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Abstract. Heat conduction in an anisotropic inhomogeneous medium is considered. The con-

ductivities vary exponentially in one fixed but arbitrary direction. The Green’s function corre-

sponding to a point source is constructed. Two methods are used, one using Fourier transforms

and one involving certain changes of variables in the governing partial differential equation. So-

lutions in both two and three dimensions are derived. They can be used as a basic ingredient in

the formulation of boundary integral equations for graded anisotropic materials.
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1. Introduction

Thermal barrier coatings have been developed for a variety of high-temperature
turbine engine applications. These ceramic coatings protect the turbine blades
from high temperatures experienced during operation of the engine. However,
problems of coating failure with early coatings precluded their widespread appli-
cation. These failures were due to the large stresses which develop at the interface
between the metallic substrate and the ceramic coating at high temperatures. In
order to reduce these stresses, coatings have been developed which have graded
properties through the thickness of the coating. Near the metallic substrate, the
coating is designed to have properties similar to the substrate, in particular the
coefficient of thermal expansion. Near the surface of the coating, the properties
are similar to the pure ceramic which provides the greatest insulation against
high temperatures. These coatings are examples of functionally graded materials

(FGMs) [10, 18, 15]
One method of analysis for thermoelastic stresses in FGM systems is the

boundary element method; its advantages for problems involving cracks are well
known (see, for example, [8]). The immediate difficulty in applying boundary
element methods to the analyis of an FGM-substrate interface problem is the
lack of an appropriate fundamental solution for the FGM. Some work has been
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done on problems with spatially variable conductivity for both isotropic and, to a
lesser extent, anisotropic media. For isotropic materials, different approaches for
deriving boundary integral equations or fundamental solutions are presented in
[5, 3, 16, 11, 12, 9]. Most of these rely on using a transformation of variables ap-
proach after writing the conductivity as a product of the spatial variable and, say,
the temperature for the heat conduction problem. The review article [17] provides
an overview of most of these methods. The approach in [11] uses a generalized
forcing function to derive appropriate fundamental solutions. There has been some
discussion in the literature on this method of analysis [2]. For anisotropic solids,
the work in [6] and [7] provides approaches again based on transformation methods
to derive fundamental solutions.

The work reported on here is the development of a fundamental solution for
steady-state heat transfer in an FGM. We first present a detailed derivation based
on Fourier transforms of the two-dimensional fundamental solution directly from
the governing differential equation. Based on similarity with the fundamental
solution of the Helmholtz equation, we then present an alternative formulation
which extends the analysis to three dimensions. In this paper we will use the
terms fundamental solution and Green’s function interchangeably as we are only
seeking the singular, or free-space, part of the Green’s function.

2. Green’s function formulation in two dimensions

Consider a two-dimensional solid occupying the (x1, x2) plane. The anisotropic
thermal conductivities of the solid are given by

K e−2iαx2 with K =

(

k11 k12

k21 k22

)

, (2.1)

where k11, k12, k21, k22 and α are real constants. Thus, the material is exponen-
tially graded in the x2-direction.

We assume the matrix is symmetric and positive definite [4]. In particular, we
have

k12 = k21 (2.2)

and

detK = k11k22 − k2
12 > 0, (2.3)

so that K is non-singular.
We follow [9] and initially restrict α to be purely real; the reason for this will

become clear later. Our final result does not depend on this restriction. Indeed,
the case of imaginary α has particular relevance in applications.

For steady-state heat conduction in the solid we have Fourier’s law,

∇ · h = Q(x) (2.4)



Vol. 56 (2005) Fundamental solutions for steady-state heat transfer 295

where Q(x) is a heat source and the flux vector h is given by

hj = −
(

kjme−2iαx2

) ∂u

∂xm
. (2.5)

Substituting (2.5) in (2.4), we have

k11
∂2u

∂x2
1

+ 2k12
∂2u

∂x1∂x2
+ k22

∂2u

∂x2
2

− 2iα

(

k12
∂u

∂x1
+ k22

∂u

∂x2

)

+ Q(x) e2iαx2 = 0.

(2.6)
It is convenient to write this partial differential equation as

(L0 + LG) u(x) + Q(x) e2iαx2 = 0

where

L0 = k11
∂2

∂x2
1

+ 2k12
∂2

∂x1∂x2
+ k22

∂2

∂x2
2

and

LG = −2iα

(

k12
∂

∂x1
+ k22

∂

∂x2

)

.

To obtain the Green’s function for the differential equation (2.6), we let Q(x) =
δ(x − x′) so

(L0 + LG) G(x;x′) = −δ(x − x′) e2iαx′

2 (2.7)

where x′ is the source point, x is the field point, and δ(r) is Dirac’s delta function.
Note that the exponential term on the right side of (2.7) is evaluated at x2 = x′

2

as discussed in [17].
In order to find G, we shall use Fourier transforms. We define the two-

dimensional Fourier transform pair

F (f(x)) = f̂(q) =

∫ ∞

−∞

f(x) e−iq·xdx

F−1
(

f̂(q)
)

= f(x) =
1

4π2

∫ ∞

−∞

f̂(q) eiq·xdq. (2.8)

Taking forward Fourier transforms of (2.7) we then have
(

L̂0 + L̂G

)

Ĝ(q) = −e−iq·x′

e2iαx′

2

where
L̂0 = −k11q

2
1 − 2k12q1q2 − k22q

2
2

and
L̂G = 2α (k12q1 + k22q2) .

The Green’s function is then given in Fourier space by

Ĝ(q) = e−iq·x′

e2iαx′

2

{

k11q
2
1 + 2k12q1q2 + k22q

2
2 − 2α(k12q1 + k22q2)

}−1
. (2.9)

To obtain the final form of the Green’s function we then have to invert (2.9)
with (2.8). The inversion integral will be evaluated next.
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2.1. Inversion integral

The two-dimensional inversion integral obtained by substituting (2.9) in (2.8) is

G(x;x′) =
1

4π2
e2iαx′

2

∫ ∞

−∞

eiq·(x−x
′)

∆
dq, (2.10)

where
∆(q1, q2) = k11q

2
1 + 2k12q1q2 + k22q

2
2 − 2α(k12q1 + k22q2).

The fact that α is real ensures that ∆ is also real.
In order to evaluate (2.10), we will use several changes of variables. First,

consider the denominator ∆. The condition (2.3) implies that

∆(q1, q2) = 0

defines an ellipse in the (q1, q2)-plane. The changes of variable will map this
ellipse into a circle. We will then integrate using plane polar coordinates (R,ψ),
with R = 0 at the centre of the circle. We define the integral with respect to R as a
Cauchy principal-value integral; any other interpretation would lead to additional
regular solutions of the homogeneous form of (2.7).

Let
Q1 = q1

√

k11 and Q2 = q2

√

k22.

This substitution changes ∆ to

∆ = Q2
1 + aQ1Q2 + Q2

2 − bQ1 − cQ2 (2.11)

where

a = 2
k12√
k11k22

, b =
2αk12√

k11

and c = 2α
√

k22.

The change from q1 and q2 to Q1 and Q2 is a change of scale that equalizes the
coefficients of Q2

1 and Q2
2. The next change eliminates the cross-term Q1Q2: put

Q1 = λP + Q and Q2 = λP − Q

where
λ = {(2 − a)/(2 + a)}1/2

.

Then, (2.11) can be written as

∆ = (2 − a)(P 2 + Q2 + 2d1P + 2d2Q)

= (2 − a)
{

(P + d1)
2 + (Q + d2)

2 − (d2
1 + d2

2)
}

, (2.12)

where

d1 = −λ(b + c)

2(2 − a)
and d2 = − b − c

2(2 − a)
.

Equation (2.12) can be written conveniently using plane polar coordinates centred
at P = d1 and Q = d2. Thus, we obtain

∆ = (2 − a)(R2 − D2) (2.13)
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where
P + d1 = R cos ψ, Q + d2 = R sinψ and D2 = d2

1 + d2
2.

The expression (2.13) shows that ∆ = 0 when R = D.
Next, consider the exponential term in (2.10) under the variable transforma-

tions given above. Let ri = xi − x′
i. Then,

q · (x − x′) = q1r1 + q2r2

= λ

(

r1√
k11

+
r2√
k22

)

R cos ψ +

(

r1√
k11

− r2√
k22

)

R sin ψ + C,

where

C = −λd1

(

r1√
k11

+
r2√
k22

)

− d2

(

r1√
k11

− r2√
k22

)

.

It turns out that the constant C simplifies significantly to C = αr2.
Now, let

λ

(

r1√
k11

+
r2√
k22

)

= S cos θ and
r1√
k11

− r2√
k22

= S sin θ,

so that
q · (x − x′) = RS cos (ψ − θ) + C.

Finally, the Jacobian, J , of the coordinate transformations given above is

J = AR where A = −2λ/
√

k11k22.

The inversion integral is then

G(x;x′) =
1

4π2
e2iαx′

2eiαr2
A

2 − a
−
∫ ∞

0

∫ 2π

0

eiRS cos (ψ−θ)

R2 − D2
R dψ dR.

The integral with respect to ψ is standard, and so

G(x;x′) =
eiαr2e2iαx′

2A

2π(2 − a)
−
∫ ∞

0

R J0(RS)

R2 − D2
dR

where J0 is a Bessel function. The remaining integral can also be evaluated, by
standard contour-integral methods. (One way is to consider the integral

I ≡
∫

C

z H
(1)
0 (Sz)

z2 − D2
dz

around a closed contour C in the complex z-plane, consisting of a piece of the real
axis indented above the simple pole at z = D, a large quarter-circle C0, and a

piece of the imaginary axis. Here, H
(1)
0 is a Hankel function, chosen so that the

contribution from C0 vanishes as C0 recedes to infinity. There are no poles inside
C, whence I = 0. The result follows from Re(I) = 0.) Hence,

G(x;x′) = −Aeiαr2e2iαx′

2

4(2 − a)
Y0(DS) =

eiα(x2+x′

2
)

4
√

detK
Y0(αR) (2.14)
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where Y0 is a Bessel function of the second kind and

R =

√

k22

detK

√

k22r2
1 − 2k12r1r2 + k11r2

2.

Equation (2.14) is a singular solution of (2.7), as needed for boundary element
analysis. Any other regular solutions of the homogeneous form of (2.7) can be
added to (2.14). For example, other particular singular solutions are

− i eiα(x2+x′

2
)

4
√

detK
H

(1)
0 (αR) and

i eiα(x2+x′

2
)

4
√

detK
H

(2)
0 (αR), (2.15)

where H
(2)
0 (ρ) is another Hankel function. The choice of fundamental solution

will usually be dictated by the desired behaviour at infinity or how the solution
simplifies when the grading parameter becomes complex.

As an example, suppose that α = iβ, where β is real, so that the thermal
conductivities are given by

K e2βx2 .

Then, as iπH
(1)
0 (iρ) = 2K0(ρ), where K0 is a modified Bessel function, we find

that an appropriate fundamental solution is

G(x;x′) = −e−β(x2+x′

2
)

2π
√

detK
K0(βR) = G(x′;x). (2.16)

Note that K0(ρ) is exponentially small as ρ → ∞, and has a logarithmic singularity
as ρ → 0. As might be expected, the solution (2.16) is real.

2.2. Reduction to isotropic form

For an isotropic, exponentially graded solid, kij = kδij where k is a positive
constant and δij is the Kronecker delta. The various constants appearing in the

analysis for the inversion integral are then a = b = 0, c = 2α
√

k, A = −2/k,
D = α

√

k/2 and R =
√

r2
1 + r2

2. Then the Green’s function given by (2.15)1
reduces to,

G(x;x′) = − i eiα(x2+x′

2
)

4k
H

(1)
0 (αR), (2.17)

which agrees with the result in [9].

3. An alternative method: extension to three dimensions

The fundamental solutions found above involve Bessel and Hankel functions. They
are similar to the well-known fundamental solutions of the Helmholtz equation and
the modified Helmholtz equation. Therefore, we seek to transform the governing



Vol. 56 (2005) Fundamental solutions for steady-state heat transfer 299

differential equation, (2.6), into the Helmholtz equation. In fact, we can proceed
with grading in an arbitrary direction without additional effort. Thus, suppose
that the thermal conductivities are given by

K exp(2β · x),

where β is a constant vector giving the direction and magnitude of the grading.
The symmetric matrix K can be 2 × 2 (as above) or 3 × 3.

In the absence of any heat source (Q ≡ 0), the governing differential equation
can be written in subscript form as

kij
∂2u

∂xi∂xj
+ 2βikij

∂u

∂xj
= 0. (3.18)

Now consider a preliminary transformation so as to remove the first-order
derivative term. Let

u = v exp(γ · x) (3.19)

where the constant vector γ will be chosen later. We then have

∂u

∂xj
=

(

∂v

∂xj
+ γjv

)

exp(γ · x)

and
∂2u

∂xi∂xj
=

(

∂2v

∂xi∂xj
+ γi

∂v

∂xj
+ γj

∂v

∂xi
+ γiγjv

)

exp(γ · x).

Substituting in (3.18) gives

kij
∂2v

∂xi∂xj
+ 2(γi + βi)kij

∂v

∂xj
+ (γiγj + 2βiγj)kijv = 0, (3.20)

where we have used the symmetry of K, kij = kji. Therefore, we choose γ = −β,
whence u = v exp(−β · x) and v solves

kij
∂2v

∂xi∂xj
− βiβjkijv = 0. (3.21)

This equation is similar to the modified Helmholtz equation. In fact, as we have
supposed that kij is positive definite, we can change the independent variable xi

so that the new equation is the modified Helmholtz equation, which has known
fundamental solutions.

So, make a linear change of variables from xi to yi, using

yi = qijxj or y = Qx,

where the qij are to be chosen [14]. We have

∂v

∂xi
=

∂v

∂yk

∂yk

∂xi
= qki

∂v

∂yk
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and
∂2v

∂xi ∂xj
= qkiqℓj

∂2v

∂yk ∂yℓ
.

Hence, (3.21) becomes

qkikijqℓj
∂2v

∂yk∂yℓ
− βiβjkijv = 0. (3.22)

Choose Q so that
QKQT = I, (3.23)

and then (3.22) becomes
(∇2

y − κ2)v = 0, (3.24)

where κ2 = βikijβj = βT Kβ and

∇2
yv ≡ ∂2v

∂yi ∂yi

is the Laplacian in terms of y.
Fundamental solutions for (3.24), in two or three dimensions, are simple func-

tions of R, defined by

R2 = yT y = yiyi

= qijxjqikxk = xT QT Qx.

But (3.23) implies that QT Q = K−1, and so

R =
√

xT K−1x,

which means that we do not have to find Q explicitly in order to calculate R.
Hence, typical fundamental solutions of (3.21) are [1, 13]

G = AK0(κR) in two dimensions (3.25)

and

G = Ae−κR

R
in three dimensions, (3.26)

where A can be chosen to provide the proper strength for the singularity at R = 0.
A fundamental solution for the graded material can then be obtained from (3.25)
or (3.26) with (3.19) simply by multiplying by exp(−β · x).

The fundamental solutions given by (3.25) and (3.26) correspond to a singular-
ity at the origin, x = 0. For a singularity at x = x′, simply replace x by r = x−x′

in the definition of R. Note that A can depend on x′: compare with (2.16). Thus,
in two dimensions, for example, we obtain

G(x;x′) = − K0(κR)

2π
√

detK
exp {−β · (x + x′)} = G(x′;x),

where

κ =

√

βT Kβ and R =
√

(x − x′)T K−1(x − x′).
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4. Derivatives of G

Let us write

G(x;x′) = G(x′;x) = G0(R) exp{−β · (x + x′)},
where G0(R) = cK0(κR) in two dimensions, G0(R) = cR−1e−κR in three dimen-
sions, and c is a constant. In applications, we usually need the conormal derivative
of G; physically, this represents the normal heat flux, and is defined as the pro-
jection of the heat flux vector in the direction of the unit normal vector n. Thus,
with ℓj(x) = ni(x) kij exp(2β · x), we require

∂G

∂ν
= −ℓj(x)

∂G

∂xj
and

∂G

∂ν′
= −ℓj(x

′)
∂G

∂x′
j

.

We may also want the second derivative,

∂2G

∂ν ∂ν′
= ℓi(x) ℓj(x

′)
∂2G

∂xi ∂x′
j

.

We have
∂R

∂xj
= − ∂R

∂x′
j

=
1

R

(

K−1r
)

j

whence

ℓj(x)
∂R

∂xj
=

1

R
(n · r) exp(2β · x)

and

ℓj(x
′)

∂R

∂x′
j

= − 1

R
(n′ · r) exp(2β · x′),

where n ≡ n(x) and n′ ≡ n(x′). Hence

∂G

∂ν
=

{(

nT Kβ
)

G0 − R−1(n · r)G′

0

}

exp(β · r), (4.27)

∂G

∂ν′
=

{(

n′T Kβ
)

G0 + R−1(n′ · r)G′

0

}

exp(−β · r), (4.28)

where r = x − x′ and G′
0(R) = dG0/dR. Similarly,

∂2G

∂ν ∂ν′
= (A0G0 + A1G

′

0 + A2G
′′

0) exp{β · (x + x′)}, (4.29)

where
A0 =

(

nT Kβ
)

(

n′T Kβ
)

, A2 = −R−2 (n · r) (n′ · r)

and

A1 = R−3 (n · r) (n′ · r) + R−1
{

(

nT Kβ
)

(n′ · r) −
(

n′T Kβ
)

(n · r) − nT Kn′

}

.

These expressions for the conormal derivatives of the Green’s functions are
required in conventional collocation-based boundary element methods and also in
the symmetric Galerkin method.
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5. Discussion

We have described two methods for determining fundamental solutions for steady-
state heat conduction in anisotropic, exponentially graded materials. It is of inter-
est to compare the two methods. The first method is quite general, and leads to an
expression for G as an inverse Fourier transform. Some ingenuity may be required
in order to evaluate this multiple integral. The second method requires ingenuity
in a different way: the aim is to transform the given differential equation into an-
other differential equation with known fundamental solutions. For other physical
problems, especially vector problems, a hybrid approach may be used profitably,
where the original differential equation is first transformed into a new differential
equation, which is then solved by Fourier transforms. These techniques may find
further applications as inhomogeneous media become more common.
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