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. INTRODUCTION

Armed with potentially limited communication and compigagl resources, designers of
distributed imaging systems face increasing challengethénquest to acquire, compress, and
communicate ever richer and higher-resolution image ehksmin this paper, we consider multi-
view imaging problems in which an ensemble of cameras doileages describing a common
scene. To simplify the acquisition and encoding of thesegesawe study the effectiveness of
non-collaborative compressive sensing (CS) [2, 3] enapdahemes wherein each sensor directly
and independently compresses its image using a small nuoflb@ndomized measurements (see
Fig. 1). CS is commonly intended for the encoding of a singdea, and a rich theory has been
developed for signal recovery from incomplete measuremiyntexploiting the assumption that
the signal obeys a sparse model. In this paper, we addregzrdbéem of how to recover an
ensemble of images from a collection of image-by-image esamtheasurements. To do this, we
advocate the use of implicitly geometric models to capthesjbint structure among the images.

CS is particularly useful in two scenarios. The first is whémigdn-resolution signal is difficult to
measure directly. For example, conventional infrared camezquire expensive sensors, and with
increasing resolution such cameras can become extremsgtly.c& compressive imaging camera
has been proposed [4] that can acquire a digital image usinteWer (random) measurements
than the number of pixels in the image. Such a camera is sianpdeinexpensive and can be
used not only for imaging at visible wavelengths, but alsoirfitaging at nonvisible wavelengths.

A second scenario where CS is useful is when one or more kiggitrtion signals are difficult
or expensive to encode. Such scenarios arise, for exanmpkerisor networks and multi-view
imaging, where it may be feasible to measure the raw datacat ®nsor, but joint, collaborative
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Fig. 1: Multi-view compressive imaging setup. A common scene isoled byJ cameras from different
positions. Each camefiaencodes a small number of random measuremgri$its observed image;, and
a single decoder jointly reconstructs all images} from the ensemble of compressive measuremigyits

compression of that data among the sensors would requitly cosnmunication. As an alternative

to conventional Distributed Source Coding (DSC) methodsdb extension of single-signal CS

known as Distributed CS (DCS) [6] has been proposed, whexe ssnsor encodes only a random
set of linear projections of its own observed signal. Thesgeptions could be obtained either
by using CS hardware as described above, or by using a ranmmpressive encoding of the

data collected from a conventional sensor.

While DCS encoding is non-collaborative, an effective D@8atler should reconstruct all sig-
nalsjointly to exploit their common structure. As we later discuss, neagting DCS algorithms
for distributed imaging reconstruction rely fundamentah sparse models to capture intra- and
inter-signal correlations [6-9]. What is missing from eafhthese algorithms, however, is an
assurance that the reconstructed images have a globaktomsj, i.e., that they all describe a
common underlying scene. This may not only lead to possiblefusion in interpreting the
images, but more critically may also suggest that the reoection algorithm is failing to
completely exploit the joint structure of the ensemble.

To better extend DCS techniques specifically to problemshiting multi-view imaging, we
propose in this paper a general geometric framework in wimiahy such reconstruction problems
may be cast. In particular, we explain how viewing the unknaémages as living along a low-
dimensional manifold within the high-dimensional signgdse can inform the design of effective
joint reconstruction algorithms. Such algorithms candwih existing sparsity-based techniques

for CS but ensure a global consistency among the reconstrutiages. We refine our discussion



by focusing on two settings: far-field and near-field muiéw imaging. Finally, as a proof of
concept, we demonstrate a “manifold lifting” algorithm irspecific far-field multi-view scenario
where the camera positions are not known a priori and we obbeive a small humber of
random measurements at each sensor. Even in such discau@giumstances, by effectively
exploiting the geometrical information preserved in thenifdd model, we are able to accurately

reconstruct both the underlying scene and the camera qusiti

Il. CONCISE SIGNAL MODELS

Real-world signals typically contain some degree of stiecthat can be exploited to simplify
their processing and recovef§parsityis one model of conciseness in which the signal of interest
can be represented as a linear combination of only a few lasi®rs from some dictionary.
To provide a more formal statement, let us consider a signal RY. (If the signal is a 2D
image, we reshape it into a lengii-vector.) We let? € RV*Y denote an orthonormal basis
for RY, with its columns acting as basis vectors, and we write ¥, wherea := U7z € RV
denotes the expansion coefficientsaofn the basis¥. We say thatr is K-sparse in the basis
¥ if « contains onlyK nonzero entries. Sparse representations itk N provide exact or
approximate models for wide varieties of signal classeirag as the basi# is chosen to match
the structure inx. In the case of images, the 2D Discrete Wavelet Transform Tp@hd 2D
Discrete Cosine Transform (DCT) are reasonable candidates [10].

As an alternative to sparsitynanifoldshave also been used to capture the concise structure
of multi-signal ensembles [1, 11-14]. Simply put, we canwi manifold as a low-dimensional
nonlinear surface withilRY. Manifold models arise, for example, in settings where a-low
dimensional parameter controls the generation of the k{gaa Fig. 2). Assume, for instance, that
r = xg € RV depends on some paramefemwhich belongs to a-dimensional parameter space
that we call©.! One might imagine photographing some static scene anddettcorrespond to
the position of the camera: for every valuetfthere is someV-pixel imagexy that the camera
will see. Supposing that the mappidg— x4 is well-behaved, then if we consider all possible
signals that can be generated by all possible values tife resulting seiM := {2y : § € ©} C

RN will in general correspond to a nonlineprdimensional surface withiiR? .

!Depending on the scenario, the parameter sgaaeould be a subset dR”, or it could be some more general
topological manifold such as SO(3), e.g.fifcorresponds to the orientation of some object in 3D space.
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Fig. 2: A manifold M can be VIewed as a nonlinear surfac&i. When the mapping betweérandz is
well-behaved, as we trace out a path in the parameter $pawse trace out a similar path okt. A random
projection® fromRY to a lower dimensional spa®"! can provide a stable embedding.of, preserving
all pairwise distances, and therefore preserving the sreavithin an ensemble of images. The goal of a
manifold lifting algorithm is to recover an ensemble of irragrom their low-dimensional measurements.

When the underlying signat is an image, the resulting manifold is called animage
Appearance ManifoldlAM). Recently, several important properties of IAMs haween revealed.
For example, if the imagesy contain sharp edges that move as a functiory,othe 1AM is
nowhere differentiablevith respect t& [12]. This poses difficulties for gradient-based parameter
estimation techniques such as Newton’s method becausartgerit planes on the manifold (onto
which one may wish to project) do not exist. However, it hasdleen shown that IAMs have
a multiscale tangent structure [12, 13] that is accessiblaugh a sequence of regularizations of
the image, as shown in Fig. 3. In particular, suppose we defispatial blurring kernel (such
as a lowpass filter) denoted By, wheres > 0 indicates thescale(e.g., the bandwidth or the
cutoff frequency) of the filter. Then, althought = {zy : 6 € ©} will not be differentiable, the
manifold My = {h, xzy : 0 € ©} of regularized images will be differentiable, wherelenotes
2D convolution. Tangent planes do exist on these reguldnzanifolds M, and ass — 0, the
orientation of these tangent planes along a given changes more slowly as a function @f
In the past, we have used this multiscale tangent structuraplement a coarse-to-fine Newton
method for parameter estimation on IAMs [13].

The rich geometrical information that rests within an IAM kea it an excellent candidate for
modeling in multi-view imaging. Letting represent camera position, all of the images in a multi-
view ensemble will live along a common IAM, and as we will latiscuss, image reconstruction

in the IAM framework can ensure global consistency of theonstructed images.



Fig. 3: The multiscale structure of manifolds. The top manifoldhiis tiigure corresponds to the collection
of images of a teapot that could be acquired from different@a position®. While manifolds like this
containing images with sharp edges are not differentiafieifolds of images containing smooth images
differentiable, and the more one smoothes the images, theter the manifold becomes.

IIl. COMPRESSIVESENSING

In conventional signal acquisition devices such digitaiheeas and camcorders, we first ac-
quire a full N-dimensional signak and then apply a compression technique such as JPEG or
MPEG [10]. These and othdransform codingtechniques essentially involve computing the
expansion coefficients: describing the signal in some basis keeping only theK-largest
entries ofa, and setting the rest to zero. While this can be a very effeatiay of consolidating
the signal information, one could argue that this procedirdirst sample, then compress” is
somewhat wasteful because we must measurpieces of information only to retaild’ < N
coefficients. Depending on the sensing modality, it may Iifécdit or expensive to acquire so
many high-resolution samples of the signal.

The recently emerged theory of CS suggests an alternatigeisation scheme. CS utilizes
an efficient encoding framework in which we directly acquirecompressed representation of
the underlying signal by computing simple linear inner prad with a small set of randomly
generated test functions. Let us denote the full-resolutiiscrete signal as ¢ RY and suppose
that we generate a collection af random vectorsg; € RY, i = 1,2,..., M. We stack these
vectors into anM x N matrix ® = [¢; ¢ --- ¢éun]”, which we refer to as a measurement
matrix. A CS encoder or sensor produces the measuremestsbz ¢ RM, possibly without
ever sampling or storing itself.

At the decoder, given the random measuremegnasid the measurement matidx one must

attempt to recover:. The canonical approach in CS is to assume tha sparse in a known



basis¥ and solve an optimization problem of the form [2, 3]
min [|a|); s.t.y = PV, 1)

which can be recast as a linear program. When there is boundisé or uncertainty in the

measurements, i.ey,= ®z + n with ||n||2 <, it is common to solve a similar problem [15]:
min ol s.t. |y — @Palls <, 2

which is again convex and can be solved efficiently.

Depending on the measurement matbixrecovery of sparse signals can be provably accurate,
even in noise. One condition oh that has been used to establish recovery bounds is known
as the Restricted Isometry Property (RIP) [16], which reggiithat pairwise distances between
sparse signals be approximately preserved in the measorexpace. In particular, a matrik
is said to satisfy the RIP of ord@&K with respect toV¥ if there exists a constaiit < o < 1

such that for allK-sparse vectors;, xs in the basis¥ the following is satisfied,
(1= dox) 1 — wo3 < (| @1 — Pl < (1 + dorc) |1 — 2f3. 3)

If @ satisfies the RIP of orde&K with 6o, sufficiently small, it is known that (1) will perfectly
recover anyK-sparse signal in the basig, and that (2) will incur a recovery error at worst
proportional toe [15]. The performance of both recovery techniques alsoatkgs gracefully if
x is not exactlyK -sparse but rather is well approximated bysasparse signal.

It has been shown that we can obtain an RIP madrixwith high probability simply by
taking M = O(K log(N/K)) and populating the matrix with i.i.d. Gaussian, Bernowlimore
general subgaussian entries [17]. Thus, one of the halbr@ricS is that this requisite number of
measurementd/ is essentially proportional to the sparsity levélof the signal to be recovered.

In addition to families of{-sparse signals, random matrices can also provide statileddings
for manifolds (see Fig. 2). Lettingt denote a smoothp-dimensional manifold, if we také/ =
O(plog(NN)) and generaté& randomly from one of the distributions above, we will obtain
embeddingb M := {®z : x € M} € RM such that all pairwise distances between points on the

2Although an IAM M may not itself be smooth, a regularized manifald, will be smooth, and later in this paper
we discuss image reconstruction strategies based on rapdgections of M, at a sequence of scales



manifold are approximately preserved [14], i.e., such (8aholds for allzy, , z9, € M. Geodesic
distances are also approximately preserved. Again, theigié®l number of measurements is
merely proportional to the information level of the signalhich in this case equalg (the
dimension of the manifold), rather than the sparsity le¥¢he signal in any particular dictionary.
All of this suggests that manifolds may be viable models te isCS recovery; see [18] for
additional discussion on the topic of using manifold modelsecover individual signals.

We see from the above that random measurements have a réheatiyaiversal” ability to
capture the key information in a signal, and this occurs waithumber of measurements just
proportional to the number of degrees of freedom in the sigbaly the decoder attempts to
exploit the signal structure, and it can do so by positing mnsnber of possible signal models.

In summary, in settings where a high-resolution signas$ difficult or expensive to measure
directly, CS allows us to replace the “first sample, then ca®sg’ paradigm with a technique for
directly acquiring compressive measurements.ofo do this in practice, we might resort to CS
hardware which directly acquires the linear measuremgntihout ever sampling or storing
directly. Several forms of compressive imaging architezguhave been proposed, ranging from
existing data collection schemes in Magnetic ResonancgiimggMRI) [19] to more exotic CS-
based techniques. One architecture [4], for example, cepldne conventional CCD/CMOS sensor
in a digital camera with a digital micromirror device (DMDyhich modulates the incoming light
and reflects it onto a single photodiode for measurementeSoiriguing uses of this inexpensive
“single pixel camera” could include infrared or hyperspakimaging, where conventional high-
resolution sensors can cost hundreds of thousands of slollar

Before proceeding, however, we note that CS can also belusefettings where it is possible
to acquirehigh-resolution signals, but is difficult or expensive tdsequentiyencodethem. For
example;z might represent a video signal, for which direct measuremsgrossible, but for which
subsequent compression typically requires exploitingmarated spatio-temporal correlations [8,
9]. A more straightforward encoder might simply compuyte ®x for some random, compressive
®. Other scenarios where data is difficult to encode efficyemilght be in sensor networks or in

multi-view imaging, which is the topic of this paper and isaissed further in the next section.



IV. MULTI-VIEW IMAGING USING IMAGE-BY-IMAGE RANDOM MEASUREMENTS

Let us now turn to the problem of distributed image compres$dr multi-view imaging. We
imagine an ensemble of distinct cameras that collect images z», ..., z; € RV describing a
common scene, with each image taken from some camera positién € ©. We would like to
efficiently compress this ensemble of images, but as in anga@enetwork, we may be limited
in battery power, computational horsepower, and/or conication bandwidth. Thus, although
we may be able to posit sparse and manifold-based model®fmisely capturing the intra- and
inter-signal structures among the images in the ensemipéztlg exploiting these models for the
purpose of data compression may be prohibitively complexequire expensive collaboration
among the sensors. This motivates our desire for an eféedistributed encoding strategy.

The encoding of multiple signals in distributed scenarias been long been studied under the
auspices of the distributed source coding (DSC) commufitg Slepian-Wolf framework [5] for
lossless DSC states that two sourégsand X, are able to compress at their conditional entropy
rate without collaboration and can be decoded successfiign the correlation model (i.e., the
joint probability distributionp(x1, z2)) is known at the decoder. This work was extended to lossy
coding by Wyner and Ziv when side information is availabléh@decoder [20], and in subsequent
years, practical algorithms for these frameworks have h@weposed based on channel coding
techniques. However, one faces difficulties in applyingséhameworks to multi-view imaging
because the inter-image correlations are arguably begsarithed geometrically than statistically.
Several algorithms (e.g., [21]) have been proposed for @aimdpthese geometric and statistical
frameworks, but fully integrating these concepts remaingrg challenging problem.

As a simple alternative to these type of encoding schemesadvecate the use of CS for
distributed image coding, wherein for each sengor {1,2,...,J}, the signalz; € RY is
independently encoded using ad; x N measurement matri®;, yielding the measurement
vectory; = ®;x; € R™. Such an encoding scheme is known in the CS literature asitiited
CS (DCS) [6]. While the primary motivation for DCS is to siriplthe encodingof correlated
high-resolution signals, one may of course bypass the paligndifficult acquisition of the
high-resolution signals and directly collect the randomaswements using CS hardware.

After the randomized encoding, the measurement vegtars,, ...,y are then transmitted

to a central node for decoding. Indeed, DCS differs from Igksignal CS only in the decoding



process. Rather than recover the signals one-by-one frermtftasurement vectors, an effective
DCS decoder should solve a joint reconstruction problerplaiting the intra- and inter-signal
correlations among the signajs; }, while ensuring consistency with the measuremgntg.

The proper design of a DCS decoder depends very much on tkeofygata being collected
and on the nature of the intra- and inter-signal correlatiddeally, compared to signal-by-
signal recovery, joint recovery should provide better retauction quality from a given set of
measurement vectors, or equivalently, reduce the measuatdsarden needed to achieve a given
reconstruction quality. For example, if each signal in theesnble iskK'-sparse, we may hope to
jointly recover the ensemble using fewer than ¢hgs log(N/K)) measurements per sensor that
are required to reconstruct the signals separately. Likglesisignal CS, DCS decoding schemes
should be robust to noise and to dropped measurement padkeis reconstruction techniques
should also be robust to the loss of individual sensors, ngaRICS well-suited for remote sensing

applications.

V. CURRENTAPPROACHES TODCS MULTI-VIEW IMAGE RECONSTRUCTION

For signals in general and images in particular, a variet 8 decoding algorithms have
been proposed to date. Fundamentally, all of these frankswarild upon the concept of sparsity
for capturing intra- and inter-signal correlations.

One DCS modeling framework involves a collection of joinaspty models (JSMs) [6]. In
a typical JSM we represent each signale RY in terms of a decomposition; = 2¢ + z;,
where zc € R is a “common component” that is assumed to be present i{agl}, and
z; € RN is an “innovation component” that differs for each signaépending on the application,
different sparsity assumptions may be imposedzerand z;. In some cases these assumptions
can dramatically restrict the space of possible signalsekample, all signals may be restricted
to live within the samek -dimensional subspace. The DCS decoder then searches fgna s
ensemble that is consistent with the available measurenaet falls within the space of signals
permitted by the JSM. For signal ensembles well-modeledd§M, DCS reconstruction can offer
a significant savings in the measurement rates. While eadosenust take enough measurements
to account for its innovation componesy, all sensors can share the burden of measuring the

common componenic.



Unfortunately, the applicability of JSMs to multi-view imi@g scenarios can be quite limited.
While two cameras in very close proximity may yield imagesihg sparse innovations relative
to a common background, any significant difference in the eranpositions will dramatically
increase the complexity of the innovation components. Bseaconventional JSMs are not
appropriate for capturing any residual correlation thay memain among these innovations, we
would expect JSM-based recovery to offer very little imgment over independent CS recovery.

Recently, a significant extension of the JSM framework hasnberoposed specifically for
multi-view compressive imaging [7]. This framework assgrtieat images of a common scene are
related by local or global geometrical transformations prapposes an overcomplete dictionary of
basis elements consisting of various geometrical tram&dtions of a generating mother function.
It is assumed that each image can be decomposed into its dvaetsof these atoms plus the
geometrically transformed atoms of the neighboring imagdése benefit of this approach is that
information about one image helps reduce the uncertaintbptatvhich atoms should be used
to comprise the neighboring images. Unfortunately, therenss to be a limit as to how much
efficiency may be gained from such an approach. To recorisérigiven image, the decoder
may be tasked with solving for, sayy sparse coefficients. While the correlation model may
help reduce the measurement burden at that sensor [g@{dgvog(N/K)), it is not possible to
reduce the number of measurements beldwAs we will later argue, however, there is reason
to believe that alternative reconstruction techniquestham the underlying scene (rather than
the images themselves) can succeed with even fewer measuiem

Other approaches for multi-view image reconstruction dalraw naturally from recent work
in CS video reconstruction by ordering the static imafes according to their camera positions
and reconstructing the sequence as a sort of “fly-by” videw &pproach for video reconstruction
exploits the sparsity of inter-frame differences [8]. Farltiview imaging, this would correspond
to a difference image; — =; having a sparse representation in some bésiggain, however,
this condition may only be met if camerdasand j; have very close proximity. We have also
proposed a CS video reconstruction technique based on anmatimpensated temporal wavelet
transform [9]. For multi-view imaging, we could modify theédgorithm, replacing block-based
motion compensation with disparity compensation. Thelehgke of such an approach, however,

would be in finding the disparity information without prionéwledge of the images themselves.
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For video, we have addressed this challenge using a caaffseetreconstruction algorithm that
alternates between estimating the motion vectors and serwamting successively higher resolution
versions of the video using the motion-compensated wawelasform.

What would still be missing from any of these approaches,awew is an assurance that the
reconstructed images have a global consistency, i.e.tlbgtall describe a common underlying
scene. In the language of manifolds this means that the sgtmted images do not necessarily
live on a common IAM defined by a hypothetical underlying seefihis may not only lead
to possible confusion in interpreting the images, but maitcally may also suggest that the
reconstruction algorithm is failing to completely expldie joint structure of the ensemble—the

images are in fact constrained to live in a much lower-dirf@rad set than the algorithm realizes.

VI. MANIFOLD LIFTING TECHNIQUES FORMULTI-VIEW IMAGE RECONSTRUCTION

In light of the above observations, one could argue that fettfe multi-view reconstruction
algorithm should exploit the underlying geometry of therscby using an inter-signal modeling
framework that ensures global consistency. To inform th&giheof such an algorithm, we find
it helpful to view the general task of reconstruction as wiiatterm amanifold lifting problem:
we would like to recover each image € RY from its measurementg; € R (“lifting” it
from the low-dimensional measurement space back to thedimgknsional signal space), while
ensuring that all recovered images live along a common IAM.

Although this interpretation does not immediately point tosa general purpose recovery
algorithm (and different multi-view scenarios could indeequire markedly different algorithms),
it can be informative for a number of reasons. For exampleya$ave discussed in Sec. Il
manifolds can have stable embeddings under random prafsctif we suppose thak;, = ¢ ¢
RMx*N for all j, then each measurement vector we obtain will be a point sainfpbm the
embedded manifoldbM < RM. From samples ofbAM in RM, we would like to recover
samples of (or perhaps all ofp in RY, and this may be facilitated i AM preserves the
original geometric structure of1. In addition, as we have discussed in Sec. Il, many IAMs have
a multiscale structure that has proved useful in solving-ocmmpressive parameter estimation
problems, and this structure may also be useful in solvingi+vigw recovery problems.

While this manifold-based interpretation may give us a gewin framework for signal mod-

eling, it may not in isolation sufficiently capture all inrtrand inter-signal correlations. Indeed,
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one cannot disregard the role that concise models such astgpaay still play in an effective
manifold lifting algorithm. Given an ensemble of measurateey;,y-,...,ys, there may be
many candidates IAMs on which the original imaggszo, ...,y may live. In order to resolve
this ambiguity, one could employ either a model for the idignal structure (such as sparsity) or
a model for the underlying structure of the scene (againsipyssparsity). To do the latter, one
must develop a representation for the underlying scene engrhenon that is being measured
and understand the mapping between that representatiothamdeasurements, y2, ..., 4. TO
keep the problem simple, this mapping will ideally be lineard as we discuss in this section,
such a representation and linear mapping can be found in &de&wai scenarios.

To make things more concrete, we demonstrate in this se¢tam the manifold lifting
viewpoint can inform the design of reconstruction algarithin the context of two generic multi-
view scenarios: far-field and near-field imaging. We als@wls how to address complications
that can arise due to uncertainties in the camera positieshope that such discussions will

pave the way for the future development of broader classesamififold lifting algorithms.

A. Far-field Multi-view Imaging

We begin by considering the case where the cameras are fartfre underlying scene, such
as might occur in satellite imaging or unmanned aerial \el{idAV) remote sensing scenarios.
In problems such as these, it may be reasonable to model emgeir; € RY as being a
translated, rotated, scaled subimage of a larger fixed imAlgaepresent this larger image as an
elementz drawn from a vector space such &8 with Q > N, and we represent the mapping
from x to z; (which depends on the camera positi) as a linear operator that we denote as
Ry, : RQ — RN, This operatorR?y, can be designed to incorporate different combinations of
translation, rotation, scaling, etc., followed by a redion that limits the field of view.

This formulation makes clear the dependence of the IAM on the underlying scene:

M = M(z) = {Rgz : § € ©} c RY. Supposing we believe: to obey a sparse model
and supposing the camera positions are known, this forioolatso facilitates a joint recovery
program that can ensure global consistency while expipitie structure of the underlying scene.

At cameraj, we have the measurements= ®;r; = ®;Ry x. Therefore, by concatenating all

12



of the measurements, we can write the overall system of @msadsy = ®yigRx, where

Y1

Y2

Y

Ry,
Rg,

Ry,

, and Ppig =

D,

(4)

Giveny and ®pig R, and assuming is sparse in some basis (such as the 2D wavelet domain),
we can solve the usual optimization problem as stated indd)2) if the measurements are
noisy). If desired, one can use the recovered image obtain estimates; := Ry r of the

original subimages. These are guaranteed to live along anocomAM, namely M (z).

B. Near-field Multi-view Imaging

Near-field imaging may generally be more challenging thafiédd imaging. Defining a useful
representation for the underlying scene may be difficultl due to effects such as parallax and
occlusions, it may seem impossible to find a linear mappiogfany such representation to the
measurements. Fortunately, however, there are encogragitedents that one could follow.

One representative application of near-field imaging is amputed Tomography (CT). In CT,
we seek to acquire a 3D volumetric signalbut the signals:; that we observe correspond to
slices of the Fourier transform of. (We may assumg; = z; in such problems, and so the
challenge is actually to recovev!(z), or equivalently just, rather than the individuafz;}.)
Given a fixed viewing anglé;, this relationship between andz; is linear, and so we may set
up a joint recovery program akin to that proposed above fefiééd imaging. Similar approaches
have been used for joint recovery from undersampled freqguereasurements in MRI [19].

For near-field imaging using visible light, there is genlgralo clear linear mapping between
a 3D volumetric representation of the scene and the obsemvagesz;. However, rather than
contend with complicated nonlinear mappings, we suggestatpromising alternative may be to
use theplenoptic functior{22] as a centralized representation of the scene. The plenfonction
f is a hypothetical 5D function used to describe the intergitight that could be observed from
any point in space, when viewed in any possible directior Vdluef (p,, py, v, po, e) Specifies
the light intensity that would be measured by a sensor ldcatethe position(p,, p,,p.) and

pointing in the direction specified by the spherical cooatisp, andp,. (Additional parameters
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such as color channel can be considered.) By consideriygaambunded set of viewing positions,
the plenoptic function reduces to a 4D function known asltimigraph[22].

Any imager; € RV of the scene has a clear relationship to the plenoptic foncth given
cameraj will be positioned at a specific poirtp,., p,,p.) in space and record light intensities
arriving from a variety of directions. Thereforg, simply corresponds to a 2D “slice” of the
plenoptic function, and once the camera viewpdintis fixed, the mapping frony to z; is
a simple linear restriction operator. Consequently, thracttire of the IAM M = M(f) is
completely determined by the plenoptic function.

Plenoptic functions contain a rich geometric structure tha suggest could be exploited to
develop sparse models for use in joint recovery algoritiFhgs geometric structure arises due to
the geometry of objects in the scene: when a physical ob@dhg distinct edges is photographed
from a variety of perspectives, the resulting lumigrapH héglve perpetuating geometric structures
that encode the shape of the object under study. As a sinipderdtion, a Flatland-like scenario
(imaging an object in the plane using 1D cameras) is shownign 4a). The resulting 2D
lumigraph is shown in Fig. 4(b), where each row correspomds tsingle “image”. We see
that geometric structures in the lumigraph arise due totslif the object’s position as the
camera viewpoint changes. For the 4D lumigraph these stesthave recently been termed
“plenoptic manifolds” [23] due to their own nonlinear, sace-like characteristics. If a sparse
representation for plenoptic functions can be developatdRploits these geometric constraints
(perhaps by involving the wedgelet or surflet dictionari24]], then it may be possible to recover
plentopic functions from incomplete, random measuremasiisg a linear problem formulation
and recovery algorithms such as (1) or (2).

As a proof of concept, we present a simple experiment in supgdahis approach. For the
lumigraph shown in Fig. 4(b), which has= 128 1D “images” that each contaiN = 128 pixels,
we collectM = 4 random measurements from each image. From these meastsengcatte mpt
to reconstruct the entire lumigraph using total variatiomimization [4,19], a standard CS
technique that encourages a sparse gradient in the reco2Bréumigraph image. The resulting
reconstruction is shown in Fig. 4(c). Finally, to illuseathe rich interplay between geometry
within the lumigraph and the underlying geometry of the sceve show that it is actually possible

to use the reconstructed lumigraph to estimate the undegriséene geometry. While we omit the
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Fig. 4: Lumigraph geometry in compressive multi-view imaging.R&gtland-like illustration for collecting
1D images of an object in the 2D plane. At each camera pos#ibmiewing directions may be considered.
(b) Resulting1 28 x 128 lumigraph for the ellipse-shaped object. Each row corredpdo a single “image”.
(In the real world each image is 2D and the full lumigraph is)4he lumigraph can be repeated for viewing
from all four sides of the object. (c) Reconstructed lumigrdrom M = 4 compressive samples of each
image (row of lumigraph). (d) Scene geometry estimatedgukioal edge detection in the reconstructed
lumigraph. Each blue line connects an estimated point orolfiect to a camera from which that point is
visible. The true ellipse is shown in red.

Viewing direction, t

details of our approach, it is possible to segment the luapigrinto small regions, perform edge
detection on each region, and infer from each straight edgepieces of information: (i) the

position of some point belonging to the object, and (ii) tlesipon of some camera from which
that point is visible. The resulting estimates are shownim B(d). This estimation technique
also relates directly to the wedgelet and surflet dicti@safR4] mentioned above, which we
believe could play an important role in the future for deypéhy improved concise models for

lumigraph processing.

C. Dealing with Uncertainties in Camera Positions

In all of our discussions above, we have assumed the camsitgopsé; were known. In some
situations, however, we may have only noisy estim&@e& 0; + n; of the camera positions.
Supposing that we can define linear mappings between therlyimdescene and the images
xj, it is straightforward to extend the CS recovery problem ¢ocaint for this uncertainty. In
particular, lettingk denote the concatenation of the mappirgs as in (4), and Ietting? denote
the concatenation of the mappin%j corresponding to the noisy camera positions, it follows
thaty = PpigRz = @bigﬁx -+ n for some noise vecton, and so (2) can be used to obtain an
approximationz of the underlying scene. Of course, the accuracy of this apmation will
depend on the quality of the camera position estimates.

When faced with significant uncertainty about the cameratipos, the multiscale properties

of IAMs help us to conceive of a possible coarse-to-fine retoigtion approach. As in Sec. I,
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let hs denote a blurring kernel at scale and suppose for simplicity tha& = R. Based on
the arguments presented in [13], it follows that for mossogamble mapping8 — x4, we will
haveH%Hg — 0 ass — 0. What this implies is that, on manifolds of regularized ireag
M, ={hsxx9 : 0 € O}, the images will change slowly as a function of camera pamsjtand so
we can ensure thazts*(R(;j ) is arbitrarily close toh,*(Ry,z) by choosings sufficiently small (a
sufficiently “coarse” scale). Now, suppose that some elg¢sngfneachy; are devoted to measuring
hs*xxj = hsx(Rg,x). We denote these measurementg/by = ®; ;(hs*x;). In practice, we may
replace the convolution operator with a matdik and collecty; s = ®; Hsz; = ®; HsRy x
instead. Concatenating all of tr{@jvs}jzl, we may then use the noisy position estimates to
define operator$R5j} and solve (2) as above to obtain an estimatd# the scene. This estimate
will typically correspond to a lowpass filtered versionagfsince for many reasonable imaging
models, we will haveh, « (Rg,x) =~ Ry, (h/, * x) for some lowpass filteh, and this implies that
yj,s = ®; s Rg, (b * ) contains only low frequency information abatit

Given this estimate, we may then re-estimate the camersiggesby projecting the measure-
ment vectorsy; , onto the manifoldM (). (This may be accomplished, for example, using the
parameter estimation techniques described in [13].) Thawing improved the camera position
estimates, we may reconstruct a finer scale (lasy@pproximation to the true imagds; }, and
so on, alternating between the steps of estimating cameraqs and reconstructing successively
finer scale approximations to the true images. This mulésdgerative algorithm requires the
sort of multiscale randomized measurements we describeealb@amelyy; , = ®; s(hs * z;)
for a sequence of scalas In practice, the noiselet transform [25] offers one fashtéque for
implementing these measurement operat®fsH, at a sequence of scales. Noiselet scales are
also nested, so measurements at a sgat@n be re-used as measurements at any sgales;.

The manifold viewpoint can also be quite useful in situagiovhere the camera positions are
completely unknown, as they might be in applications suchrgs-electron microscopy (Cryo-
EM) [26]. Because we anticipate that an IAM{ will have a stable embedding M in the

measurement space, it follows that the relative arrangemwiethe points{z;} on M will be

preserved inb M. Since this relative arrangement will typically reflect tie¢ative arrangement of
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Fig. 5: Left: setup for manifold lifting demonstration. The origiimager (courtesy USGS) has siz82 x

192 and is observed by = 200 satellites. The red boxes illustrate the limited field ofwir a few such
cameras. Center: image-by-image reconstruction fromamanoheasurements, PSNR 14.4dB. Right: joint
reconstruction using our manifold lifting algorithm witlmknown camera positions, PSNR 23.6dB.

the values(d;} in ©, we may apply to the compressive measurenteamty number of “manifold
learning” techniques (such as ISOMAP [11]) that are desigoaliscover such parameterizations
from unlabeled data. An algorithm such as ISOMAP will prevign embedding of points in

R? whose relative positions can be used to infer the relativeeta positions; a similar approach
has been developed specifically for the Cryo-EM problem.[28dme side information may be
helpful at this point to convert these relative positiorireates into absolute position estimates.)
Once we have these estimates, we may resort to the iterafinement scheme described above,
alternating between the steps of estimating camera posidad reconstructing successively finer

scale approximations to the true images.

VII. M ANIFOLD LIFTING CASE STUDY

A. Problem Setup

As a proof of concept, we now present a comprehensive migli~veconstruction algorithm
inspired by the manifold lifting viewpoint. We do this in theontext of a far-field imaging
simulation in which we wish to reconstruct@pixel high-resolution image: of a large scene.
Information about this scene will be acquired using an efdenf .J satellites, which will collect
N-pixel photographs:; of the scene from different positions and with limited buedapping
fields of view, as illustrated with red boxes in the left paogFig. 5.

3We have found that this process also performs best usingureraents ofh, * x; for s small because of the
smoothness of the manifold1, at coarse scales.
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We denote the vertical and horizontal position of sateljitby §; = (HJV,Q;H) € R?. The
satellite positions take real values and are chosen ranydexaept for the caveats that the fields
of view all must fall within the square support efand that each of the four cornersmemust be
seen by at least one camera. (These assumptions are fomg@mee but can be relaxed without
major modifications to the recovery algorithm.) We I&t denote theV x @ linear operator that
mapsz to the imager;. This operator involves a resampling ofto account for the real-valued
position vectod;, a restriction of the field of view, and a spatial lowpasstfiftg and decimation,
as we assume that; has lower resolution (larger pixel size) than

In order to reduce data transmission burdens, we supposeadbh satellite encodes a random
set of measurements = ®;z; € R of its incident image:;. Following the discussion in VI-C,
these random measurements are collected at a sequencersé-tmdine scales, so, ..., st
using noiselets. (The noiselet measurements can actuallyolected using CS imaging hard-
ware [4], bypassing the need for a conventiof&pixel sensor.) We concatenate all of the
measurement vector§y; ,,}7_, into the lengthAZ; measurement vectoy; = ®;xz;. Finally,
we assume that all satellites use the same set of measurdomstipns, and so we define
M:=M=My=---=M;and®:= & =Py =--- = d.

Our decoder will be presented with the ensemble of the measmt vectors),, yo, ...,y
but will not be given any information about the camera positions (savaricawareness of the
two caveats mentioned above) and will be tasked with thelexigeé of recovering the underlying

scenex.

B. Manifold Lifting Algorithm

We combine the discussions provided in Secs. VI-A and VI-Qlésign a manifold lifting
algorithm that is specifically tailored to this problem.

1) Initial estimates of satellite positionsThe algorithm begins by obtaining a preliminary
estimate of the camera positions. To do this, we extract femohy; the measurements cor-
responding to the two or three coarsest scales (j,&., v;s,, and possiblyy;,,), concatenate
these into one vector, and pass the ensemble of such vetdorall(j € {1,2,...,J}) to the
ISOMAP algorithm. ISOMAP then delivers an embedding of @iy, v, ...,v; in R? that

best preserves pairwise geodesic distances compared toptiepoints; an example ISOMAP
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Fig. 6: Left: initial ISOMAP embedding , v», . . ., v; of the measurement vectors. Center: initial estimates

{GAJ-} of camera positions after rotating and scaling {he}. Right: final camera position estimates after
running the manifold lifting algorithm. In the center and@ht panels, the colored points represent the
estimated camera positions (color coded by the ﬁj%evalue), while the blue vectors represent the error
with respect to the true (but unknown) camera position.

embedding is shown in the left panel of Fig. 6. What can beriate from this embedding
are the relative camera positions; a small amount of sidernmdtion is required to map these
onto some absolute coordinate system. Acting as a very midl® we rotate and scale these
camera positions to fill the square supportrpfand we choose the correct vertical and horizontal
reflections.

2) Iterations: Given the initial estimate$§j} of our camera positions, we can then define the
operatorijo} and consequentli. By concatenating the measurement vectors and measurement
matrices, initially only those at the coarsest scale (yg,, across allj), we write the overall

system of equations ag= ®Rzx +n as in Sec. VI-A, and solve for
a = argmin [|a[[; subject tolly — @bigﬁ\I’aHg <e,
(03

where ¥ is a wavelet basis andis chosefito reflect the uncertainty in the camera positions

Given a, we can then compute the corresponding estimate of the lyimdescene ag = Ya.
After we obtain the estimate, we refine the camera positions by registering the measurteme

vectorsy; with respect to this manifold. In other words, we solve thiofeing optimization

problem:

0; = arg;nin lly; — PRyZ||2,

“In our experiments, we choose the parametas somewhat of an oracle, in particular as||4.1- @bigﬁxﬂg. In
other words, this is slightly larger than the error that vabrgsult if we measured the true imageout with the wrong
positions as used to define. This process should be made more robust in future work.
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where again in eacl; we use only the coarse scale measurements. To solve thikeprobe
use the multiscale Newton algorithm proposed in [13].

With the improved estimategj, we may then refine our estimate @f but can do so by
incorporating finer scale measurements. We alternate betwee steps of reconstructing the
scenex and re-estimating the camera positioﬁs successively bringing in the measurements
Yi,sar Yj,ssr - - Yjsp- (At €ach scale it may help to alternate once or twice betwentwo
estimation steps before bringing in the next finer scale oAsueements. One can also repeat
until convergence or until reaching a designated stoppritgrion.) Finally, having brought in
all of the measurements, we obtain our final estimat the underlying scene.

3) Experiments:We run our simulations on an underlying imageof size @ = 192 x 192
that is shown in Fig. 5. We suppose thatorresponds to 1 square unit of land area. We observe
this scene using = 200 cameras, each with a limited field of view. Relativextpeach field of
view is of size128 x 128, corresponding to 0.44 square units of land area as indidatehe red
boxes in Fig. 5. Within each field of view, we observe an imagef size N = 64 x 64 pixels
that has half the resolution (twice the pixel size) compared. The total number of noiselet
scales for an image of this sizeds For each image we disregard the coarsest noiselet scale and
setsy, s9,...,s5 corresponding five finest noiselet scales. For each imageollect96 random
noiselet measurements: 16 at scaleand 20 at each of the scales ..., s5. Across all scales
and all cameras, we collect a total @ - 200 = 19200 ~ 0.52Q) measurements.

Based on the coarse scale measurements, we obtain the IS@BBddinguvy, vg, ..., vy
shown in the left panel of Fig. 6. After rotating and scalihgge points, the initial estimatégj}
of camera positions are shown on the center panel of Fig. ésditial position estimates have
a mean absolute error of 1.8 and 2.0 pixels (relative to tkeludion of z) in the vertical and
horizontal directions, respectively. The right panel of.F6 shows the final estimated camera
positions after all iterations of our manifold lifting algiihm. These estimates have a mean
absolute error of 0.0108 and 0.0132 pixels in the vertical laorizontal directions, respectively.
The final reconstructio obtained using these estimated camera positions is shote iright
panel of Fig. 5. We note that the border areas are not as delyuraconstructed as the center
region because fewer total measurements are collectedhmediorders ofr.

In order to assess the effectiveness of our algorithm, wepeoenit to two different recon-
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struction methods. In both of these methods we assume tkaexhct camera positions are
known. First, we compare to image-by-image CS recovery, hickvwe reconstruct the images
x; independently from their random measurementand then superimpose and average them at
the correct positions. As expected, and as shown in thealguanel of Fig. 5, this does not yield

a reasonable reconstruction because there is far tooditle collected (just 96 measurements)
about any individual image to reconstruct it in isolatiomus, we see the dramatic benefits of
joint recovery.

Second, we compare to an alternative encoding scheme, wdithier than encode 96 random
measurements of each image, we encode the 96 largest waeelficients of the image in
the Haar wavelet basis. (We choose Haar due to its similavitli the noiselet basis, but the
performance is similar using other wavelet bases.) This isumh approximation for how a
non-CS transform coder might encode the image, and for tleedimg of a single image in
isolation, this is typically a more efficient encoding sé@t than using random measurements.
(Recall that for reconstructing a single signal, one mustode aboutk log(/N/K) random
measurements to obtain an approximation comparablE-term transform coding.) However,
when we concatenate the ensemble of encoded wavelet ceeffiand solve (1) to estimaie
we see from the result in the left panel of Fig. 7 that the retmicted image has lower quality
than we obtained using a manifold lifting algorithm basedamlom measurements, even though
the camera positions wetmknownfor the manifold lifting experiment. In a sense, by usingjoi
decoding, we have reduced the CS overmeasuring factor frofamiliar value oflog(N/K)
down to something below 1! We believe this occurs primariégduse the imaggs:;} are highly
correlated, and the repeated encoding of large waveleficieets (which tend to concentrate at
coarse scales) results in repeated encoding of redundanmiation across the multiple satellites.
In other words, it is highly likely that prominent featuredlbe encoded by many satellites over
and over again, where other features may not be encoded Asadl result, by examining the left
panel of Fig. 7 we see that strong features such as streethardiges of buildings (which have
large wavelet coefficients) are relatively more accuratetonstructed than, for example, forests
or cars in parking lots (which have smaller wavelet coeffitsg Random measurements capture
more diverse information within and among the images. Toenwearly illustrate the specific

benefit that random measurements provide over transforimgoade show in the right panel of
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Fig. 7: Left: joint reconstruction using transform coding measugats with known camera positions, PSNR
22.8dB. Right: joint reconstruction using random measamsiwith known camera positions, PSNR 24.7dB.

ML w/out cam.
J | Independent C$ TC w/ cam.| ML w/ cam.

PSNR| 1 5°.16; — ;]
200 14.4 22.8 24.7 23.6 | (0.0108, 0.0132
150 13.7 22.9 24.6 23.7 | (0.0110, 0.0148
100 15.1 235 25.1 23.9 | (0.0177,0.0121
70 15.6 23.7 24.6 23.8 | (0.0059, 0.0143

TABLE |: Reconstruction results with varying numbers of cameratjpmsi .J. From left to right, the
columns correspond to the PSNR (in dB) of image-by-imagede8nstruction from random measurements,
joint reconstruction from transform coding measuremetitis klnown camera positions, joint reconstruction
from random measurements with known camera positions, @ntireconstruction from random measure-
ments with unknown camera positions. The final subcolunts tlee mean absolute error of the estimated
camera positions in the vertical and horizontal directioaspectively.

Fig. 7 a reconstruction obtained using random measuremeétitsknown camera positions.
Finally, we carry out a series of simulations with the samagew using different numbers
J of camera positions. We keep the total number of measuren{@8200) and the sizes of the
subimages@4 x 64) constant. The results are summarized in Table I. In allssazer manifold
lifting algorithm without knowledge of the camera positioautperforms transform coding with
knowledge of the camera positions. We do note that decreases, the performance of transform
coding improves. This is likely because the satellites decaore diverse and less redundant

information in these cases.

VIII. Di1scussioON ANDCONCLUSION

In summary, we have discussed in this paper how non-collgiverCS measurement schemes

can be used to simplify the acquisition and encoding of riniéige ensembles. We have presented
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a geometric framework in which many multi-view imaging plerns may be cast and explained
how this framework can inform the design of effective maldifdifting algorithms for joint
reconstruction. We conclude with a few remarks concerniragtiral and theoretical aspects of
the manifold lifting framework.

First, let us briefly discuss the process of learning camesitipns when they are initially
completely unknown. In our satellite experiments, we halseoved that the accuracy of the
ISOMAP embedding depends on the relative size of the sulesagto the underlying scene
x, with larger subimages leading us to higher quality embegili As the size of the subimages
decreases, we need more and more camera positions to getomable embedding, and we can
reach a point where even even thousands of camera positienigsalfficient. In such cases, and
in applications not limited to satellite imaging, it may bespible to get a reliable embedding
by grouping local camera positions together.

Second, an interesting open question is whether the maasatenatrices utilized DCS multi-
view imaging scenarios satisfy the RIP with respect to someemstruction basi¥. Establishing
an RIP bound would give a guide for the requisite number of sueaments (ideally, at each
scale) and also give a guarantee for reconstruction accufdithough we do not yet have a
definitive answer to this question, we suggest that there lpeagromising connections between
these matrices and other structured matrices that have $tedied in the CS literature. For
example, the measurement mattyg2 employed in the satellite experiment is closely related
to a partial circulant matrix, where the relative shiftsvibe¢n the rows represent the relative offsets
between the camera positions. RIP results have been ssi@dbifor circulant matrices [27] that
are generated by a densely populated random row vector. drcase, ®pigR has more of a
block circulant structure because it is generated by thenatiices®;, and so there may also be
connections with the analysis in [28]. However, each rowgf R will contain a large number of
zeros, and it is conceivable that this could degrade the asaerproperty ofd, . We believe,
though, that by collecting multiple measurements from eeamera, we are compensating for
this degradation. Other possible directions for analysidd be to build on the concentration of
measure bounds recently established for block diagonaiceat[29] and toeplitz matrices [30].

Finally, another open question in the manifold lifting frework is what could be said about

the uniqueness oM (x) given samples ofb M (x). When all points on the manifoloM ()
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are K-sparse, the RIP can be one avenue to proving uniquenessijnogt our objective is to
sample fewer tharO (K log(N/K)) measurements for each signal, a stronger argument would
be preferable. By considering the restricted degrees efliyen that these signal ensembles have,
it seems reasonable to believe that we can in fact establ&hoager result. We are currently

exploring geometric arguments for proving unigueness.
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