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In this chapter the theory of scattering of elastic sur-
face waves is described. Since surface waves are
guided along the surface of materials, the scattering
properties of surface waves are useful for probing the
heterogeneity of the material near the surface as well
as perturbations of the free surface. This has appli-
cations in the detection of surface defects (Steg and
Klemens, 1974) and in seismological studies for the
determination of the internal structure of the Earth
(Nakanishi, 1993; Snieder, 1993). Many aspects of
the propagation of elastic surface waves in laterally
inhomogeneous media are treated in the textbooks of
Malischewsky (1987) and Keilis-Borok ez al. (1989).

The Surface Wave Green’s Ten-
sor in the Far Field

§1.

In scattering theory the Green’s tensor for the
reference model in which the scatterers are embed-
ded plays a crucial role. For elastic waves the role of
this Green’s tensor is shown in §5 of Chapter 1.7.1.
For surface waves the natural reference model is a
model where the parameters depend on the distance
to the surface only. Such a reference model is free
of lateral heterogeneities, and the invariance of the
medium for translations in the horizontal direction

PART 1 SCATTERING OF WAVES BY
MACROSCOPIC TARGETS

Topic 1.7 Elastodynamic Wave (Elastic)
Scattering: Theory

allows a solution of the elastic wave equations using
either a Fourier transform (in a rectangular geome-
try), a Fourier—Bessel transform (in a cylindrical ge-
ometry) or an expansion in spherical harmonics (in a
spherical geometry). For the Earth, the latter situa-
tion is most appropriate. However, for surface waves
that do not penetrate deep into the Earth and that
do not propagate to the other side of the Earth, the
sphericity is not very important. For this reason the
theory is developed here for a Cartesian geometry. A
formulation of the surface wave Green’s function in
a spherical geometry is given by Takeuchi and Saito
(1972) and by Dahlen and Tromp (1998). Most of
the material shown in this section is derived in detail
by Aki and Richards (1980).

In a layered isotropic elastic model, the wave mo-
tion separates into the SH waves and the P-SV waves
(Aki and Richards, 1980). The SH waves are shear
waves that are horizontally polarised in the direction
perpendicular to the direction of propagation. The
P-SV waves consist of both compressive and shear
motion that is coupled by the vertical gradient of the
material properties. The polarisation of the P-SV
waves is in the vertical plane in the direction of wave
propagation. The surface waves of the SH system are
called Love waves, while the surface wave solutions
of the P-SV system are called Rayleigh waves. The
Love waves are linearly polarised in the horizontal
plane perpendicular to the direction of propagation
while the Rayleigh waves are elliptically polarised in
the vertical plane in the direction of propagation.

In the analysis of this section a Fourier trans-
form over the horizontal coordinates is assumed.
The x axis is aligned with the direction of wave
propagation. This means that a plane wave in
frequency—wave-number space corresponds with a
solution u(k, z, ®) ¢!**=®") in the x, z, t domain. Note
that this plane-wave solution does not depend on
the y direction perpendicular to the path of prop-
agation. Inserting this special solution in Egs. (9)
and (11) of Chapter 1.7.1 for the special case of an
isotropic medium, one can derive expressions for the z
derivatives of the stress and displacement. For the
Love waves the quantities that need to be accounted
for are the displacement u, in the y direction and the
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stress component Ty,. Following Aki and Richards
(1980) the associated eigenfunctions are denoted by:

uy(z) = (),
Tyz(2) = h(z).

(1)

These functions satisfy the following system of differ-
ential equations

i h _ 0 1/u I 2)
dz\ I, |\ Ku-pw® 0 L)’

where p is the mass density and u is the shear mod-
ulus. The functions /1(z) and />(z) are continuous at
the interface between different layers. Furthermore
the traction T, vanishes at the surface and the dis-
placement vanishes for great depth. This implies that
[1(z) and > (z) satisfy the boundary conditions

l1(z)=0 as
l(z=0)=0.

Z— o0,

(3)

The differential equations (2) with the boundary
conditions (3) can only be satisfied for selected val-
ues of k and ®. In this chapter we will assume the
frequency ® to be fixed. In that case the equations
can only be satisfied for certain discrete values of the
wave number k. These correspond to the surface
wave modes that propagate through the system. It is
possible that there are no modes; for a homogeneous
half-space there are no Love wave solutions. Asin §7
of Chapter 1.7.1 the modes are labelled with Greek
indices. For a mode v, the phase velocity ¢, and the
group velocity Uy are related to the wave number k,
of that mode by

® el0)}
CVZE, UV=%.

For the Rayleigh waves the quantities that de-
scribe the wave propagation are the components of
the displacement in the x and z directions and the
stress components T, and T,.. These quantities are
described by the functions

(4)

Uy (2) =7
uy(z)=1 5)

The factors 7 are inserted because this leads to a real
system of equations for the functions 71, - -+, 74. Phys-
ically this factor i accounts for the elliptical polarisa-
tion of the particle motion. The functions satisfy the
differential equation

"1
d| n
dz ]’3

74

0 k 1/u 0 7
A2 0 0 (A+2u)7! o)

Bl—po* 0 0 kEx+2w)™' || 73 > (6)
0 —p(n2 -k 0 74

where { is related to the Lamé parameters A and u by
the relation { = 4u(A+u)/ (A +2u). The boundary con-
ditions are that the tractions vanish at the free surface
and that the displacement vanishes at great depth:

r1(z)=12(2)=0 as
1’3(Z=0) =7’4(Z= 0) =0.

z— 00,

(7)

Just as with the Love waves, Eq. (6) with the bound-
ary conditions (7) has for a fixed value of ® only so-
lutions for certain discrete wave numbers k. These
correspond to the Rayleigh wave mode in the system.
The phase and group velocity of these modes are given
by (4).

Up to this point the modes are defined using
a plane-wave dependence exp (ikx) of the wave
field. However, in a cylindrical coordinate system
one arrives at the same equations (2) and (6) for
the Love and Rayleigh waves, respectively (Aki and
Richards, 1980), using the Fourier-Bessel transform.
This means that the modes that are derived here can
also be used to account for the surface-wave response
to a point source.

When a surface wave is excited at a point r’ and
propagates to a location r, the wave propagates in the
horizontal direction and is trapped in the vertical di-
rection. For this reason a new variable X is used to
denote the horizontal distance between these points
and the azimuth of the horizontal path is denoted by
©; both quantities are defined in Fig. 1. With these
coordinates and with the surface wave eigenfunctions
defined in the expressions (1) and (5), the Green’s ten-
sor of the surface waves can be formulated. As shown
in expression (7.145) of Aki and Richards (1980) the
Green’s tensor for Love waves is given in the far field
(kyX > 1) by

GLove(r r,) _ z li’(z)]i’(z/) ei(kvX+n/4)

v SCVUVIY 1/%/€\;X

sin’ @ —sing cos@ 0
x| —sing cos¢p cos’¢ O [. (8)
0 0 0

In this expression I} is the kinetic energy of the mode

e <]
h:%hp@a, (9)
which effectively normalises the modal eigenfunc-
tions. The summation in (8) is over all the Love
modes of the system. In order to simplify the resulting
expressions we use the following normalisation con-
dition for the surface wave modes
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8cUI =1 (10)
It is shown in §7 of Chapter 1.7.1 that the Green’s
tensor for elastic waves can in many cases be written
as a sum of dyads. The Green’s tensor (8) can also
be written as a sum of dyads. To see this, define the
following unit vectors in the horizontal plane

cos @ —sin@

A=1 sing |, o= coso |,
0 0

(11)

see Fig. 1. The vector A points in the horizontal plane
in the direction of wave propagation while the vector
@ is directed in the horizontal direction perpendicular
to the propagation direction. (In this chapter a caret
denotes a unit vector.) The 3 x 3 matrix in the Green’s
tensor (8) is equal to the dyad $§*. The vectors A and
® can be used to define the polarisation vectors for
Love and Rayleigh waves:

pro"(z,0) = [1(2),
(12)
pRavleigh (2 o) = 71 (2)A+ira (2)2.
The Green’s tensor for Love waves can then be written
as

(kVX+Tc/4)
Zp 2 0)— —7"(z,9),

2™V

GLove ( 1 3)

where the dagger denotes the Hermitian conjugate.
Since p is real for Love waves, this is the same as the
transpose.

The Rayleigh wave Green’s tensor is for the far
field (kyX > 1) given in expression (7.146) of Aki and

Figure 1 Definition of the geometric variables for the direct
surface wave.

s>
B>

Richards (1980)

ei(kVX+n/4)
MY(z,7,9) , (14)

GRayleigh(r’ Y)= 2
Ty X

-
<8y Uyl
with the 3 x 3 matrix MY given by

) (2) cos? @ 7Y (2)r}(2) sin@ cos@—ir (2)73(2’) cos @

—iry(2)r3(2) sing |-
5 (2)r3(2)

1
Z)singcos ()1 (2 ) sin? @

iry(2)r](z) cos@  iry(x)r] (') sing

(15)

In (14) the kinetic energy integral for Rayleigh waves
is given by

11=%J0 p(r}+13)dz. (16)
The matrix M can then be written as a dyad of
the polarisation vectors of Rayleigh waves as defined
in expression (12): M(z,2,9)=p(z, 0)p'(z’, ¢). Note
that the complex conjugate is crucial in this identity
because the polarisation vectors for Rayleigh waves
are complex. Using the condition (10) to normalise
the Rayleigh wave modes, the corresponding Green’s
tensor can be written as

ZP 0

(k X+1/4)

GRay1e1gh (r, r T(Z’, ). (17)

z v

This expression has the same form as the Love wave
Green’s tensor of expression (13); hence the total sur-
face wave Green’s tensor follows by summing over
both Love and Rayleigh waves

ZP 0

ik X+/4)

,/gkvx

When a force f at location r’ excites the wave field,
the displacement is given by

P (2, 9). (18)

oilkuX4m/4)
ZP 2,0)——— (p"(Z, 0)If(r")), (19)
,/zkvx
with the inner product defined by (ulv) = ¥, u;*v;.

Expression (19) has the same physical interpretation
as described under Physical Interpretation of Dyadic
Green’s Tensor in Chapter 1.7.1; reading this expres-
sion from right to left one follows the life history of
the surface wave. At the source location r’ the sur-
face wave mode is excited, which is described by the
inner product (p"|f(r')) of the force with the polarisa-
tion vector. The surface wave mode then travels over
a horizontal distance X to location r and experiences
a phase shift and geometrical spreading as described
by the terms exp (ikyX) and 1/kyX, respectively. At
location r the particle motion is given by the polari-
sation vector p¥. For the complete response one must
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sum over all modes, which includes both Love and
Rayleigh waves. Finally it should be remembered that
the results in this section are only valid in the far field.

§2. The Gradient of the Surface-
Wave Green’s Tensor

In the scattering theory of elastic waves it is neces-
sary to account for the gradient of the displacement
field; see for example the Lippman—Schwinger equa-
tion (41) of §5 of Chapter 1.7.1. Since in the previous
section only the far field surface wave Green’s tensor
was introduced, we consider here only the gradient
of the surface wave Green’s tensor in the far field.
The far field is defined by the requirement that the
horizontal distance is much larger than a wavelength:
kyX > 1.

When the point r in expression (18) changes, then
X, z and the azimuth ¢ change. In the far field the
dominant contribution to the gradient comes from
the X derivative in the exponent in the Green’s tensor
and from the z derivative of the polarisation vector
p'(z,0). The X derivative of the exponential term
gives a contribution ikyA exp (ikvX), which means
that in the far field the gradient of the Green’s ten-
sor is to leading order in 1/k,X given by

VG(r,t') =) (ikﬁpv(z, 9)+2p"(z, tp)/BZ>

v
ei(lz\,X+n/4)

7", 0.
NETST

The term in parentheses describes the strain associ-
ated with surface wave mode v. It is convenient to
define the strain operator for a mode v

x (20)

Evzikv&rzﬁ; (21)

oz
with this definition the gradient of the surface wave
Green’s tensor is given by

i(ky X+1/4)

0iGi(r, ') =Y (Ei*p;" (2,9)) Py (&,9). (22)

v i

2RV

It is also necessary to use the gradient V' of the Green’s
tensor with respect to the coordinate r'. In the far field
the dominant contribution comes from the X deriva-
tive of the exponential in (18) and from the 2’ deriva-
tive of the polarisation vector p'f(z’,¢). Using the
definition (21) for the strain operator at the source
the gradient with respect to the source coordinate is
given by

ei(kvX+T|:/4)
Gl r) = T l6 ) ——

v 5 Rv

(EYpe"(€,0)" . (23)

Note the complex conjugate in the last term. This
complex conjugate leads to a term —ikyA in the strain
operator, which is due to the fact that when the source
position 1’ is changed towards r, the horizontal dis-
tance X decreases.

§3. The Surface Wave Scattering
Amplitude

In this section we consider the scattering of a surface
wave mode v by a localised heterogeneity. The dis-
placement of an incident surface mode v is denoted
by ul?V(r); when this wave is excited by a point force
it is given by expression (19) without the summa-
tion over modes. The scattering problem is linear
in the excitation; hence one can sum finally over all
modes v to obtain the response to a superposition
of incident surface waves. The total displacement
field for this scattering problem is denoted by u"(r).
It should be noted that this wave field also contains
mode conversions from the incident mode v to other
surface wave modes. The total wave field satisfies the

Lippman-Schwinger equation as given in expression
(41) of §5 of Chapter 1.7.1:

u} ) =0 (0402 | Gyle,)p!) () () 4V
_J 3 (Ginlr, ') el ()32 (€) AV . (24)

(In this chapter the notation 9; stands for the par-
tial derivative with respect to the x; coordinate; 0;f =
df/dx; and the summation convention is used where
a summation over repeated indices is implied). Note
that the superscript (0) in the Green’s tensor is sup-
pressed, but it is understood that we refer to the sur-
face wave Green’s tensor in the reference medium
as defined in the previous two sections. In this
expression the perturbation of the density and elas-
ticity tensor is denoted by p!) and ¢!, respectively.

In the far field, expression (18) for the Green’s ten-
sor and expression (23) for its gradient can be used.
With a derivation that is analogous to the standard
derivation of the scattering amplitude, one can show
(Snieder, 1988) that at a distance much larger than the
scatterer size the wavefield is given by

0 ei(ng+n/4)
) (r) =" (1) + X 90 (2, 0) =AY,

NETN

with the scattering matrix given by

(25)

AT = 0P | ) (9 glp () () Y V!
= [ etebe (Bopeie V() ) @V (26)

The polarisation vector in the integral is evaluated at
depth 7. Note that the full response to an incident
mode v contains a sum over outgoing modes 6. The
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modes G # Vv describe the mode conversions generated
by the scatterer. Expression (25) therefore gives the
total wave field as a superposition of the incident sur-
face wave mode and a sum of scattered surface waves
that is denoted by the summation over the mode index
0. The scattering matrix A° can be written as a
volume integral over the scatterer; this integral con-
tains the perturbation of the density p'!), the elastic-
ity tensor ¢! and the total wave field at the scatterer.
This quantity gives the strength of the outgoing mode
6 when a mode v is incident on the scatterer.

Suppose the incident wave field is a plane-incoming
surface wave mode v that propagates in the direction
given by an azimuth @;,. Using the unit vector A;, that
corresponds to this azimuth through expression (11),
the incident surface wave mode is given by
- po g

ul®(r) (27)

In general the scattering matrix is a function of the
incoming and outgoing azimuths:

A% = A%(@, Qin).- (28)

When the scatterer displays cylindrical symmetry the
scattering matrix depends only on the scattering angle
Y =0— 0.

The theory developed here is completely analogous
to the theory for scattering of other wave types. In
fact, the optical theorem also holds for surface wave
scattering. This theorem relates the forward scatter-
ing amplitude of unconverted surface waves to the to-
tal scattered power (Snieder, 1988):

~ 2

S (A (Qins in)) = 6P§- (29)
In this expression Ps" is the total power scattered
through a surface that encloses the scatterer when
the scatterer is illuminated with a single-incident sur-
face wave mode v. The reason that the imaginary
component of the scattering matrix for forward scat-
tering of unconverted surface waves appears on the
left-hand side is related to the fact that this quantity
describes decay of the amplitude of the transmitted
surface wave due to the energy loss that is associated
with the scattering. This energy loss is accounted for
by the right-hand side of (29). The effect of scatter-
ing on the attenuation of surface waves is described
by Hudson (1970) and by Brandenburg and Snieder
(1989).

§4. The Born Approximation of Sur-
face Waves

The scattering amplitude derived in the previous sec-
tion accounts in principle for the complete scatter-
ing of surface waves. However, since the total wave

field appears on the right-hand side of (26) it is very
difficult to compute the scattering matrix. In many
applications, scattered waves are used for imaging
the heterogeneity. This imaging process is easiest
when the relation between the scattered waves and
the model is linear (Snieder and Trampert, 1999).
For this reason the Born approximation is a valuable
tool to account for the scattering of surface waves
(Snieder, 1986a, b).

For the moment we ignore the perturbation of in-
terfaces and consider volumetric perturbations of the
medium only. As shown in §6 of Chapter 1.7.1,
small perturbations of the interface can be included
by replacing the perturbation of the interface by an
equivalent volumetric perturbation. For example, for
the density perturbation this amounts to making the
replacement pVdV — pdV+h [pl%] dS, where b is
the displacement of the interface and [p'?] the dis-
continuity in the density across the interface in the
reference model.

In the theory developed here we assume that the
wave field is excited by a point force f at location
rs. According to (19) the unperturbed wave is then
given by

oilkyX+m/4)
—— (p"(zs, Q)If).

)=, p'(z0)

(30)
z v

The Born approximation for the scattered surface
waves follows from expression (43) of §6 of Chapter
1.7.1. Inserting expression (30) and using Egs. (18),
(22) and (23) for the surface wave Green’s function
and its gradient, one arrives at the following expres-
sion for the single-scattered surface waves:

1 22 J p; za(PZ

(k6X2+T[/4)
Py (20, 92)
j A2

oilky X1 4m/4)

(ro)p;} (20, 91) ——=
’ /Sy X1

(p"(zs, 91)If) dVo
ei(ng2+T[/4)

=S| P00 —

%kGXZ

xp)

ER* by (20, 92)

ik X14m/4)

(1) v, v
chklj(rO)El pj (zo,(pﬂf
Thy X1
7 Ry
(p" (25, 01)If) dVo.

The integration over the heterogeneity is carried out
by the integration over To. The geometric variables
that appear in this expression are defined in Fig. 2. Tt
is convenient to divide the volume integral in an in-
tegration over the horizontal surface area dSy and a
depth integral: dVj = dSodzo. With this change, ex-
pression (31) can be written as

(31)
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Figure 2 Definition of the geometric variables for the single-
scattered surface waves.

r
X2
mode o
N
Az
N
?,
?5
A r()
A Ay
?, X,
mode v
ke
rS
i(koX2+1/4)
u(r) = P ) —
Yo =
(ke X14m/4)
x V(1) (p"(zs5, 1)If)dSo. (32)
%kv 1
with

V(r0) =0 [ " (p° (20, 0210 0 )ipY 0, 01) ) deo

= | (B a0, 02l 0B (20, 1) o
0
33)

Expression (32) can again be interpreted by
reading it from right to left. At the source, mode
v is excited by the point force, which is described
by the inner product {p"|f). This mode then travels
over a distance X7 to the scattering point rg. During
this propagation the mode experiences a phase shift
exp (ikyX1) and a geometrical spreading 1/4/kyX1.

At the scatterer, mode v is scattered and converted
into surface wave mode o, which is described by
the scattering matrix V. The wave then travels as
mode o over distance X, to location r and obtains a
phase shift exp (iksX3) and a geometrical spreading
1/v/ksX>. The oscillation at r is given by the po-
larisation vector p®. A summation over all pairs of
incoming and outgoing modes v and ¢ and an inte-
gration over the heterogeneity give the full response
in the Born approximation.

It is illustrative to depict the different mode inter-
actions as shown in Fig. 3. Each open dot denotes a
mode, and each solid arrow represents an interaction

Figure 3 Diagrammatric representation of interactions between
surface wave modes. The modes are indicated by open circles,
the mode interactions by solid arrows.

Unperturbed

o

Exact /o
O o4 O=—0 o/

T~ T

between modes. In the figure the contribution to one
particular outgoing mode is shown in different ap-
proximations. In a laterally homogeneous medium,
the modes do not couple to other modes, which is
shown by the top diagram in Fig. 3. In the presence
of lateral variations all the modes are coupled, and
mode coupling occurs to any order, which is shown
in the bottom panel. In the Born approximation only
the single-mode interactions are retained, which is in-
dicated by the “Born” diagram.

§5. The Scattering Coefficient for an
Isotropic Perturbation

The scattering matrix can be computed from (33)
when the modes that are contained in the polarisa-
tion vectors and the perturbation of the density and
elasticity tensor are known. This expression can be
used for an arbitrary perturbation of the elasticity ten-
sor. In this section the special case of an isotropic per-
turbation of the elasticity tensor is treated; for such
a medium the perturbation of the elasticity tensor is
related to the perturbations in the Lamé parameters
through the relation

Ci'jlk)l = 7»(1)61','5/(1 +,u(1)8,-k8,-1 +,u(1)5,-18/k . (34)
In that case the elastic properties of the medium have
no intrinsic orientation. Because of rotational invari-
ance, the scattering properties contained in the in-
teraction matrix then depend only on the scattering
angle defined as the difference in the azimuth of the
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incoming and outgoing surface wave,

V=02—-01; (33)

see Fig. 2. When one inserts expression (12) for the
polarisation vectors and Eq. (21) for the associated
strain in Eq. (33) for the scattering matrix V', inner
products of the unit vectors A, @ and 2 for the
incoming and outgoing modes appear. The inner
products can be related to the scattering angle y by
the following relations that can be deduced from ex-
pression (11) or from Fig. 2:

(36)

For an isotropic perturbation of the elasticity tensor,
as given by expression (34), a number of terms con-
taining the inner products given in expression (36) ap-
pear in the interaction matrix (33). As an example
let us consider the contribution of the term u! 8,k5,1
in (34) to the scattering matrix. Using the summation
convention this term gives the following contribution
to the scattering matrix:

—E% p;®*u V881 Ex pr¥
= —uV) (=ikgAaip;®* +z,8p7°*)(l/€vA11P7~ +%i3P/V>
__N1)<kckv (Az A1><p 2)IpY (01))
+(0p°(92)19p" <<p1>>)-

In the last identity we used that z is orthogonal to the
A and @ vectors. The result can be written as

—u") (koky (p°(92)Ip" (1) ycos y+ (Ip°(2)[9p" (91))) -
(38)

(Note that the inner product implies taking the
complex conjugate of the left vector.) At this point
the specific form of the polarisation vectors as given
in (12) must be used. The polarisation vectors are
different for Love and Rayleigh waves. Therefore we
need to distinguish four different situations: outgo-
ing Love mode-incoming Love mode, outgoing Love
mode—incoming Rayleigh mode, outgoing Rayleigh
mode-incoming Love mode and outgoing Rayleigh
mode-incoming Rayleigh mode. These situations will
be abbreviated with the notation LL, LR, RL and RR
respectively.

Consider the special case that v is a Love wave
and o a Rayleigh wave. Then <p6((P2)|PV((P1)>
= r‘fﬁz B¢ — 52 - 1]§1 = 1] siny.  The term
(9p°(92)19p¥ (1)) can be handled in the same way.
The total contribution of the term u S,kS,l to Vgy is
for this special mode-pair thus given by

Y (kskyrSIY sinycosy +9r{ol} siny)

(1) OV v (39)
= —pu'V) (1/2 kkyrS1) sin 2y + 970l siny) .

Treating all terms in the perturbation of the elastic-
ity tensor in this way and including the contribution
to the Born approximation (43) due to the perturba-
tion of interfaces gives the complete scattering matrix
for the four classes of incoming and outgoing surface
wave modes (Snieder, 1986a):

viy =] {oe
~keky J: 1914V dz cos 2y
+ X b {171 [0 0] 0 = @)1 [1”] } cosw
= S kokyIS1Y [u”] cos2y,

o2 — (%)@ )V }dz cosy

(40)

ov _ [®f o)
VRL‘JO {’1I1P

—kckvj S uV dz sin 2y

% — (or§ — kgrg)(alf),u(l) }dz siny

+2//J {1’1 1 [p(o)] o? —(0r] —kor3)(31) [”(0)] } siny
—2//) kckvrcfli’p(l) sin 2y, (41)
Vo =-Vi1, (42)

VRR = JO {rngpmwz — (ko +0r5) (kvr\ll +ar§) A

jdz

— (kokyr§ry +2(0r)(@r})) u!
o[ iR - (kar§ - orf)

x (kyry —ory) utV }dz cosy
—kgky J: r‘m,u(l)dz cos2y
+ 3 {1573 0] o - (ket§ +313)

x (ko +0r3) 1]

= (kokyr§ry +2@r)0r)) 4] |
+ b {’171 [ ]“)2_(]@07(27_3’(15)

« g2 1] cony

=Y b kokyr{ry [,u(0>] cos2y. (43)

It can be seen that each of these terms consists of
the first terms of a Fourier series in y. For conver-
sions to the same mode type (Love-Love or Rayleigh—
Rayleigh) the interaction matrix is a superposition of
terms cosm\ for m =0, 1,2. For conversions between
Love and Rayleigh modes the interaction matrix con-
sists of a superposition of terms sinmy for m = 1,2.
This implies that the conversion between Love waves
and Rayleigh waves vanishes for forward scattering
(v = 0) and for backscattering (y = 1t).
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Figure 4 Density, P velocity and S velocity for the reference
medium (solid line) and for a model of a mountain root (dashed
line).
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Figure 5 Radiation pattern for scattering by the mountain-root
model for a period of 21 s. The direction of the incident wave is
marked by the arrow. Ry « Ry scattering is indicated by a solid
line, L1 « L4 scattering by a dashed line and Ry < L1 conversion
by a dotted line.
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This is illustrated with a geophysical example of
a model of a mountain root (Mueller and Talwani,
1971) shown in Fig. 4. The horizontal extent of the
mountain is assumed to be 100 x 100km?. The refer-
ence model is the M7 model as a realistic model for
the Earth’s mantle (Nolet, 1977). The radiation pat-
tern due to this scatterer is shown in Fig. 5 for the
scattering of the fundamental Love mode (marked L1)
and fundamental Rayleigh mode (marked Ry). In this
radiation pattern the absolute value of the interaction
matrix is shown as a function of the scattering an-
gle. The direction of the incoming wave is shown
with an arrow. It can be seen that the conversion
between the Love and Rayleigh waves (Ry < L1, as
shown with the dotted line) vanishes in the forward
and backward directions. Note the distinct difference
between the Ry < Rj radiation pattern with two lobes

and the Lj « L1 radiation pattern with a character-
istic four-lobe pattern. This is related to the fact that
for the interactions between Rayleigh waves the inter-
action matrix (43) contains an isotropic term that is
independent of y that is not present in the interaction

matrix (40)—(42) for other mode pairs.
The frequency dependence of the cosy terms of

the scattering matrix for the mountain-root model
is shown in Fig. 6. In the upper panel the interac-
tion matrix is shown for the coupling of different
Rayleigh modes with the fundamental Rayleigh mode
(RN < R1). In the lower panel the self-interaction of
different Rayleigh modes (Rx < Ry) is shown. Each
of the terms in the scattering matrix contains two of
the following terms: the frequency ®, the horizon-
tal wave number k, and the vertical derivative of the
modes. Since the vertical derivative of the modes is
comparable to the horizontal wave number and since
the wave number varies with frequency as ®/c, each
of the terms is on the order m*. This ®* dependence
leads to a contribution to the scattered power that
varies with frequency as o*, which is characteristic
of Rayleigh scattering. However, the modes also vary
with frequency and this gives an additional frequency

Figure 6 The cosy terms of the scattering matrix for the
mountain-root model as a function of frequency. The top panel
depicts the interaction of the fundamental Rayleigh mode to other
Rayleigh modes (indicated by the numbers), while the bottom
panel depicts the self-interaction of different Rayleigh modes
(indicated by the numbers).
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dependence. The low-frequency behaviour of the in-
teraction matrix is explained by this ®* dependence of
the interaction matrix. However, this is not the whole
story because the depth dependence of the modes as a
function of frequency also affects the strength of the
scattering. This can be seen in Fig. 6 of the interaction
matrix for the scattering of the fundamental mode to
itself (R < Ry). For frequencies higher than 0.33
Hz the R1 « Ry scattering decreases with frequency.
The physical reason for this is that for these high fre-
quencies the penetration depth of the modes becomes
so small that they do not penetrate deeply enough
to sample the mountain-root heterogeneity of Fig. 4.
This shows that in general the frequency dependence
of surface wave scattering can be complicated.

§6. Scattering Coefficients for Sur-
face Topography

Surface waves are very sensitive to perturbations of
the free surface. For the detection of surface defects
it is important to consider the effect of surface irreg-
ularities on surface waves (Steg and Klemens, 1974).
When the perturbation of the surface is much smaller
than a wavelength, expressions (40)—(43) can be used
to account for the perturbation of the free surface
(Snieder, 1986b). For this type of perturbation the
volumetric perturbations p™"), A} and u!!) vanish, and
the discontinuity of the density and Lamé parameters
at the surface is equal to the parameters in the sur-
face layer; [p?] = p9) because the density and Lamé
parameters vanish above the free surface.

In addition to these specific values for the pertur-
bation of the medium, we can exploit the fact that the
surface wave modes have special properties at the sur-
face that are associated with the fact that the tractions
vanish at that depth. It follows from (1) and (2) that
for Love waves the traction in the y direction is given
by 1, = b = udl1 /0z, so that at the free surface

e

57 (2=0)=0.

(44)
For Rayleigh waves the stress components Ty, and T,,
vanish at the surface. It follows from (5) and (6)
that Ty, = 73 = u(9r1/0z—kr2) and that —it,; = r4 =
(A+2u)dry [0z + kAry. At the free surface both T, and
T,, vanish so that

I (= 0) = kna(z=0),
0z
(45)
o —kA B
Tz(Z—O)— }\’+2“1‘1(Z—0).

Using these results one obtains the following ex-
pressions for the interaction matrix for surface wave

scattering by surface topography (Snieder, 1986b)
VEY = b {17100 cosy— kaky IS cos2y |, (46)

VRL=h {r‘flfp(o)wz siny — kokyrS1Y sin2\|}} , (47)

Vo =—-V{1, (48)
300 4 240
vov _p Loy 062 _p o)
RR {1’27’2[) GRvM 7\‘(O) +2,U(0)
xrclsr‘l’ +2(ar(15)(ar‘1’) [,u(o)]
+r‘1’r‘1’p(0>m2 cosy
- kgkvr‘fr‘{,u(o) cosZ\p} s (49)

where it is understood that all quantities are evaluated
at the surface.

The radiation pattern for scattering by a mountain
root and by surface topography for the fundamental
Love mode to itself (L1 < L1) is shown in Fig. 7. For
surface topography (dashed line) the radiation pattern
has nodes near £120° and is very small in the forward
direction. This can be understood from expression
(46). For unconverted Love wave scattering one can
use that ® = kc for the mode under consideration. In
the second term of (46) one can use that u(¥ = p(©2,
with B the shear velocity. Since the phase velocity of
the fundamental mode is not too different from the
shear velocity at the surface one obtains

Vlli = bl pOk? {cz cos\y— B cos 2\y}

~ bl p Y w? {cosy—cos2y} . (50)

Figure 7 Radiation pattern for Ly < L4 scattering at a period of
20 s for scattering by surface topography of 1 km height (dashed
line), by the mountain-root model (thin solid line) and by the
combination of both (thick solid line).
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The associated radiation pattern has nodes at 0°
and 120°, which is confirmed by Fig. 7. A similar
analysis can be applied to the interaction between fun-
damental Love wave and the fundamental Rayleigh
wave (Snieder, 1986b):

Vll{lL ~ hr111p(0)(1)2 {sin\u—sianf} . (51)

The corresponding radiation pattern has nodes at 0°,
180°, and approximately £60°.

§7. Relation between Scattering Co-
efficients and Phase Velocity
Perturbation

In this section the relation between the interaction
matrix and the phase velocity perturbation of surface
waves is discussed. The linearised phase velocit per-
turbation of surface waves can be expressed in the
perturbation of the medium using Rayleigh’s principle
(Snieder and Trampert, 1999). As shown in expres-
sion (7.71) of Aki and Richards (1980) the first-order
perturbation of the phase velocity of surface waves is
given by

2
N (A C O I
<7) ) 262 5 OB de '

(52)

Using expressions (7.66) and (7.70) of Aki and
Richards (1980), the integral in the denominator can
be written as 2cU Iy, where I; is defined in (9) of this
chapter. This means that for Love waves

5c\ b 1 % ol \?
S 2B+ = g
<c> 4Ie2cU11J0 { 1+<az> }F ?

o
—L) o?BpMdz.

(53)

Using the normalisation condition (10) of the modes
and expression (40) for the interaction between Love
waves for the special case of unconverted waves
(0 =v) and forward scattering (y = 0) one finds that
these quantities are related by

L
(ﬁ) - 2 Vily=0).

c

(54)

In this expression VLU is the coefficient for forward
scattering of unconverted modes.

For Rayleigh waves a similar result can be derived.
As shown in expression (7.78) of Aki and Richards
(1980) the first-order phase velocity perturbation is
given by!

oc R 1 @ 872 2 (1)
<7) T 42U <J0 {k”"<87>} Mz

81’1 2 1
+ <kr2— <2Tz>> uVdz
_Jo mz{r%w%}p(l)dz) ,  (55)

where the integral I is defined in (16). Comparing
this with the interaction coefficients for Rayleigh—
Rayleigh wave scattering in expression (43) for the
special case of forward scattering and unconverted
waves one finds with the normalisation condition (10)
that for Rayleigh waves

Sc\R 2
(f) == 2V =0),

where the interaction matrix is for unconverted mode
interactions for forward scattering.

This result and (54) imply that for both Love and
Rayleigh waves there is a direct relation between
the phase velocity perturbation and the interaction
matrix for forward scattering of unconverted modes:

(56)

<§> =— k% V(forward, unconverted). (57)

C

An alternative derivation of this general relation is
given in Snieder (1986b). It is not a coincidence that
the phase velocity perturbation and the scattering co-
efficients for forward scattering of unconverted waves
are closely related. When a propagating wave front
travels through a perturbed medium, the prime ef-
fect of the perturbation is a change in the propaga-
tion velocity of the wave front, which is by definition
described as a change in the velocity. On the other
hand, the interaction coefficients for forward scatter-
ing also account for the change in the transmission
properties of a wave field. For this reason these quan-
tities are closely related. This argument suggests that
the relation between the velocity perturbation and the
forward scattering coefficient of unconverted waves
is not a peculiarity of surface waves. In fact, for elas-
tic body waves the scattering coefficient for forward
scattering of unconverted waves is determined by the
velocity perturbation while the scattering coefficient
for backward-scattered unconverted waves is deter-
mined by the perturbation in the impedance (Wu and
Aki, 1985). This has important consequences for the
analysis of seismic reflection data (Tarantola, 1986).

It follows from the expressions (40)—(43) that in
the Born approximation the elements of the interac-
tion matrix are real. With (57) this implies that the
phase velocity perturbation is real as well. A real
phase velocity perturbation cannot account for the at-
tenuation of surface waves by scattering losses. This
points to an important limitation of the Born approx-
imation. In this approximation energy is not con-
served; hence it should be used with great caution
when it is used to account for the decay in the am-
plitude of a transmitted wave by scattering losses.
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Again, this is not a peculiarity for surface waves, but
due to the fact that the Born approximation in general
is a first-order approximation, whereas the leading-
order change in the energy is of second order. A
proper treatment of surface wave attenuation due to
scattering losses therefore needs to include multiple
scattering effects. For 2D surface wave scattering this
can be described by coupled-power equations (Ken-
nett, 1990; Park and Odom, 1999).

§8. Ray Theory for Surface Waves

Up to this point no limitation has been imposed on
the length scale of the variations of the medium. For
a number of practical applications it is of interest to
consider the case where the horizontal variation of
the perturbation of the medium occurs on a length
scale that is much larger than a wavelength. For
such a slowly varying waveguide one can use the
following small parameter as the basis of a perturba-
tion expansion:

wavelength
€= - —— <1
horizontal scale length of structural variation

(58)

For other types of waves such as electromagnetic
waves (Kline and Kay, 1965) or elastic body waves

(éerven& and Hron, 1980), it is known that in this ap-
proximation the wave propagation is described well
by geometric-ray theory where energy travels along
rays with a speed that is determined by the eikonal
equation and an amplitude that is governed by the
transport equation.

A similar result can be derived for elastic sur-
face waves. However, the underlying theory is very
general. Bretherton (1968) derived the propaga-
tion of waves in smoothly varying waveguides for
a large class of guided waves. For elastic surface
waves the theory has been formulated by Wood-
house (1974), Babich et al. (1976) and by Yomogida
(1987). The theory outlined here is also used in
ocean acoustics (Brekhovskikh and Lysanov, 1982),
where it is known under the name adiabatic mode
theory.

Because the algebraic complexity of the theory
for elastic waves in slowly varying waveguides hides
the physical ideas, the theory is presented here for a
simple scalar analogue that contains the essential ele-
ments. We consider a layer with thickness / that ex-
tends from the bottom at z = 0 to an upper bound-
ary that varies with position z=h(x,y); see Fig. 8
for the geometry of this problem. We assume that
within the layer scalar waves propagate that satisfy
the Helmholtz equation with a constant velocity v:

2

(0
Vius —u=0.

= (59)

Figure 8 Geometry of the structure used in the analysis of local
modes.

z=h(x,y)

- =-=--Jz=0

For simplicity it is assumed that the wave field
vanishes at the top and the bottom of the layer

u(x,y,z=0)=u(x,y,z=h(x,y)) =0. (60)

A key concept in the theory is the use of local
modes, which are defined at each horizontal location
(x,y) as the modes that the system would have if the
medium would be laterally homogeneous with the
properties of the medium at that particular location
(x,y). For the model used here the local modes can
be found in closed form; mode number # is given by

2 sin( nnz >
h(x,y) " \h(x,y) )
Each local mode satisfies the boundary conditions

(60). Note that the local modes (61) satisfy the or-
thogonality relation

un(xa)’,l)= (61)

h(x,y)
j %, V> 2tk (%, Y, 2) A2 = By . (62)

0

when the mode (61) is inserted in the Helmholtz equa-
tion (59) the local wave number of the mode follows:
byt = @? [v* - (nn/h)z. The associated local phase ve-
locity ¢,(x,y) of mode 7 is given by

v

cn(x,y) = (63)

nmny

oN1/2°
<1_ <wb(x,y)> >

The concepts of local modes and the local phase ve-
locity are crucial. In general the modes are coupled by
the heterogeneity, but the crux of the theory is that for
smoothly varying perturbations (€ <« 1), this coupling
vanishes and the modes propagate independently with
the local phase velocity.

In order to verify this statement we consider the
wave field as a sum of propagating modes where the
modes are defined to be the local modes of the system
at each location. The coefficients that multiply each
mode have a phase @,(x,y) and an amplitude A, (x,y)
that are at this point unknown functions of the hori-
zontal coordinates x and y:

u(x,y,2) = 3, Anlx, Y)Yy, (x,y,2) . (64)
n
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Since each mode satisfies the boundary conditions
(60), the solution (64) satisfies these boundary con-
ditions as well. Inserting the solution (64) in
the Helmholtz equation (59), using that 0%u, /02> =
- (nn/h)2 uy = (kg — o Jv* ) uy = (0 /2 — 0% /0*) uy,
gives after some rearrangement

2
(D .
Z {VZH(Anun) - Ay |VH(Pn|2 Up + CTAnun }EI(P"

n n

(65)
+i2{2VH(pn VH(Anttn) + Ay VE Oy 1ty }ei% -0.
n

In this section Vg denotes the gradient with respect
to the horizontal coordinates x and y.

Up to this point no approximation has been made.
Now we use that the amplitude of the modes and the
local modes themselves vary slowly on a scale of a
wavelength, which is formally incorporated by set-
ting
u" = u" (ex, ey, 2),

Ap = Ap(ex, ey, 2), (66)

with the perturbation parameter € defined in (58). Us-
ing this in (65) gives

2
0) .
Z {SZV%[(Anun) - Ay |VH(Pn|2 Uy + ?Anun }elwn

n n

(67)
+i{2£2VH(p,, V(A nttn) + AnVH @y tty } G0 _ 0.

It will be shown later that the term V%I(pn is of order
€. Using this, the terms independent of € are

®? ,
2 {_lvH(Pn|2+C2}An”ne“P" =0. (68)
Equation (68) consists of a sum of contributions from
different modes. The orthogonality of the modes can
be used to split this expression into separate expres-
sions for the different modes. Multiplying (68) by u,,,
integrating over z and using the orthogonality relation
(62) of the modes gives

2 o

- Glx,y)

IVHOm(x,y) (69)

This expression does not contain a sum over
modes. This means that the phase of each mode
does not depend on other modes. Equation (69) is
nothing but the eikonal equation of geometric ray
theory (Kline and Kay, 1965; Aki and Richards, 1980;
Kravtsov, 1988). The wave velocity that appears in
the eikonal equation is the local phase velocity of the
mode under consideration. The rays that are associ-
ated with this mode are defined as the curves that are
everywhere perpendicular to the phase ¢,,(x,y). Us-
ing a standard derivation (Aki and Richards, 1980)
it follows that these rays satisfy the equation of

kinematic ray tracing:

d 1 dr 1
ds <cn(x,y) %) =V<Cn(x,)’)> .

Since the phases of different modes are decoupled, ev-
ery mode travels along its own ray. Using k, = ®/c,
the phase of mode # given by

([),,Z = J kndS,
rayn

(70)

(71)

where the integral is over the ray for that mode.

It follows from the eikonal equation (69) that
Vuo, depends weakly on x and y: Vyo, = Vgo,
(ex, ey), which means that V%I(pn is indeed of order
€. Note that when the variation in the properties of
the medium or in the amplitude is not smooth on a
scale of a wavelength, mode coupling occurs because
in that case € is not a small parameter. In that case
the term EZV%I(Anun) in (67) gives rise to mode cou-
pling because u,, and the horizontal gradient Viy(u,,)
of another mode are not orthogonal.

The analysis given here can be extended to more
complex system of modes (Bretherton, 1968; Wood-
house, 1974; Babich et al., 1976; Yomogida, 1987).
A more detailed analysis reveals not only that the
phase is described by the eikonal equation (69) but
that the amplitude satisfies the transport equation that
is characteristic for geometric-ray theory. The cru-
cial elements in the analysis are that (i) there are lo-
cal modes with an appropriate orthogonality relation,
(ii) the coordinate system can be divided into coordi-
nates that carry the guided waves and transverse coor-
dinates in which the medium varies slowly and (iii) the
perturbation procedure outlined here can be applied.
The end result is that for media that vary smoothly in
the horizontal direction:

e The modes decouple, during the propagation
each mode is given by the local mode, which is de-
fined as the mode in a system that is translationally
invariant and which has the properties of the model
at that location.

e Each mode propagates with a local phase veloc-
ity that is the phase velocity of the local mode. The
phase of the propagating mode is accounted for by
the eikonal equation (69).

e The energy associated with each mode travels
along rays defined by the local phase velocity. The
amplitude of each mode contribution is governed by
the transport equation of geometric-ray theory.

It is of interest to consider a medium that con-
sists of a reference medium with wave number k;
for mode # that is weakly perturbed. The wave num-
ber of mode # is then perturbed with a local change
Sk, (x,y). Using Fermat’s principle (Aldridge, 1994)
and ignoring a perturbation of the amplitude, the
wave field is given by
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u= ZAgzo)exp <lj (kLO) +6kn>ds). (72)
This is called in surface wave propagation the WKB]
approximation (seismologists like to add the name
of Jeffreys (1924) to the names of Wentzel, Krames
and Brillouin). Note that this approximation is not
quite the same as the WKB approximation (Bender
and Orszag, 1978) because the perturbation of the
amplitude is not accounted for and because only the
first-order change of the wave number is taken into
account. The WKBJ approximation (72) forms the
basis of the partitioned waveform inversion of Nolet
(1990), which is an important technique in the large-
scale inversion of surface wave data in seismology.

In the WKBJ approximation (72) the modes do
not interact with other modes. However, the wave
field depends nonlinearly on the perturbation of the
medium because this perturbation enters the term
Ok, in the exponent. This means that the WKB]
approximation accounts for self-interactions of the
mode under consideration to any order. This is shown
diagrammatically in Fig. 3.

§9. Role of Mode Coupling

The theory of scattering of surface waves does not
only play a role in the analysis of surface wave data;
if the set of surface wave modes is complete, the com-
plete response of the system can be given as a sum
over surface wave modes. For a finite body, such
as the Earth, one can describe the full response ex-
actly as a sum over the normal modes of the Earth
(Dahlen and Tromp, 1998). For an infinite body
such as a layered half-space, the surface wave modes
unfortunately do not form a complete set. As an ex-
ample consider a homogeneous half-space, this sys-
tem carries no Love modes and only one Rayleigh
mode (Aki and Richards, 1980). This single Rayleigh
mode cannot account for the full response of the half-
space, which is due to the fact that in an infinite sys-
tem, waves can radiate to infinity, whereas the surface
wave modes are trapped near the surface. This ra-
diation is accounted for by propagating body waves
that are associated with the continuous part of the
spectrum. There is in fact a choice whether one ac-
counts for these wave phenomena by a summation
of modes or by a integration over rays (Tain-Fu and
Er-Chang, 1982; Felsen, 1984; Haddon, 1986).
However, not all body wave phases radiate en-
ergy to infinity. In seismological applications body
waves are refracted towards the Earth’s surface be-
cause of the strong increase of the velocity with depth
or because they are reflected or refracted upwards by
discontinuities. These body waves can be described
well by a superposition of surface wave modes (Nolet

et al., 1989; Marquering and Snieder, 1995). As an
alternative, one can approximate an infinite system by
a finite system by placing a reflector at a depth that is
so great that the reflected waves arrive too late to be of
importance; this approximation is called the locked-
mode approximation (Harvey, 1981). The key point
is that when a certain wave can be accounted for by a
superposition of surface wave modes, then it is possi-
ble to use the theory of this chapter to account for the
perturbation of the wave field by the perturbation of
the medium.

The theory of the previous section seems to im-
ply that mode coupling does not play an important
role. However, mode coupling is crucial to account
for some physical phenomena. This is illustrated with
an example shown in Fig. 9.1In a realistic Earth model
a wave field is excited in the upper left-hand corner.
A ray (indicated with the curved line) dives into the
Earth and has a turning point near the lower-right
corner. Finally the ray propagates to the surface, but
since this part of the ray is identical to the down-going
part it is not shown. In many applications it is impor-
tant to know the sensitivity of the wave field to per-
turbations of the medium. In a linear approximation
this is described by a sensitivity function

Su = J j K (x, 2) 8B(x, 2)dxdz, (73)
where for simplicity only the shear velocity B is per-
turbed. When the response of the system can be writ-
ten by a superposition of surface wave modes, then
the Born approximation (32) can be used to compute
the sensitivity kernel K(x,z). This kernel, based on
the Born approximation of surface waves in two di-
mensions (Marquering and Snieder, 1995), is shown
in the left panel of Fig. 9. In the sum over modes only
the modes that have a phase slowness (defined as the
reciprocal of the phase velocity) that is close to the
slowness of the body wave that propagates along the

Figure 9 Spatial distribution of the sensitivity kernel K(x, z)
to the shear velocity perturbation computed by summation of
surface wave modes when (a) all the modes are coupled (all
c,V), (b) coupling to other modes is ignored (¢ = v only) and (c)
only coupling to other modes is taken into account (¢ #v). The
source is in the upper left corner. An S wave propagates along
the path indicated by the curved line. Only the modes with a
phase velocity close to the horizontal velocity of the S wave are
used in the computation.
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ray were taken into account. The resulting sensitivity
function is centred around the ray. The finite width
of the sensitivity function is associated with the finite
frequency of the body wave, which results in a Fresnel
zone with a finite width (Kravtsov, 1998).

In the Born approximation the perturbation of
the wave field consists of a double sum over modes.
Suppose the mode conversion between surface wave
modes is switched off; that is, the contributions ¢ # v
are removed from the sum (32). In that case the
sensitivity function is given by the middle panel of
Fig. 9. The sensitivity does not depend on the hori-
zontal coordinates, and the resulting sensitivity func-
tion has the unphysical property that it is not centred
on the geometric ray. The mathematical reason for
this artefact is not difficult to find. Let us assume that
the wave propagates over a horizontal distance L and
that we consider the contribution of a heterogeneity
at an intermediate location x. In the Born approxi-
mation (32) the incoming mode G gives a contribution
expiksx and the outgoing mode v gives a contribution
exp iky(L —x). This means that as far as the depen-
dence on the horizontal coordinates is concerned, the
contribution of the mode pair (o, V) to the sensitivity
function is given by

K(x,z2) = Z( - okvL gilko—ky)x

o,V

(74)

When only the modes 6 = v are taken into account
in this sum, the sensitivity kernel does not depend
on the horizontal coordinate x. It is the interference
term exp (i (ks —ky)x) that gives the horizontal de-
pendence of the sensitivity function that is needed to
localise the sensitivity function near the ray. The cou-
pling between different modes is crucial for achiev-
ing this. In fact, the right panel of Fig. 9 shows the
contribution to the sensitivity function by the mode
pairs that are different (6 #v). The sum of the right
and middle panels gives the left panel. It can be seen
that the sum of the intramode coupling (o = v) and
the intermode coupling (o # v) leads to a cancella-
tion of the sensitivity function far from the geomet-
ric ray. The description of the perturbation of body
waves by a sum over coupled modes has found im-
portant applications in seismology (Li and Romanow-
icz, 1995; Marquering et al., 1996, 1999; Zhao and
Jordan, 1998).

§10. Recent Developments

Although much progress has been made in the devel-
opment of surface wave scattering theory, two main
problems can be defined. The first is the coupling of
surface waves to body waves; the second is the multi-
ple scattering of surface waves. As argued in the pre-
vious section, surface waves can be coupled to body
waves that radiate energy to infinity (or transport

energy from infinity). Expression (43) of §6 of Chap-
ter 1.7.1 gives the general Born approximation for
elastic waves. The main problem for incorporating
these body waves in the theory is not the coupling of
the body waves and the surface waves, which is de-

scribed in the terms proportional to p!!) and Ciz]k)lj of
Eq. (43) of Chapter 1.7.1. The problem lies in finding
an adequate description of the Green’s tensors G in
that expression. For surface waves, the Green’s tensor
(18) can be used. For an arbitrary model the modes
can be computed numerically and the surface wave
Green’s tensor is then known. For body waves, there
is no expression for the Green’s tensor in closed form
for an arbitrary layered medium.

One approach that has been taken is to assume
that the body waves propagate through a homoge-
neous half-space. In that case the body wave Green’s
tensor is known in closed form. This was used by
Hudson (1967) in his description of the coupling of
body waves and surface waves by the topography on
a homogeneous half-space. Similarly, Odom (1986)
used a layer with variable thickness over a homoge-
neous half-space to account for the interaction be-
tween surface waves and body waves by the topogra-
phy of internal interfaces. A different approach was
taken by Maupin (1996), who introduced the concept
of radiation modes in an inhomogeneous half-space.
The interaction of these radiation modes with the sur-
face wave modes accounts for the interaction between
body waves and surface waves.

In general, multiple scattering problems are diffi-
cult to solve and closed form solutions are known
only for idealised situations. However, a number
of techniques have been formulated that allow for
a relatively efficient calculation of multiple-scattered
surface waves. One approach consists in applying in-
variant embedding to surface wave scattering. Sup-
pose one has a system where the scatterers are located
in a finite region of space. The idea of invariant em-
bedding is that one does not account for the scat-
tering properties of the whole medium. Instead one
describes how the scattering properties change when
the scattering region is enlarged. This technique can
account in a very efficient way for a variety of scat-
tering and diffusion problems (Bellmann and Kal-
aba, 1960) as well as for the propagation of elas-
tic body waves through an inhomogeneous stack of
layers (Tromp and Snieder, 1989). Invariant embed-
ding is well suited to account for the multiple scatter-
ing of surface waves by horizontal variations in the
properties of the medium. This theory has been for-
mulated using a basis of fixed surface wave modes
(Kennett, 1984) or a basis of local surface wave modes
that depend only on the local structure of the medium
(Odom, 1986; Maupin, 1988).
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Another technique that has been used to ac-
count for the multiple scattering of surface waves is
the multiple-scattering theory of Waterman (1968),
where the full scattering properties of an isolated scat-
terer are computed. This approach has been applied
to scattering of surface waves by an isolated scatterer
by Bostock (1991). The technique of Waterman has
been extended by Bostock (1992) to a system of dis-
crete scatterers that scatter surface waves in a theory
that accounts for multiple scattering of surface waves
by a conglomerate of discrete scatterers. Using ap-
propriate modal expansions in a Cartesian geometry
(Kennett, 1998) or on a sphere (Friederich, 1999),
coupled equations for the modal coefficients can be
derived to account for multiple scattering of surface
waves in 3D. Multiple forward scattering can be han-
dled efficiently by integrating these coupled equations
recursively in the direction of the propagating wave
front ( Friederich et al., 1993; Friederich, 1999).
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Note

1. Expression (7.78) of Aki and Richards (1980) should contain
a term k? in the denominator.
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