated waveforms
before and after being sampled by NIN. Horizontal scale is in ns.

Fig. 7: NUS IC die photo. Die size is 4.0× 2.6 mm.

Fig. 8: NUS test fixture. The NUS IC is mounted on a custom pallet.
Also shown is the 14-bit ADC as well as various test equipment
connector interfaces.

locations, has a much whiter spectrum. The flat spectrum is
preferred since then all signals have equal gain.

III. DATA PROCESSING

In this section, we describe our computational techniques for
recovering a Nyquist-rate signal from the NUS data by filling
in the missing samples. Sections III-A–III-D describe our
procedures for windowing the NUS data and recovering the
missing samples. Section III-E then briefly discusses additional
practical concerns such as a GPU implementation to facilitate
these computations.

A. Windowing

While the NUS produces an arbitrarily long sequence of
samples, the recovery algorithm can only deal with a finite
number of them at any given time. It is, therefore, necessary
to segment the data stream, and we achieve this by windowing
the signal. An effective windowing process must guard against
edge effects as well as the well-known spectral spreading
effect, which would destroy the very Fourier sparsity we seek
to exploit. Fortunately, the concept of a perfect reconstruction
filter bank (PRFB) [22] can be readily adapted to our purposes.
A windowing procedure breaks the infinite signal into a
series of (possibly overlapping) vectors by using an analysis
window. After signal processing, the infinite length signal can
be recovered by stitching together the finite series using the
analysis window. Using windows from a PRFB ensures that
the windowing process itself does not introduce any errors.
An example of a PRFB is a rectangular analysis and synthesis
window with no overlap, but of course this causes spectral
spreading.

Figure 11 provides a filter bank representation of our
processing chain. We let y denote the raw stream of NUS
data, i.e., the discrete-time stream of samples coming from
the non-uniformly clocked ADC. The processing begins by
inserting zeros into y to produce a Nyquist-rate sample stream
y; the zeros are inserted at all locations where the NUS did
not sample. A delay and downsampling chain then partitions
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Fig. 9: NUS pattern example. High pulses have a width of 6 clock cycles. The minimum pulse spacing Tmin is 12 clock cycles, and the
maximum pulse spacing Tmax is 27 clock cycles.
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Fig. 10: Comparison of a non-optimized NUS pattern (top plots) and a properly randomized pattern (bottom plots). (a) Sample patterns in
the time domain. (b) Spectral plots. (c) Histograms of inter-sample spacings.

Fig. 11: A filter bank representation of the windowed recovery signal chain.

y into overlapping windows of length N and multiplies them
by an analysis window function w1. The result is a stream of
N -point signals y

j
∈ RN :

y
j
(i) = w1(i)y(i+ jN/2), i = 0, 1, . . . , N − 1.

Here, y
j
(i) denotes sample position i in the jth windowed

signal. Because these windows are overlapping, each sample
y(k) maps to two different entries (i, j):

k → (k mod N/2+N/2, d2k/Ne−1), (k mod N/2, d2k/Ne).

The signals y
j

are delivered to the sparse recovery engine,
which produces a stream of estimates x̂j ∈ RN . The upsam-
pler delay chain stitches these estimates together using an N -
point synthesis window function w2 to yield the reconstructed

Nyquist-rate sample stream x̂: for each integer j and each
i ∈ {0, 1, . . . , N − 1},

x̂(i+ jN/2 + d) = w2(i)x̂j(i) +w2(i+N/2)x̂j−1(i+N/2).

Here d is the total system delay. The downsample and up-
sample chains introduce a combined delay of N − 1 Nyquist
samples, so d = N − 1.

The perfect reconstruction criterion requires that the window
functions w1 and w2 must satisfy

w1(i)w2(i) + w1(i+N/2)w2(i+N/2) = 1

for i = 0, 1, 2, . . . , N/2 − 1. With this criterion satisfied, we
can ensure that the performance of the system is limited by
our precise choices of N , w1, and w2, and by the fidelity of
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our windowed sparse recovery algorithm. The design of the
analysis window w1 is critical, because it directly affects the
spectrum of the estimated signals x̂j . To minimize the effect of
spectral spreading, we must choose an analysis window func-
tion w1 whose spectral sidelobes are well below the system
noise floor (high dynamic range), and a main lobe that is as
narrow as possible (high sensitivity). We found experimentally
that the square of a Kaiser-Bessel derived (KBD) window
used in audio coding produces excellent results. Furthermore,
this choice leads to a rectangular synthesis window (i.e.,
w2(i) ≡ 1) [22], which is not only convenient but ensures
that our reconstruction errors are weighted equally in time. We
use N = 65536 and KBD parameter πα = 8, for which the
amplitude of the analysis window (in the frequency domain)
falls below our system noise floor within 6 bins. This means
that a windowed sinusoid will deliver non-trivial signal energy
to no more than 11 DFT bins (of 32768 total bins). It is
possible to improve upon this result by designing a window
using convex optimization methods, but the KBD window is
sufficient for our purposes.

While the PRFB-inspired architecture has proven useful for
verifying the fidelity of our system design, our actual imple-
mentation differs in important practical respects. In particular,
we choose NUS sampling patterns such that each half-window
contains an identical number of NUS samples. This allows us
to eliminate the zero-padding step altogether: the NUS samples
can be partitioned into overlapping windows of M points
each, and these windows can by multiplied by appropriately
sampled versions of the analysis window function. The result
is a more practical arrangement of processing steps depicted
in Figure 12. The key notational difference from Figure 11 is
that the zero-padded and windowed N -point signal y

j
is now

replaced with yj , a windowed (but not zero-padded) M -point
NUS signal.

With this architecture in place, we can treat each window
separately if we choose—although we can (and do) take
advantage of the spectral similarity between adjacent windows
to improve performance. From this point forward, therefore,
we shall focus solely on the generation of estimates x̂j ∈ RN
of signals xj ∈ RN , given non-uniform sample sets yj ∈ RM
and exact knowledge of the sampling pattern. When it is clear
from context that we are dealing with a single window, we
will drop the j subscript altogether.

B. Frequency domain representation

The natural initial choice to compute the frequency domain
representation of an N -point signal x is the discrete Fourier
transform (DFT). For real signals, the DFT exhibits real
symmetry, but the DC and Nyquist component are real-valued;
for a more elegant treatment, we define a slight variant of the
DFT that shifts the computed frequency bins by one half:

Xshift(k) =
1√
N

N−1∑
i=0

e−2πi(k+1/2)/Nx(i)

for k = 0, 1, 2, . . . , N − 1. This modified DFT remains or-
thonormal and preserves the sparsity behavior of compressible
signals, but for real signals it exhibits a simpler symmetry:

Xshift(k) = Xshift(N − 1− k). Thus the frequency domain
behavior is captured in N/2 complex values. If we preserve
only the first N/2 frequencies and scale by

√
2 to preserve

orthonormality, the result is what we call the half-bin FFT
(HBFFT):

X(k) =

√
2

N

N−1∑
i=0

e−2πi(k+1/2)/Nx(i)

for k = 0, 1, 2, . . . , N/2− 1. Let F : RN → CN/2 denote the
real-to-complex HBFFT operation, so X = F(x). Because F
is orthonormal, we have x = F∗(X), where F∗ denotes the
complex-to-real adjoint of F .

It turns out that the HBFFT F can be computed as the
composition of a single custom butterfly, a standard N/2-point
complex DFT, and a simple reshuffling. This is because the
computation of the even entries of Xshift can be written as
follows:

Xshift(2`) =
1√
N

N/2−1∑
i=0

e
−πi
N (x(i)− x(i+N/2)) e

−2π`i
N/2

for ` = 0, 1, 2, . . . , N/2 − 1. Then we simply have
X(k) =

√
2 · Xshift(k) when k is even, and X(k) =

√
2 ·

Xshift(N − 1− k) when k is odd. To perform the inverse
operation, we recover the quantities Xshift(2`) by reversing
the reshuffling step, and compute an intermediate quantity z(i)
using a standard complex inverse FFT followed by a complex
scaling:

z(i) =

√
2

N
eπi/N

N/2−1∑
`=0

e2π`i/(N/2)Xshift(2`)

for i = 0, 1, 2, . . . , N/2− 1. Then we can extract x from the
real and imaginary parts of z:

x(i) =

{
<(z(i)) i = 0, 1, 2, . . . , N/2− 1

−=(z(i−N/2)) i = N/2, N/2 + 1, . . . , N − 1.

The tight relationship between the HBFFT and the standard
complex FFT allows us to achieve high performance with
standard FFT libraries.

C. Reprojection on estimated support

If the support of the signal is known—that is, if we know
which frequency bins contain active signal content—and is
sufficiently sparse, then we can reduce the reconstruction pro-
cess to a standard least-squares problem we now introduce. Let
x ∈ RN represent the Nyquist-rate signal we wish to estimate,
and let y ∈ RM be the NUS samples. Those samples are
selected from indices IT ⊆ {0, 1, 2, . . . , N − 1}, |IT | = M .
Thus, x and y satisfy y = ETx, where ET ∈ RM×N is
assembled from rows i ∈ IT of the N × N identity matrix.
Our task is to construct an estimate x̂ ∈ RN of x given these
samples y. Using the real-to-complex HBFFT operator defined
in Section III-B, we let X = F(x) and X̂ = F(x̂) denote the
frequency domain representations of x and x̂, respectively.

Let IF ⊆ {0, 1, 2, . . . , N/2−1}, |IF | = P ≤M/2, denote
the support of the signal. We can write our estimate as X̂ =
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Fig. 12: A block diagram of the practical processing steps.

E∗FZ, where Z ∈ CP is a set of nonzero coefficients to be
determined below, and EF ∈ RP×N/2 is a frequency sampling
matrix assembled from rows i ∈ IF of the N/2×N/2 identity
matrix.

With these definitions in place, the reprojection problem can
be cast as

x̂ = F∗(E∗FZ), Z , argmin
Z
‖ET F∗(E∗FZ)− y‖2.

To help explain the above notation, let us note that
ET F∗(E∗FZ) is computed from Z by constructing a length-N2
vector containing the P entries of Z in the positions indexed
by IF , computing the complex-to-real inverse HBFFT of this
vector, and extracting from the result the M values in the
positions indexed by IT . The minimization on Z is a least-
squares problem and can be expressed as normal equations

EF F(E∗TET F
∗(E∗FZ)) = EF F(E∗T y).

The linear operation Z → EF F(E∗TET F
∗(E∗FZ)) is positive

definite, but it cannot be expressed as a complex matrix
due to the presence of the complex-to-real operation F∗.
However, we have chosen to solve this form using conjugate
gradients, which allows us to utilize the HBFFT and sampling
operators directly. Furthermore, CS theory shows that the
linear operator is well-conditioned, so conjugate gradients will
converge rapidly.

D. Spectral occupancy estimation

The problem of recovering a signal from NUS samples can
be partitioned into two subproblems: (1) first estimate the
support of the unknown signal in the frequency domain (we
refer to this step as spectral occupancy estimation), and then
(2) reproject to estimate the signal given this estimated sup-
port. We have developed a customized algorithm for spectral
occupancy estimation that is inspired by existing techniques
in CS but adapted to the specific nuances of our problem.

The most unique aspects of our problem that we seek to
exploit are as follows: (1) The nonzero HBFFT coefficients for
a given window—while few in number—also tend to cluster
into an even smaller number of contiguous groups. In the CS
literature, this is known as a structured sparsity model [4]. Our
algorithm is inspired by existing ones in the model-based CS
literature designed to exploit block-sparse [15] and clustered-
sparse [11] models. (2) Although our data are partitioned into
finite windows (as described in Section III-A), the spectral
occupancy is often stationary over the duration of multiple
windows. In cases like this—where multiple sparse signals
share the same support—the signals are said to obey a joint
sparsity model. Like others in the distributed CS literature [5],
our algorithm processes the data from multiple windows
jointly in order to better identify the support.

Our spectral occupancy estimation algorithm is greedy: we
first run a few iterations of a greedy selection rule that builds
an estimate of the support, and we then perform a pruning
procedure to remove false positives. The greedy selection
procedure (step 1 below) is iterative because it is difficult to
identify all of the active frequencies at once; at each iteration,
only the largest frequencies can be accurately estimated, since
artifacts from these large signals will hide smaller signals. As
illustrated in Figure 13, however, once some blocks of active
frequencies have been identified, a reprojection step removes
their influence from the measurements, and weaker active
frequencies can then be identified. We find the subsequent
pruning (step 2 below) to be helpful because setting the
thresholds in step 1 low enough to detect weak signals tends
to also introduce a number of false positives. Overall, our
algorithm most closely resembles the well-known OMP and
CoSaMP algorithms in CS [21], [24], although we have also
experimented with reweighted `1 minimization [9] and believe
that, with appropriate modifications, it could be competitive as
well.

To describe our algorithm, let us set the following notation.
Let xj ∈ RN represent the unknown Nyquist-rate samples
from window number j, and let yj ∈ RM represent the NUS
samples. Those samples are selected from indices IT,j ⊆
{0, 1, 2, . . . , N−1}, |ITj | = M , and so following the notation
defined in Section III-C, yj = ET,jxj , where ET,j ∈ RM×N .
From yj we would like to estimate the positions IF of the
non-negligible entries of Xj = F(xj). We accomplish this by
considering an ensemble of windows j ∈ {0, 1, . . . , J − 1}
simultaneously and exploiting the assumption of stationarity
(i.e., we assume that IF does not change from window to
window). Our algorithm consists of the following steps:

1) Preliminary support estimation
a) Set the iteration count ` = 1, and for each window

j, define a residual vector rj = yj . Set the
initial support estimate to be empty: ÎF := ∅.
Set the maximum allowable size for the support
estimate Pmax ≈ 0.8M2 . Set hold(i) = 0 for each
i ∈ {0, 1, . . . , N/2− 1}.

b) For each window j, compute the correlation statis-
tics hj = F(E∗T,jrj). Then, square and sum
the correlation statistics over multiple windows:
for each i ∈ {0, 1, . . . , N/2 − 1}, compute the
aggregate statistic hagg(i) =

∑J−1
j=0 |hj(i)|2.

c) Identify a set Γ of possible active frequencies. We
add an index i ∈ {0, 1, . . . , N/2 − 1} to Γ if
|hj(i)| is frequently among the largest entries of
hj across multiple windows j, or if |hagg(i)| is
among the largest entries of hagg. We also include
all entries of the previous support estimate ÎF .
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Fig. 13: Three iterations of the greedy selection procedure for preliminary support estimation. In each iteration, blocks of indices with high
aggregate energy estimates hagg(i) are identified (top row). A reprojection step then removes their influence from the measurements so that
additional active blocks can be identified in subsequent iterations. (The aggregate statistics hagg(i) are plotted before being reset with hold(i)
in step 1c of our algorithm below.) Plots in the bottom row show, for one of J windows used in the estimation, the reprojected spectrum
estimate |X̂j(i)| using the current support estimate.

For the purpose of computations below, we then
set hagg(i) = hold(i) for each i ∈ ÎF and reset
ÎF = ∅.

d) Pad the set Γ with some number p of indices on
both sides of each index in Γ. For example, if
p = 1 and Γ = {2, 3, 4, 6, 18, 19}, update Γ to
{1, 2, 3, 4, 5, 6, 7, 17, 18, 19, 20}.

e) Identify contiguous blocks of indices in Γ, and
compute the estimated energy of each block. For
example, for the updated Γ given above, two blocks
are identified, and their corresponding energies are
hagg(1)+· · ·+hagg(7) and hagg(17)+· · ·+hagg(20).

f) Populate the new support estimate ÎF with all of
the indices from the highest energy blocks, such
that |ÎF | does not exceed `

10Pmax. This increasing
threshold allows slightly larger support estimates
at each iteration.

g) On each window, use a reprojection step to project
the observations yj orthogonal to the chosen sup-
port ÎF , and let rj denote the resulting residual.

h) Store the aggregate energy estimates for use in
future iterations, setting hold(i) = hagg(i) for all i.
Then, increment the iteration counter `. Stop when
` = 10 or the energy in the residual vectors rj
is sufficiently small. Otherwise, repeat steps (1b)
through (1g).

2) Final pruning
a) Set the iteration count ` = 1.
b) Reproject each set of samples yj onto the estimated

support ÎF to obtain an estimate X̂j for the HBFFT
coefficients. Square and sum these estimates: for
each i ∈ {0, 1, . . . , N/2 − 1}, compute X̂(i) =∑J−1
j=0 |X̂j(i)|2.

c) For each contiguous block of indices in
ÎF , compute the largest value of X̂ ,
e.g., if ÎF = {2, 3, 4, 6, 18, 19}, compute
max{X̂(2), X̂(3), X̂(4)}, X̂(6), and
max{X̂(18), X̂(19)}.

d) Remove blocks from ÎF whose maximum X̂ value
does not exceed some threshold designed to elimi-

nate false positives. Increment the iteration counter
`.

e) Repeat steps (2b) through (2d) for a small number
of iterations.

f) Following the same procedure as in step 1d, pad
the support estimate ÎF with some number p of
indices on each side of each estimated block. (This
procedure operates only so long as |ÎF | ≤ Pmax.)

After running the entire support estimation algorithm on
an ensemble of J windows, one can re-run the algorithm on
one or more subsequent ensembles of J windows, either for
cross-validation purposes or to detect changes in the spectral
occupancy.

E. Additional implementation concerns

1) Model violations: Our system is designed to support
signals with up to 100 MHz of information bandwidth. There
are a number of strategies that one could use to confirm that
the input signal obeys this model assumption. For example,
in step 1 of the support estimation algorithm described in
Section III-D, the energy of the residual vectors rj should
decrease substantially as the number of iterations increases.
If significant energy remains in the residual vectors after the
maximum number of iterations, this means that the estimated
support is not sufficient to fully capture the structure in the
input signal. A second possible strategy for detecting model
violations could be cross validation. For example, 95% of
the NUS samples could be used for support estimation and
recovery, and the remaining 5% of the NUS samples could
be checked against the reconstructed estimates. A close match
suggests that the information bandwidth is well captured in
the estimated support.

In cases where small model violations are detected, CS
theory guarantees that the reconstruction on the estimated
support will be relatively accurate, although the small signal
components away from this support will of course not be
reconstructed. In cases where substantial model violations are
detected, reconstruction on the estimated support will not
be accurate. There is research into additional analog (pre-
processing) and digital (post-processing) safeguards that could
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Number of C2050 GPUs 1 3 6

Performance, Gflops/sec 145 426 808
Linearity N/A 98% 93%
GPUs for real time 83 84 89

TABLE II: Performance of our best GPU cluster in the reprojection
benchmark.

be added to our system to protect against such situations. If
the model is violated too frequently, then the NUS is simply
not the correct device for the task.

2) Computation: Because our system is designed to have a
high EIBW, the calculations described in Sections III-C-III-D
can be expensive. To quantify these costs, suppose we solve
the reprojection problem by applying conjugate gradients (CG)
to the normal equations. The cost of doing so is dominated
by the FFTs, each of which requires 2.5N log2N flops.
Two FFTs are required per CG iteration, and one each for
initialization and finalization. Because the windows overlap
by 50%, reconstruction occurs at a rate of of N/2 samples
per window. Therefore, the throughput required to perform
real-time reprojection is

C = fr · (2I + 2) · 2.5N log2N / (N/2)

= 10fr(I + 1) log2N flops/sec,

where I is the number of CG iterations and fr is the re-
constructed sample rate. Although we omit the details here,
in some problems where the EIBW is less than half of
the device Nyquist rate fs we can envision using digital
downconversion to reconstruct at a rate fr equal to just
twice the EIBW. When we are interested in the 800 MHz–
2 GHz band, for example, it is possible to reconstruct at
a rate of just fr = 2.4 Gsps.2 Taking this number as an
example, with (N, I, fr) = (65536, 30, 2.4 Gsps) we estimate
that reconstruction would require C ≈ 12 Tflops/sec. No
single processor achieves this type of performance; parallelism
must certainly be exploited.

Is this level of performance possible? While we have
not yet achieved it, we have conducted a variety of tests
to demonstrate the feasibility of using graphics processing
units (GPUs) to accelerate the key computations. Benchmarks
provided by NVIDIA suggest that a single C2050 Tesla GPU
can achieve a throughput of 175 Gflops/sec when performing
complex FFTs of our required length [1]. Under optimistic
assumptions of linear parallelism and no performance losses
in our algorithm, we can predict that real-time performance
would require at least 69 GPUs.

Using MATLAB, C++, and NVIDIA’s CUDA computa-
tional libraries, we have constructed a multiple-GPU imple-
mentation of our reprojection algorithm. This code is executed
on a system employing a single CPU and 6 Tesla C2050 GPUs.
To minimize losses due to GPU pipelining and CPU/GPU

2This would require using a device Nyquist rate of 4.8 Gsps, which is
part of our future specification for the system. In addition, we note that a
system using downconversion would more realistically output complex-valued
samples at 1.2 Gsps rather than real-valued samples at 2.4 Gsps, although
the cost is the same.

communication, each GPU processes 2048 windows simulta-
neously. Our measurements of the performance of this system
are summarized in Table II. Our performance is about 17%
lower on a single GPU than the NVIDIA FFT benchmark,
but a high degree of linearity is maintained for 6 GPUs.
Extrapolating from the 6-GPU results suggests that real-time
performance would require approximately 89 GPUs.

An important question is whether linearity can be preserved
for such a large number of GPUs. We believe that this would
be the case for for two reasons. First, the parallelism is coarse-
grained: each GPU processes a separate block of data, inde-
pendently of the others. Second, the communication require-
ments are determined primarily by the signal environment—
the NUS rate, the Nyquist rate, and the respective word sizes—
and not by the number of GPUs. Thus while a real-time system
would certainly be expensive, we are optimistic that it could
be built.

We have not yet discussed the costs of support identi-
fication. The bulk of the effort for estimating the spectral
occupancy is consumed by the reprojections, and about 16 of
these are performed in a typical run. Performing full support
identification on every window, then, would multiply the
computational burden by approximately 16. However, support
identification need not be performed on every window if the
signal environment is relatively stationary; the results from
one window can be used in many subsequent reprojections.
More work is needed to understand the tradeoff between the
computational costs and the ability to track a dynamic signal
environment.

IV. TESTING AND VALIDATION

A. Experimental setup
In order to test our complete NUS architecture in a represen-

tative environment, we conducted a series of experiments using
realistic GSM data. Signals were generated by an arbitrary
waveform generator (AWG) and a vector signal generator
(VSG).

For each experiment, we construct a 270.833 kbps GSM
signal that has a bandwidth of ∼1 MHz (at −50 dBc) and is
located at a center frequency of 1.595 GHz. For measurements
the GSM signal power is scaled anywhere from −20 dBFS
down to −80 dBFS. To the scaled GSM signal, we add various
levels of “clutter” to the spectrum consisting of narrowband
RF signals having random amplitudes and centered at random
frequencies between 800 MHz and 2 GHz. Clutter signals
with bandwidths of 20 MHz, 50 MHz, or 100 MHz are used,
and two different cases were generated for each bandwidth.
The clutter is used to increase the information bandwidth of
the signal, even though the clutter itself is not of interest.
Figure 14 shows example signals, including the GSM signal
and the clutter. It is important to note that our measure of the
clutter bandwidth includes spectral “tails” down to −90 dBFS
(measured after windowing); as the experiments illustrate,
however, it is possible to reconstruct the signal with high
accuracy while omitting these tails and thus requiring less
overall bandwidth.

After measurement, the NUS data are arranged into blocks
of size M = 3520 (each corresponding to N = 65 536
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Fig. 14: Example GSM test spectra with 20 MHz clutter (left) and 100 MHz clutter (right). Spectra are plotted from 700 MHz–2.1 GHz.
The GSM signal is located at 1.595 GHz and is indicated with a green marker.

Fig. 15: NUS test setup. The GSM signal is produced by the
E4438, clutter is produced by the AWG7122, and the NUS pattern
is produced by the 81250. ADC data is captured via the 16702 and
then downloaded and processed by the GPU.

Nyquist rate samples) and run through the spectral occupancy
estimation algorithm (Section III-D) using J = 31 overlapping
windows (these span a total of 1 048 576 Nyquist-rate sam-
ples). As a means of cross validation, the support estimation
procedure is repeated 10 times (each on a fresh set of J = 31
overlapping windows). A frequency bin is included in the
final support estimate if it appears in at least 2 out of the
10 preliminary estimates.

With the estimated support, we reproject the NUS data
on each window to recover an estimate of the Nyquist-rate
signal samples. The windowed samples are then recombined
as described in Section III-A. These estimated Nyquist-rate
samples are then passed through a GSM decoder (that has
a priori knowledge of the center frequency of 1.595 GHz)
to measure the BER. Note that input powers in the range of
−55 to −75 dBFS yield measurable BER. Above −55 dBFS
the BER drops to a rate that makes collecting and processing
an adequate number of samples difficult. Very low power
inputs yield high BERs and make synchronization of the
decoder difficult; the GSM signal will only be present in our
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Fig. 16: BER of the decoded GSM signal as a function of input
power. Circular markers indicate the performance of the uniform
ADC for each of two randomly generated signals (denoted (1) or
(2)) at each of three levels of clutter (20, 50 and 100 MHz). Square
markers indicate the performance of the NUS on the same signals.
The solid and dashed lines correspond to separate trials.

reprojected samples if the band around 1.595 GHz is correctly
identified as part of the support, and this becomes less likely
when the input power is very low.

A simplified diagram of the NUS test setup used in the
experiment is shown in Figure 15. Not shown are the controller
connections, differential lines, filtering, and power supplies.

For the sake of comparison, we also sampled the test signals
using an NGAS developed 5 Gsps 8-bit Nyquist ADC that
uses the same InP technology. A description of an earlier
version of this ADC chip can be found in [12]. This ADC uses
folding-interpolating architecture, has a greater than 7 ENOB
performance, and draws 9.6 W. Because the uniform ADC
automatically produces Nyquist samples, its output can be
passed directly to the GSM decoder. Testing was done using
a 4.4 GHz clock and the output was sub-sampled by four
because of equipment limitations.
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Fig. 17: Dynamic range of the uniform ADC and the NUS as a
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identified by the spectral occupancy estimation algorithm. For the
signal with 100 MHz of clutter, it is possible to achieve high dynamic
range while identifying less than 80 MHz of occupied bandwidth; this
is because only the small tails of the clutter signal are omitted.

B. Experimental results

Figure 16 plots the BER as the input power of the GSM
signal is reduced. Circular markers indicate the performance
of the uniform ADC for each of two randomly generated envi-
ronments (distinguished by solid and dashed lines) at each of
three levels of clutter (distinguished by color). Square markers
indicate the performance of the NUS on the same signals. With
the uniform ADC, we see relatively little variation in BER
across the various signals. That is, the performance of the
uniform ADC does not depend on the information bandwidth
of the input signal.

With the NUS, in contrast, for signals with higher levels of
information bandwidth (more clutter), we do see an increase
in the BER. This is to be expected, since the difficulty of
accurately estimating the spectral occupancy increases, and
the accuracy of the reprojected signal will degrade slightly.

Figure 17 captures this trend more clearly by plotting the
dynamic range of the two systems as a function of the informa-
tion bandwidth. For this graph, dynamic range is defined as the
minimum input power (dBFS) that yields a BER of 10−2. For
all levels of the information bandwidth, the uniform ADC has
a higher dynamic range, but this is not surprising because the
uniform ADC collects more samples in total (approximately
4.7× more than the NUS in this case).

As a separate experiment, we operate our NUS architecture
in a 300 MHz uniform sampling mode: samples are not spaced
according to the PRBS but rather occur in equispaced intervals.
This allows the system to be treated like a low-rate ADC and
characterized without the need for reconstruction. Figure 18
compares the SINAD and SFDR (as a function of input
frequency) of the Nyquist ADC and the NUS. The difference
in sampling rates between the ADC and the NUS is not a
problem since it does not affect the measurements, only the
amount of folding that occurs. The plots show the NUS has a
10 dB advantage in both SINAD and SFDR while consuming
about half the power. The SINAD advantage partially offsets
the noise penalty of undersampling. Because of the wideband
nature of the GSM+clutter signals, the SFDR advantage of
the NUS was not obvious. Other measurements (not shown)
done with only multi-carrier GSM signals present do hint at
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Fig. 18: Comparison of the SINAD and SFDR versus frequency of
the Nyquist ADC and the NUS in uniform sampling mode.

the performance advantage of the NUS.

V. CONCLUSIONS

In summary, we have presented a custom monolithic imple-
mentation of a non-uniform sampler that uses the principles
of compressed sensing to entirely reconstruct the input signal.
While the NUS can be similar in function to an ADC, we
emphasize that it is not a drop-in replacement for an ADC.
Rather, it is a powerful tool in the signal processing toolkit that
is useful when the signal is supported on a small (unknown)
bandwidth inside a large frequency range.

Our results show that the hardware and algorithms are
performing as expected and that the custom S/H is not a
bottleneck of the system. Thus, by using a faster off-the-shelf
ADC, the NUS could be scaled to even higher bandwidths. The
remaining limitations are the processing speed and power, and
the assumption of sparsity. Our current research addresses the
former issue with our custom hybrid reconstruction algorithm
and a custom GPU implementation, and future work will be
on improving this further to achieve real-time recovery. The
assumption of sparsity is more fundamental. The underlying
issue is that the signal information rate cannot exceed the sam-
pling rate, and spectral sparsity is a convenient proxy for the
information rate. For specific applications that have a tighter
signal model (for example, a known form of modulation) it
may be possible to devise improved recovery algorithms that
have a more relaxed sparsity assumption; such ideas are being
studied under the name of model-based compressed sensing,
and we leave the application of these ideas to the NUS for
future work.
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