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I. INTRODUCTION

Armed with potentially limited communication and computational resources, designers of

distributed imaging systems face increasing challenges inthe quest to acquire, compress, and

communicate ever richer and higher-resolution image ensembles. In this paper, we consider multi-

view imaging problems in which an ensemble of cameras collect images describing a common

scene. To simplify the acquisition and encoding of these images, we study the effectiveness of

non-collaborative compressive sensing (CS) [2, 3] encoding schemes wherein each sensor directly

and independently compresses its image using a small numberof randomized measurements (see

Fig. 1). CS is commonly intended for the encoding of a single signal, and a rich theory has been

developed for signal recovery from incomplete measurements by exploiting the assumption that

the signal obeys a sparse model. In this paper, we address theproblem of how to recover an

ensemble of images from a collection of image-by-image random measurements. To do this, we

advocate the use of implicitly geometric models to capture the joint structure among the images.

CS is particularly useful in two scenarios. The first is when ahigh-resolution signal is difficult to

measure directly. For example, conventional infrared cameras require expensive sensors, and with

increasing resolution such cameras can become extremely costly. A compressive imaging camera

has been proposed [4] that can acquire a digital image using far fewer (random) measurements

than the number of pixels in the image. Such a camera is simpleand inexpensive and can be

used not only for imaging at visible wavelengths, but also for imaging at nonvisible wavelengths.

A second scenario where CS is useful is when one or more high-resolution signals are difficult

or expensive to encode. Such scenarios arise, for example, in sensor networks and multi-view

imaging, where it may be feasible to measure the raw data at each sensor, but joint, collaborative
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Fig. 1: Multi-view compressive imaging setup. A common scene is observed byJ cameras from different
positions. Each cameraj encodes a small number of random measurementsyj of its observed imagexj , and
a single decoder jointly reconstructs all images{xj} from the ensemble of compressive measurements{yj}.

compression of that data among the sensors would require costly communication. As an alternative

to conventional Distributed Source Coding (DSC) methods [5], an extension of single-signal CS

known as Distributed CS (DCS) [6] has been proposed, where each sensor encodes only a random

set of linear projections of its own observed signal. These projections could be obtained either

by using CS hardware as described above, or by using a random,compressive encoding of the

data collected from a conventional sensor.

While DCS encoding is non-collaborative, an effective DCS decoder should reconstruct all sig-

nalsjointly to exploit their common structure. As we later discuss, mostexisting DCS algorithms

for distributed imaging reconstruction rely fundamentally on sparse models to capture intra- and

inter-signal correlations [6–9]. What is missing from eachof these algorithms, however, is an

assurance that the reconstructed images have a global consistency, i.e., that they all describe a

common underlying scene. This may not only lead to possible confusion in interpreting the

images, but more critically may also suggest that the reconstruction algorithm is failing to

completely exploit the joint structure of the ensemble.

To better extend DCS techniques specifically to problems involving multi-view imaging, we

propose in this paper a general geometric framework in whichmany such reconstruction problems

may be cast. In particular, we explain how viewing the unknown images as living along a low-

dimensional manifold within the high-dimensional signal space can inform the design of effective

joint reconstruction algorithms. Such algorithms can build on existing sparsity-based techniques

for CS but ensure a global consistency among the reconstructed images. We refine our discussion
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by focusing on two settings: far-field and near-field multi-view imaging. Finally, as a proof of

concept, we demonstrate a “manifold lifting” algorithm in aspecific far-field multi-view scenario

where the camera positions are not known a priori and we only observe a small number of

random measurements at each sensor. Even in such discouraging circumstances, by effectively

exploiting the geometrical information preserved in the manifold model, we are able to accurately

reconstruct both the underlying scene and the camera positions.

II. CONCISE SIGNAL MODELS

Real-world signals typically contain some degree of structure that can be exploited to simplify

their processing and recovery.Sparsityis one model of conciseness in which the signal of interest

can be represented as a linear combination of only a few basisvectors from some dictionary.

To provide a more formal statement, let us consider a signalx ∈ R
N . (If the signal is a 2D

image, we reshape it into a length-N vector.) We letΨ ∈ R
N×N denote an orthonormal basis

for RN , with its columns acting as basis vectors, and we writex = Ψα, whereα := ΨTx ∈ R
N

denotes the expansion coefficients ofx in the basisΨ. We say thatx is K-sparse in the basis

Ψ if α contains onlyK nonzero entries. Sparse representations withK ≪ N provide exact or

approximate models for wide varieties of signal classes, aslong as the basisΨ is chosen to match

the structure inx. In the case of images, the 2D Discrete Wavelet Transform (DWT) and 2D

Discrete Cosine Transform (DCT) are reasonable candidatesfor Ψ [10].

As an alternative to sparsity,manifoldshave also been used to capture the concise structure

of multi-signal ensembles [1, 11–14]. Simply put, we can view a manifold as a low-dimensional

nonlinear surface withinRN . Manifold models arise, for example, in settings where a low-

dimensional parameter controls the generation of the signal (see Fig. 2). Assume, for instance, that

x = xθ ∈ R
N depends on some parameterθ, which belongs to ap-dimensional parameter space

that we callΘ.1 One might imagine photographing some static scene and letting θ correspond to

the position of the camera: for every value ofθ, there is someN -pixel imagexθ that the camera

will see. Supposing that the mappingθ → xθ is well-behaved, then if we consider all possible

signals that can be generated by all possible values ofθ, the resulting setM := {xθ : θ ∈ Θ} ⊂

R
N will in general correspond to a nonlinearp-dimensional surface withinRN .

1Depending on the scenario, the parameter spaceΘ could be a subset ofRp, or it could be some more general
topological manifold such as SO(3), e.g., ifθ corresponds to the orientation of some object in 3D space.
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Fig. 2: A manifoldM can be viewed as a nonlinear surface inR
N . When the mapping betweenθ andxθ is

well-behaved, as we trace out a path in the parameter spaceΘ, we trace out a similar path onM. A random
projectionΦ from R

N to a lower dimensional spaceRM can provide a stable embedding ofM, preserving
all pairwise distances, and therefore preserving the structure within an ensemble of images. The goal of a
manifold lifting algorithm is to recover an ensemble of images from their low-dimensional measurements.

When the underlying signalx is an image, the resulting manifoldM is called anImage

Appearance Manifold(IAM). Recently, several important properties of IAMs havebeen revealed.

For example, if the imagesxθ contain sharp edges that move as a function ofθ, the IAM is

nowhere differentiablewith respect toθ [12]. This poses difficulties for gradient-based parameter

estimation techniques such as Newton’s method because the tangent planes on the manifold (onto

which one may wish to project) do not exist. However, it has also been shown that IAMs have

a multiscale tangent structure [12, 13] that is accessible through a sequence of regularizations of

the image, as shown in Fig. 3. In particular, suppose we definea spatial blurring kernel (such

as a lowpass filter) denoted byhs, wheres > 0 indicates thescale(e.g., the bandwidth or the

cutoff frequency) of the filter. Then, althoughM = {xθ : θ ∈ Θ} will not be differentiable, the

manifoldMs = {hs ∗ xθ : θ ∈ Θ} of regularized images will be differentiable, where∗ denotes

2D convolution. Tangent planes do exist on these regularized manifoldsMs, and ass → 0, the

orientation of these tangent planes along a givenMs changes more slowly as a function ofθ.

In the past, we have used this multiscale tangent structure to implement a coarse-to-fine Newton

method for parameter estimation on IAMs [13].

The rich geometrical information that rests within an IAM makes it an excellent candidate for

modeling in multi-view imaging. Lettingθ represent camera position, all of the images in a multi-

view ensemble will live along a common IAM, and as we will later discuss, image reconstruction

in the IAM framework can ensure global consistency of the reconstructed images.

4



R
N

Θ
Fig. 3: The multiscale structure of manifolds. The top manifold in this figure corresponds to the collection
of images of a teapot that could be acquired from different camera positionsθ. While manifolds like this
containing images with sharp edges are not differentiable,manifolds of images containing smooth imagesare
differentiable, and the more one smoothes the images, the smoother the manifold becomes.

III. C OMPRESSIVESENSING

In conventional signal acquisition devices such digital cameras and camcorders, we first ac-

quire a full N -dimensional signalx and then apply a compression technique such as JPEG or

MPEG [10]. These and othertransform codingtechniques essentially involve computing the

expansion coefficientsα describing the signal in some basisΨ, keeping only theK-largest

entries ofα, and setting the rest to zero. While this can be a very effective way of consolidating

the signal information, one could argue that this procedureof “first sample, then compress” is

somewhat wasteful because we must measureN pieces of information only to retainK < N

coefficients. Depending on the sensing modality, it may be difficult or expensive to acquire so

many high-resolution samples of the signal.

The recently emerged theory of CS suggests an alternative acquisition scheme. CS utilizes

an efficient encoding framework in which we directly acquirea compressed representation of

the underlying signal by computing simple linear inner products with a small set of randomly

generated test functions. Let us denote the full-resolution discrete signal asx ∈ R
N and suppose

that we generate a collection ofM random vectors,φi ∈ R
N , i = 1, 2, . . . ,M . We stack these

vectors into anM × N matrix Φ = [φ1 φ2 · · · φM ]T , which we refer to as a measurement

matrix. A CS encoder or sensor produces the measurementsy = Φx ∈ R
M , possibly without

ever sampling or storingx itself.

At the decoder, given the random measurementsy and the measurement matrixΦ, one must

attempt to recoverx. The canonical approach in CS is to assume thatx is sparse in a known
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basisΨ and solve an optimization problem of the form [2, 3]

min
α

‖α‖1 s.t. y = ΦΨα, (1)

which can be recast as a linear program. When there is boundednoise or uncertainty in the

measurements, i.e.,y = Φx+ n with ‖n‖2 ≤ ǫ, it is common to solve a similar problem [15]:

min
α

‖α‖1 s.t. ‖y − ΦΨα‖2 ≤ ǫ, (2)

which is again convex and can be solved efficiently.

Depending on the measurement matrixΦ, recovery of sparse signals can be provably accurate,

even in noise. One condition onΦ that has been used to establish recovery bounds is known

as the Restricted Isometry Property (RIP) [16], which requires that pairwise distances between

sparse signals be approximately preserved in the measurement space. In particular, a matrixΦ

is said to satisfy the RIP of order2K with respect toΨ if there exists a constant0 < δ2K < 1

such that for allK-sparse vectorsx1, x2 in the basisΨ the following is satisfied,

(1− δ2K)‖x1 − x2‖
2
2 ≤ ‖Φx1 − Φx2‖

2
2 ≤ (1 + δ2K)‖x1 − x2‖

2
2. (3)

If Φ satisfies the RIP of order2K with δ2K sufficiently small, it is known that (1) will perfectly

recover anyK-sparse signal in the basisΨ, and that (2) will incur a recovery error at worst

proportional toǫ [15]. The performance of both recovery techniques also degrades gracefully if

x is not exactlyK-sparse but rather is well approximated by aK-sparse signal.

It has been shown that we can obtain an RIP matrixΦ with high probability simply by

takingM = O(K log(N/K)) and populating the matrix with i.i.d. Gaussian, Bernoulli,or more

general subgaussian entries [17]. Thus, one of the hallmarks of CS is that this requisite number of

measurementsM is essentially proportional to the sparsity levelK of the signal to be recovered.

In addition to families ofK-sparse signals, random matrices can also provide stable embeddings

for manifolds (see Fig. 2). LettingM denote a smooth2 p-dimensional manifold, if we takeM =

O(p log(N)) and generateΦ randomly from one of the distributions above, we will obtainan

embeddingΦM := {Φx : x ∈ M} ∈ R
M such that all pairwise distances between points on the

2Although an IAMM may not itself be smooth, a regularized manifoldMs will be smooth, and later in this paper
we discuss image reconstruction strategies based on randomprojections ofMs at a sequence of scaless.
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manifold are approximately preserved [14], i.e., such that(3) holds for allxθ1 , xθ2 ∈ M. Geodesic

distances are also approximately preserved. Again, the requisite number of measurements is

merely proportional to the information level of the signal,which in this case equalsp (the

dimension of the manifold), rather than the sparsity level of the signal in any particular dictionary.

All of this suggests that manifolds may be viable models to use in CS recovery; see [18] for

additional discussion on the topic of using manifold modelsto recover individual signals.

We see from the above that random measurements have a remarkable “universal” ability to

capture the key information in a signal, and this occurs witha number of measurements just

proportional to the number of degrees of freedom in the signal. Only the decoder attempts to

exploit the signal structure, and it can do so by positing anynumber of possible signal models.

In summary, in settings where a high-resolution signalx is difficult or expensive to measure

directly, CS allows us to replace the “first sample, then compress” paradigm with a technique for

directly acquiring compressive measurements ofx. To do this in practice, we might resort to CS

hardware which directly acquires the linear measurementsy without ever sampling or storingx

directly. Several forms of compressive imaging architectures have been proposed, ranging from

existing data collection schemes in Magnetic Resonance Imaging (MRI) [19] to more exotic CS-

based techniques. One architecture [4], for example, replaces the conventional CCD/CMOS sensor

in a digital camera with a digital micromirror device (DMD),which modulates the incoming light

and reflects it onto a single photodiode for measurement. Some intriguing uses of this inexpensive

“single pixel camera” could include infrared or hyperspectral imaging, where conventional high-

resolution sensors can cost hundreds of thousands of dollars.

Before proceeding, however, we note that CS can also be useful in settings where it is possible

to acquirehigh-resolution signals, but is difficult or expensive to subsequentlyencodethem. For

example,x might represent a video signal, for which direct measurement is possible, but for which

subsequent compression typically requires exploiting complicated spatio-temporal correlations [8,

9]. A more straightforward encoder might simply computey = Φx for some random, compressive

Φ. Other scenarios where data is difficult to encode efficiently might be in sensor networks or in

multi-view imaging, which is the topic of this paper and is discussed further in the next section.
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IV. M ULTI -VIEW IMAGING USING IMAGE-BY-IMAGE RANDOM MEASUREMENTS

Let us now turn to the problem of distributed image compression for multi-view imaging. We

imagine an ensemble ofJ distinct cameras that collect imagesx1, x2, . . . , xJ ∈ R
N describing a

common scene, with each imagexj taken from some camera positionθj ∈ Θ. We would like to

efficiently compress this ensemble of images, but as in any sensor network, we may be limited

in battery power, computational horsepower, and/or communication bandwidth. Thus, although

we may be able to posit sparse and manifold-based models for concisely capturing the intra- and

inter-signal structures among the images in the ensemble, directly exploiting these models for the

purpose of data compression may be prohibitively complex orrequire expensive collaboration

among the sensors. This motivates our desire for an effective distributed encoding strategy.

The encoding of multiple signals in distributed scenarios has been long been studied under the

auspices of the distributed source coding (DSC) community.The Slepian-Wolf framework [5] for

lossless DSC states that two sourcesX1 andX2 are able to compress at their conditional entropy

rate without collaboration and can be decoded successfullywhen the correlation model (i.e., the

joint probability distributionp(x1, x2)) is known at the decoder. This work was extended to lossy

coding by Wyner and Ziv when side information is available atthe decoder [20], and in subsequent

years, practical algorithms for these frameworks have beenproposed based on channel coding

techniques. However, one faces difficulties in applying these frameworks to multi-view imaging

because the inter-image correlations are arguably better described geometrically than statistically.

Several algorithms (e.g., [21]) have been proposed for combining these geometric and statistical

frameworks, but fully integrating these concepts remains avery challenging problem.

As a simple alternative to these type of encoding schemes, weadvocate the use of CS for

distributed image coding, wherein for each sensorj ∈ {1, 2, . . . , J}, the signalxj ∈ R
N is

independently encoded using anMj × N measurement matrixΦj, yielding the measurement

vectoryj = Φjxj ∈ R
Mj . Such an encoding scheme is known in the CS literature as Distributed

CS (DCS) [6]. While the primary motivation for DCS is to simplify the encodingof correlated

high-resolution signals, one may of course bypass the potentially difficult acquisition of the

high-resolution signals and directly collect the random measurements using CS hardware.

After the randomized encoding, the measurement vectorsy1, y2, . . . , yJ are then transmitted

to a central node for decoding. Indeed, DCS differs from single-signal CS only in the decoding
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process. Rather than recover the signals one-by-one from the measurement vectors, an effective

DCS decoder should solve a joint reconstruction problem, exploiting the intra- and inter-signal

correlations among the signals{xj}, while ensuring consistency with the measurements{yj}.

The proper design of a DCS decoder depends very much on the type of data being collected

and on the nature of the intra- and inter-signal correlations. Ideally, compared to signal-by-

signal recovery, joint recovery should provide better reconstruction quality from a given set of

measurement vectors, or equivalently, reduce the measurement burden needed to achieve a given

reconstruction quality. For example, if each signal in the ensemble isK-sparse, we may hope to

jointly recover the ensemble using fewer than theO(K log(N/K)) measurements per sensor that

are required to reconstruct the signals separately. Like single-signal CS, DCS decoding schemes

should be robust to noise and to dropped measurement packets. Joint reconstruction techniques

should also be robust to the loss of individual sensors, making DCS well-suited for remote sensing

applications.

V. CURRENT APPROACHES TODCS MULTI -VIEW IMAGE RECONSTRUCTION

For signals in general and images in particular, a variety ofDCS decoding algorithms have

been proposed to date. Fundamentally, all of these frameworks build upon the concept of sparsity

for capturing intra- and inter-signal correlations.

One DCS modeling framework involves a collection of joint sparsity models (JSMs) [6]. In

a typical JSM we represent each signalxj ∈ R
N in terms of a decompositionxj = zC + zj ,

where zC ∈ R
N is a “common component” that is assumed to be present in all{xj}, and

zj ∈ R
N is an “innovation component” that differs for each signal. Depending on the application,

different sparsity assumptions may be imposed onzC and zj . In some cases these assumptions

can dramatically restrict the space of possible signals. For example, all signals may be restricted

to live within the sameK-dimensional subspace. The DCS decoder then searches for a signal

ensemble that is consistent with the available measurements and falls within the space of signals

permitted by the JSM. For signal ensembles well-modeled by aJSM, DCS reconstruction can offer

a significant savings in the measurement rates. While each sensor must take enough measurements

to account for its innovation componentzj , all sensors can share the burden of measuring the

common componentzC .
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Unfortunately, the applicability of JSMs to multi-view imaging scenarios can be quite limited.

While two cameras in very close proximity may yield images having sparse innovations relative

to a common background, any significant difference in the camera positions will dramatically

increase the complexity of the innovation components. Because conventional JSMs are not

appropriate for capturing any residual correlation that may remain among these innovations, we

would expect JSM-based recovery to offer very little improvement over independent CS recovery.

Recently, a significant extension of the JSM framework has been proposed specifically for

multi-view compressive imaging [7]. This framework assumes that images of a common scene are

related by local or global geometrical transformations andproposes an overcomplete dictionary of

basis elements consisting of various geometrical transformations of a generating mother function.

It is assumed that each image can be decomposed into its own subset of these atoms plus the

geometrically transformed atoms of the neighboring images. The benefit of this approach is that

information about one image helps reduce the uncertainty about which atoms should be used

to comprise the neighboring images. Unfortunately, there seems to be a limit as to how much

efficiency may be gained from such an approach. To reconstruct a given image, the decoder

may be tasked with solving for, say,K sparse coefficients. While the correlation model may

help reduce the measurement burden at that sensor belowO(K log(N/K)), it is not possible to

reduce the number of measurements belowK. As we will later argue, however, there is reason

to believe that alternative reconstruction techniques based on the underlying scene (rather than

the images themselves) can succeed with even fewer measurements.

Other approaches for multi-view image reconstruction could draw naturally from recent work

in CS video reconstruction by ordering the static images{xj} according to their camera positions

and reconstructing the sequence as a sort of “fly-by” video. One approach for video reconstruction

exploits the sparsity of inter-frame differences [8]. For multi-view imaging, this would correspond

to a difference imagexi − xj having a sparse representation in some basisΨ. Again, however,

this condition may only be met if camerasi and j have very close proximity. We have also

proposed a CS video reconstruction technique based on a motion-compensated temporal wavelet

transform [9]. For multi-view imaging, we could modify thisalgorithm, replacing block-based

motion compensation with disparity compensation. The challenge of such an approach, however,

would be in finding the disparity information without prior knowledge of the images themselves.
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For video, we have addressed this challenge using a coarse-to-fine reconstruction algorithm that

alternates between estimating the motion vectors and reconstructing successively higher resolution

versions of the video using the motion-compensated wavelettransform.

What would still be missing from any of these approaches, however, is an assurance that the

reconstructed images have a global consistency, i.e., thatthey all describe a common underlying

scene. In the language of manifolds this means that the reconstructed images do not necessarily

live on a common IAM defined by a hypothetical underlying scene. This may not only lead

to possible confusion in interpreting the images, but more critically may also suggest that the

reconstruction algorithm is failing to completely exploitthe joint structure of the ensemble—the

images are in fact constrained to live in a much lower-dimensional set than the algorithm realizes.

VI. M ANIFOLD L IFTING TECHNIQUES FORMULTI -VIEW IMAGE RECONSTRUCTION

In light of the above observations, one could argue that an effective multi-view reconstruction

algorithm should exploit the underlying geometry of the scene by using an inter-signal modeling

framework that ensures global consistency. To inform the design of such an algorithm, we find

it helpful to view the general task of reconstruction as whatwe term amanifold lifting problem:

we would like to recover each imagexj ∈ R
N from its measurementsyj ∈ R

Mj (“lifting” it

from the low-dimensional measurement space back to the high-dimensional signal space), while

ensuring that all recovered images live along a common IAM.

Although this interpretation does not immediately point usto a general purpose recovery

algorithm (and different multi-view scenarios could indeed require markedly different algorithms),

it can be informative for a number of reasons. For example, aswe have discussed in Sec. III,

manifolds can have stable embeddings under random projections. If we suppose thatΦj = Φ ∈

R
M×N for all j, then each measurement vector we obtain will be a point sampled from the

embedded manifoldΦM ⊂ R
M . From samples ofΦM in R

M , we would like to recover

samples of (or perhaps all of)M in R
N , and this may be facilitated ifΦM preserves the

original geometric structure ofM. In addition, as we have discussed in Sec. II, many IAMs have

a multiscale structure that has proved useful in solving non-compressive parameter estimation

problems, and this structure may also be useful in solving multi-view recovery problems.

While this manifold-based interpretation may give us a geometric framework for signal mod-

eling, it may not in isolation sufficiently capture all intra- and inter-signal correlations. Indeed,
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one cannot disregard the role that concise models such as sparsity may still play in an effective

manifold lifting algorithm. Given an ensemble of measurements y1, y2, . . . , yJ , there may be

many candidates IAMs on which the original imagesx1, x2, . . . , xJ may live. In order to resolve

this ambiguity, one could employ either a model for the intra-signal structure (such as sparsity) or

a model for the underlying structure of the scene (again, possibly sparsity). To do the latter, one

must develop a representation for the underlying scene or phenomenon that is being measured

and understand the mapping between that representation andthe measurementsy1, y2, . . . , yJ . To

keep the problem simple, this mapping will ideally be linear, and as we discuss in this section,

such a representation and linear mapping can be found in a number of scenarios.

To make things more concrete, we demonstrate in this sectionhow the manifold lifting

viewpoint can inform the design of reconstruction algorithms in the context of two generic multi-

view scenarios: far-field and near-field imaging. We also discuss how to address complications

that can arise due to uncertainties in the camera positions.We hope that such discussions will

pave the way for the future development of broader classes ofmanifold lifting algorithms.

A. Far-field Multi-view Imaging

We begin by considering the case where the cameras are far from the underlying scene, such

as might occur in satellite imaging or unmanned aerial vehicle (UAV) remote sensing scenarios.

In problems such as these, it may be reasonable to model each imagexj ∈ R
N as being a

translated, rotated, scaled subimage of a larger fixed image. We represent this larger image as an

elementx drawn from a vector space such asR
Q with Q > N , and we represent the mapping

from x to xj (which depends on the camera positionθj) as a linear operator that we denote as

Rθj : RQ → R
N . This operatorRθj can be designed to incorporate different combinations of

translation, rotation, scaling, etc., followed by a restriction that limits the field of view.

This formulation makes clear the dependence of the IAMM on the underlying scenex:

M = M(x) = {Rθx : θ ∈ Θ} ⊂ R
N . Supposing we believex to obey a sparse model

and supposing the camera positions are known, this formulation also facilitates a joint recovery

program that can ensure global consistency while exploiting the structure of the underlying scene.

At cameraj, we have the measurementsyj = Φjxj = ΦjRθjx. Therefore, by concatenating all
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of the measurements, we can write the overall system of equations asy = ΦbigRx, where

y =




y1

y2
...

yJ




, R =




Rθ1

Rθ2

...

RθJ




, and Φbig =




Φ1 0 . . . 0

0 Φ2 . . . 0

...
...

. . .
...

0 0 . . . ΦJ




. (4)

Giveny andΦbigR, and assumingx is sparse in some basisΨ (such as the 2D wavelet domain),

we can solve the usual optimization problem as stated in (1) (or (2) if the measurements are

noisy). If desired, one can use the recovered imagex̂ to obtain estimateŝxj := Rθj x̂ of the

original subimages. These are guaranteed to live along a common IAM, namelyM(x̂).

B. Near-field Multi-view Imaging

Near-field imaging may generally be more challenging than far-field imaging. Defining a useful

representation for the underlying scene may be difficult, and due to effects such as parallax and

occlusions, it may seem impossible to find a linear mapping from any such representation to the

measurements. Fortunately, however, there are encouraging precedents that one could follow.

One representative application of near-field imaging is in Computed Tomography (CT). In CT,

we seek to acquire a 3D volumetric signalx, but the signalsxj that we observe correspond to

slices of the Fourier transform ofx. (We may assumeyj = xj in such problems, and so the

challenge is actually to recoverM(x), or equivalently justx, rather than the individual{xj}.)

Given a fixed viewing angleθj, this relationship betweenx andxj is linear, and so we may set

up a joint recovery program akin to that proposed above for far-field imaging. Similar approaches

have been used for joint recovery from undersampled frequency measurements in MRI [19].

For near-field imaging using visible light, there is generally no clear linear mapping between

a 3D volumetric representation of the scene and the observedimagesxj . However, rather than

contend with complicated nonlinear mappings, we suggest that a promising alternative may be to

use theplenoptic function[22] as a centralized representation of the scene. The plenoptic function

f is a hypothetical 5D function used to describe the intensityof light that could be observed from

any point in space, when viewed in any possible direction. The valuef(px, py, pz, pθ, pφ) specifies

the light intensity that would be measured by a sensor located at the position(px, py, pz) and

pointing in the direction specified by the spherical coordinatespθ andpφ. (Additional parameters
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such as color channel can be considered.) By considering only a bounded set of viewing positions,

the plenoptic function reduces to a 4D function known as thelumigraph [22].

Any imagexj ∈ R
N of the scene has a clear relationship to the plenoptic function. A given

cameraj will be positioned at a specific point(px, py, pz) in space and record light intensities

arriving from a variety of directions. Therefore,xj simply corresponds to a 2D “slice” of the

plenoptic function, and once the camera viewpointθj is fixed, the mapping fromf to xj is

a simple linear restriction operator. Consequently, the structure of the IAM M = M(f) is

completely determined by the plenoptic function.

Plenoptic functions contain a rich geometric structure that we suggest could be exploited to

develop sparse models for use in joint recovery algorithms.This geometric structure arises due to

the geometry of objects in the scene: when a physical object having distinct edges is photographed

from a variety of perspectives, the resulting lumigraph will have perpetuating geometric structures

that encode the shape of the object under study. As a simple illustration, a Flatland-like scenario

(imaging an object in the plane using 1D cameras) is shown in Fig. 4(a). The resulting 2D

lumigraph is shown in Fig. 4(b), where each row corresponds to a single “image”. We see

that geometric structures in the lumigraph arise due to shifts in the object’s position as the

camera viewpoint changes. For the 4D lumigraph these structures have recently been termed

“plenoptic manifolds” [23] due to their own nonlinear, surface-like characteristics. If a sparse

representation for plenoptic functions can be developed that exploits these geometric constraints

(perhaps by involving the wedgelet or surflet dictionaries [24]), then it may be possible to recover

plentopic functions from incomplete, random measurementsusing a linear problem formulation

and recovery algorithms such as (1) or (2).

As a proof of concept, we present a simple experiment in support of this approach. For the

lumigraph shown in Fig. 4(b), which hasJ = 128 1D “images” that each containN = 128 pixels,

we collectM = 4 random measurements from each image. From these measurements we attempt

to reconstruct the entire lumigraph using total variation minimization [4, 19], a standard CS

technique that encourages a sparse gradient in the recovered 2D lumigraph image. The resulting

reconstruction is shown in Fig. 4(c). Finally, to illustrate the rich interplay between geometry

within the lumigraph and the underlying geometry of the scene, we show that it is actually possible

to use the reconstructed lumigraph to estimate the underlying scene geometry. While we omit the
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Fig. 4: Lumigraph geometry in compressive multi-view imaging. (a)Flatland-like illustration for collecting
1D images of an object in the 2D plane. At each camera position, all viewing directions may be considered.
(b) Resulting128× 128 lumigraph for the ellipse-shaped object. Each row corresponds to a single “image”.
(In the real world each image is 2D and the full lumigraph is 4D.) The lumigraph can be repeated for viewing
from all four sides of the object. (c) Reconstructed lumigraph fromM = 4 compressive samples of each
image (row of lumigraph). (d) Scene geometry estimated using local edge detection in the reconstructed
lumigraph. Each blue line connects an estimated point on theobject to a camera from which that point is
visible. The true ellipse is shown in red.

details of our approach, it is possible to segment the lumigraph into small regions, perform edge

detection on each region, and infer from each straight edge two pieces of information: (i) the

position of some point belonging to the object, and (ii) the position of some camera from which

that point is visible. The resulting estimates are shown in Fig. 4(d). This estimation technique

also relates directly to the wedgelet and surflet dictionaries [24] mentioned above, which we

believe could play an important role in the future for developing improved concise models for

lumigraph processing.

C. Dealing with Uncertainties in Camera Positions

In all of our discussions above, we have assumed the camera positionsθj were known. In some

situations, however, we may have only noisy estimatesθ̂j = θj + nj of the camera positions.

Supposing that we can define linear mappings between the underlying scene and the images

xj, it is straightforward to extend the CS recovery problem to account for this uncertainty. In

particular, lettingR denote the concatenation of the mappingsRθj as in (4), and lettinĝR denote

the concatenation of the mappingsR
θ̂j

corresponding to the noisy camera positions, it follows

that y = ΦbigRx = ΦbigR̂x + n for some noise vectorn, and so (2) can be used to obtain an

approximationx̂ of the underlying scene. Of course, the accuracy of this approximation will

depend on the quality of the camera position estimates.

When faced with significant uncertainty about the camera positions, the multiscale properties

of IAMs help us to conceive of a possible coarse-to-fine reconstruction approach. As in Sec. II,
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let hs denote a blurring kernel at scales, and suppose for simplicity thatΘ = R. Based on

the arguments presented in [13], it follows that for most reasonable mappingsθ → xθ, we will

have‖∂(hs∗xθ)
∂θ

‖2 → 0 as s → 0. What this implies is that, on manifolds of regularized images

Ms = {hs ∗xθ : θ ∈ Θ}, the images will change slowly as a function of camera position, and so

we can ensure thaths∗(Rθ̂j
x) is arbitrarily close tohs∗(Rθjx) by choosings sufficiently small (a

sufficiently “coarse” scale). Now, suppose that some elements of eachyj are devoted to measuring

hs∗xj = hs∗(Rθjx). We denote these measurements byyj,s = Φj,s(hs∗xj). In practice, we may

replace the convolution operator with a matrixHs and collectyj,s = Φj,sHsxj = Φj,sHsRθjx

instead. Concatenating all of the{yj,s}Jj=1, we may then use the noisy position estimates to

define operators{R
θ̂j
} and solve (2) as above to obtain an estimatex̂ of the scene. This estimate

will typically correspond to a lowpass filtered version ofx, since for many reasonable imaging

models, we will havehs ∗ (Rθjx) ≈ Rθj (h
′

s ∗x) for some lowpass filterh′s, and this implies that

yj,s ≈ Φj,sRθj (h
′

s ∗ x) contains only low frequency information aboutx.

Given this estimate, we may then re-estimate the camera positions by projecting the measure-

ment vectorsyj,s onto the manifoldM(x̂). (This may be accomplished, for example, using the

parameter estimation techniques described in [13].) Then,having improved the camera position

estimates, we may reconstruct a finer scale (largers) approximation to the true images{xj}, and

so on, alternating between the steps of estimating camera positions and reconstructing successively

finer scale approximations to the true images. This multiscale, iterative algorithm requires the

sort of multiscale randomized measurements we describe above, namelyyj,s = Φj,s(hs ∗ xj)

for a sequence of scaless. In practice, the noiselet transform [25] offers one fast technique for

implementing these measurement operatorsΦj,sHs at a sequence of scales. Noiselet scales are

also nested, so measurements at a scales1 can be re-used as measurements at any scales2 > s1.

The manifold viewpoint can also be quite useful in situations where the camera positions are

completely unknown, as they might be in applications such ascryo-electron microscopy (Cryo-

EM) [26]. Because we anticipate that an IAMM will have a stable embeddingΦM in the

measurement space, it follows that the relative arrangement of the points{xj} on M will be

preserved inΦM. Since this relative arrangement will typically reflect therelative arrangement of
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Fig. 5: Left: setup for manifold lifting demonstration. The original imagex (courtesy USGS) has size192×
192 and is observed byJ = 200 satellites. The red boxes illustrate the limited field of view for a few such
cameras. Center: image-by-image reconstruction from random measurements, PSNR 14.4dB. Right: joint
reconstruction using our manifold lifting algorithm with unknown camera positions, PSNR 23.6dB.

the values{θj} in Θ, we may apply to the compressive measurements3 any number of “manifold

learning” techniques (such as ISOMAP [11]) that are designed to discover such parameterizations

from unlabeled data. An algorithm such as ISOMAP will provide an embedding ofJ points in

R
p whose relative positions can be used to infer the relative camera positions; a similar approach

has been developed specifically for the Cryo-EM problem [26]. (Some side information may be

helpful at this point to convert these relative position estimates into absolute position estimates.)

Once we have these estimates, we may resort to the iterative refinement scheme described above,

alternating between the steps of estimating camera positions and reconstructing successively finer

scale approximations to the true images.

VII. M ANIFOLD L IFTING CASE STUDY

A. Problem Setup

As a proof of concept, we now present a comprehensive multi-view reconstruction algorithm

inspired by the manifold lifting viewpoint. We do this in thecontext of a far-field imaging

simulation in which we wish to reconstruct aQ-pixel high-resolution imagex of a large scene.

Information about this scene will be acquired using an ensemble ofJ satellites, which will collect

N -pixel photographsxj of the scene from different positions and with limited but overlapping

fields of view, as illustrated with red boxes in the left panelof Fig. 5.

3We have found that this process also performs best using measurements ofhs ∗ xj for s small because of the
smoothness of the manifoldMs at coarse scales.
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We denote the vertical and horizontal position of satellitej by θj = (θVj , θ
H
j ) ∈ R

2. The

satellite positions take real values and are chosen randomly except for the caveats that the fields

of view all must fall within the square support ofx and that each of the four corners ofx must be

seen by at least one camera. (These assumptions are for convenience but can be relaxed without

major modifications to the recovery algorithm.) We letRθj denote theN×Q linear operator that

mapsx to the imagexj . This operator involves a resampling ofx to account for the real-valued

position vectorθj, a restriction of the field of view, and a spatial lowpass filtering and decimation,

as we assume thatxj has lower resolution (larger pixel size) thanx.

In order to reduce data transmission burdens, we suppose that each satellite encodes a random

set of measurementsyj = Φjxj ∈ R
Mj of its incident imagexj . Following the discussion in VI-C,

these random measurements are collected at a sequence of coarse-to-fine scaless1, s2, . . . , sT

using noiselets. (The noiselet measurements can actually be collected using CS imaging hard-

ware [4], bypassing the need for a conventionalN -pixel sensor.) We concatenate all of the

measurement vectors{yj,si}
T
i=1 into the length-Mj measurement vectoryj = Φjxj. Finally,

we assume that all satellites use the same set of measurementfunctions, and so we define

M := M1 = M2 = · · · = MJ andΦ := Φ1 = Φ2 = · · · = ΦJ .

Our decoder will be presented with the ensemble of the measurement vectorsy1, y2, . . . , yJ

but will not be given any information about the camera positions (save for an awareness of the

two caveats mentioned above) and will be tasked with the challenge of recovering the underlying

scenex.

B. Manifold Lifting Algorithm

We combine the discussions provided in Secs. VI-A and VI-C todesign a manifold lifting

algorithm that is specifically tailored to this problem.

1) Initial estimates of satellite positions:The algorithm begins by obtaining a preliminary

estimate of the camera positions. To do this, we extract fromeachyj the measurements cor-

responding to the two or three coarsest scales (i.e.,yj,s1, yj,s2, and possiblyyj,s3), concatenate

these into one vector, and pass the ensemble of such vectors (for all j ∈ {1, 2, . . . , J}) to the

ISOMAP algorithm. ISOMAP then delivers an embedding of points v1, v2, . . . , vJ in R
2 that

best preserves pairwise geodesic distances compared to theinput points; an example ISOMAP
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Fig. 6: Left: initial ISOMAP embeddingv1, v2, . . . , vJ of the measurement vectors. Center: initial estimates
{θ̂j} of camera positions after rotating and scaling the{vj}. Right: final camera position estimates after
running the manifold lifting algorithm. In the center and right panels, the colored points represent the
estimated camera positions (color coded by the trueθHj value), while the blue vectors represent the error
with respect to the true (but unknown) camera position.

embedding is shown in the left panel of Fig. 6. What can be inferred from this embedding

are the relative camera positions; a small amount of side information is required to map these

onto some absolute coordinate system. Acting as a very mild oracle, we rotate and scale these

camera positions to fill the square support ofx, and we choose the correct vertical and horizontal

reflections.

2) Iterations: Given the initial estimates{θ̂j} of our camera positions, we can then define the

operators{R
θ̂j
} and consequentlŷR. By concatenating the measurement vectors and measurement

matrices, initially only those at the coarsest scale (i.e.,yj,s1 across allj), we write the overall

system of equations asy = ΦR̂x+ n as in Sec. VI-A, and solve for

α̂ = argmin
α

‖α‖1 subject to‖y − ΦbigR̂Ψα‖2 ≤ ǫ,

whereΨ is a wavelet basis andǫ is chosen4 to reflect the uncertainty in the camera positionsθj.

Given α̂, we can then compute the corresponding estimate of the underlying scene aŝx = Ψα̂.

After we obtain the estimatêx, we refine the camera positions by registering the measurement

vectorsyj with respect to this manifold. In other words, we solve the following optimization

problem:

θ̂j = argmin
θ

‖yj − ΦRθx̂‖2,

4In our experiments, we choose the parameterǫ as somewhat of an oracle, in particular as 1.1‖y − ΦbigR̂x‖2. In
other words, this is slightly larger than the error that would result if we measured the true imagex but with the wrong
positions as used to definêR. This process should be made more robust in future work.
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where again in eachyj we use only the coarse scale measurements. To solve this problem we

use the multiscale Newton algorithm proposed in [13].

With the improved estimateŝθj, we may then refine our estimate ofx̂ but can do so by

incorporating finer scale measurements. We alternate between the steps of reconstructing the

scenex̂ and re-estimating the camera positionsθ̂j, successively bringing in the measurements

yj,s2, yj,s3, . . . , yj,sT . (At each scale it may help to alternate once or twice betweenthe two

estimation steps before bringing in the next finer scale of measurements. One can also repeat

until convergence or until reaching a designated stopping criterion.) Finally, having brought in

all of the measurements, we obtain our final estimatex̂ of the underlying scene.

3) Experiments:We run our simulations on an underlying imagex of sizeQ = 192 × 192

that is shown in Fig. 5. We suppose thatx corresponds to 1 square unit of land area. We observe

this scene usingJ = 200 cameras, each with a limited field of view. Relative tox, each field of

view is of size128×128, corresponding to 0.44 square units of land area as indicated by the red

boxes in Fig. 5. Within each field of view, we observe an imagexj of sizeN = 64× 64 pixels

that has half the resolution (twice the pixel size) comparedto x. The total number of noiselet

scales for an image of this size is6. For each image we disregard the coarsest noiselet scale and

sets1, s2, . . . , s5 corresponding five finest noiselet scales. For each image we collect 96 random

noiselet measurements: 16 at scales1, and 20 at each of the scaless2, . . . , s5. Across all scales

and all cameras, we collect a total of96 · 200 = 19200 ≈ 0.52Q measurements.

Based on the coarse scale measurements, we obtain the ISOMAPembeddingv1, v2, . . . , vJ

shown in the left panel of Fig. 6. After rotating and scaling these points, the initial estimates{θ̂j}

of camera positions are shown on the center panel of Fig. 6. These initial position estimates have

a mean absolute error of 1.8 and 2.0 pixels (relative to the resolution ofx) in the vertical and

horizontal directions, respectively. The right panel of Fig. 6 shows the final estimated camera

positions after all iterations of our manifold lifting algorithm. These estimates have a mean

absolute error of 0.0108 and 0.0132 pixels in the vertical and horizontal directions, respectively.

The final reconstruction̂x obtained using these estimated camera positions is shown inthe right

panel of Fig. 5. We note that the border areas are not as accurately reconstructed as the center

region because fewer total measurements are collected nearthe borders ofx.

In order to assess the effectiveness of our algorithm, we compare it to two different recon-
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struction methods. In both of these methods we assume that the exact camera positions are

known. First, we compare to image-by-image CS recovery, in which we reconstruct the images

xj independently from their random measurementsyj and then superimpose and average them at

the correct positions. As expected, and as shown in the central panel of Fig. 5, this does not yield

a reasonable reconstruction because there is far too littledata collected (just 96 measurements)

about any individual image to reconstruct it in isolation. Thus, we see the dramatic benefits of

joint recovery.

Second, we compare to an alternative encoding scheme, whererather than encode 96 random

measurements of each image, we encode the 96 largest waveletcoefficients of the image in

the Haar wavelet basis. (We choose Haar due to its similaritywith the noiselet basis, but the

performance is similar using other wavelet bases.) This is arough approximation for how a

non-CS transform coder might encode the image, and for the encoding of a single image in

isolation, this is typically a more efficient encoding strategy than using random measurements.

(Recall that for reconstructing a single signal, one must encode aboutK log(N/K) random

measurements to obtain an approximation comparable toK-term transform coding.) However,

when we concatenate the ensemble of encoded wavelet coefficients and solve (1) to estimatêx,

we see from the result in the left panel of Fig. 7 that the reconstructed image has lower quality

than we obtained using a manifold lifting algorithm based onrandom measurements, even though

the camera positions wereunknownfor the manifold lifting experiment. In a sense, by using joint

decoding, we have reduced the CS overmeasuring factor from its familiar value oflog(N/K)

down to something below 1! We believe this occurs primarily because the images{xj} are highly

correlated, and the repeated encoding of large wavelet coefficients (which tend to concentrate at

coarse scales) results in repeated encoding of redundant information across the multiple satellites.

In other words, it is highly likely that prominent features will be encoded by many satellites over

and over again, where other features may not be encoded at all. As a result, by examining the left

panel of Fig. 7 we see that strong features such as streets andthe edges of buildings (which have

large wavelet coefficients) are relatively more accuratelyreconstructed than, for example, forests

or cars in parking lots (which have smaller wavelet coefficients). Random measurements capture

more diverse information within and among the images. To more clearly illustrate the specific

benefit that random measurements provide over transform coding, we show in the right panel of
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Fig. 7: Left: joint reconstruction using transform coding measurements with known camera positions, PSNR
22.8dB. Right: joint reconstruction using random measurements with known camera positions, PSNR 24.7dB.

J Independent CS TC w/ cam. ML w/ cam.
ML w/out cam.

PSNR 1

J

∑
j |θj − θ̂j |

200 14.4 22.8 24.7 23.6 (0.0108, 0.0132)

150 13.7 22.9 24.6 23.7 (0.0110, 0.0148)

100 15.1 23.5 25.1 23.9 (0.0177, 0.0121)

70 15.6 23.7 24.6 23.8 (0.0059, 0.0143)

TABLE I: Reconstruction results with varying numbers of camera positions J . From left to right, the
columns correspond to the PSNR (in dB) of image-by-image CS reconstruction from random measurements,
joint reconstruction from transform coding measurements with known camera positions, joint reconstruction
from random measurements with known camera positions, and joint reconstruction from random measure-
ments with unknown camera positions. The final subcolumn lists the mean absolute error of the estimated
camera positions in the vertical and horizontal directions, respectively.

Fig. 7 a reconstruction obtained using random measurementswith known camera positions.

Finally, we carry out a series of simulations with the same imagex using different numbers

J of camera positions. We keep the total number of measurements (19200) and the sizes of the

subimages (64× 64) constant. The results are summarized in Table I. In all cases, our manifold

lifting algorithm without knowledge of the camera positions outperforms transform coding with

knowledge of the camera positions. We do note that asJ decreases, the performance of transform

coding improves. This is likely because the satellites encode more diverse and less redundant

information in these cases.

VIII. D ISCUSSION ANDCONCLUSION

In summary, we have discussed in this paper how non-collaborative CS measurement schemes

can be used to simplify the acquisition and encoding of multi-image ensembles. We have presented
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a geometric framework in which many multi-view imaging problems may be cast and explained

how this framework can inform the design of effective manifold lifting algorithms for joint

reconstruction. We conclude with a few remarks concerning practical and theoretical aspects of

the manifold lifting framework.

First, let us briefly discuss the process of learning camera positions when they are initially

completely unknown. In our satellite experiments, we have observed that the accuracy of the

ISOMAP embedding depends on the relative size of the subimagesxj to the underlying scene

x, with larger subimages leading us to higher quality embeddings. As the size of the subimages

decreases, we need more and more camera positions to get a reasonable embedding, and we can

reach a point where even even thousands of camera positions are insufficient. In such cases, and

in applications not limited to satellite imaging, it may be possible to get a reliable embedding

by grouping local camera positions together.

Second, an interesting open question is whether the measurement matrices utilized DCS multi-

view imaging scenarios satisfy the RIP with respect to some reconstruction basisΨ. Establishing

an RIP bound would give a guide for the requisite number of measurements (ideally, at each

scale) and also give a guarantee for reconstruction accuracy. Although we do not yet have a

definitive answer to this question, we suggest that there maybe promising connections between

these matrices and other structured matrices that have beenstudied in the CS literature. For

example, the measurement matrixΦbigR employed in the satellite experiment is closely related

to a partial circulant matrix, where the relative shifts between the rows represent the relative offsets

between the camera positions. RIP results have been established for circulant matrices [27] that

are generated by a densely populated random row vector. In our case,ΦbigR has more of a

block circulant structure because it is generated by the submatricesΦj, and so there may also be

connections with the analysis in [28]. However, each row ofΦbigR will contain a large number of

zeros, and it is conceivable that this could degrade the isometric property ofΦbigR. We believe,

though, that by collecting multiple measurements from eachcamera, we are compensating for

this degradation. Other possible directions for analysis could be to build on the concentration of

measure bounds recently established for block diagonal matrices [29] and toeplitz matrices [30].

Finally, another open question in the manifold lifting framework is what could be said about

the uniqueness ofM(x) given samples ofΦM(x). When all points on the manifoldM(x)
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areK-sparse, the RIP can be one avenue to proving uniqueness, butsince our objective is to

sample fewer thanO(K log(N/K)) measurements for each signal, a stronger argument would

be preferable. By considering the restricted degrees of freedom that these signal ensembles have,

it seems reasonable to believe that we can in fact establish astronger result. We are currently

exploring geometric arguments for proving uniqueness.
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