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SUMMARY

The Green’s function that describes wave propagation between two receivers can be recon-
structed by cross-correlation provided that the receivers are surrounded by sources on a closed
surface. This technique is referred to as ‘interferometry’ in exploration seismology. The same
technique for Green’s function extraction can be applied to the solution of the diffusion equa-
tion if there are sources throughout in the volume. In practice, we have only a finite number of
active sources. The issues of the required source distribution is investigated, as is the feasibil-
ity of reconstructing the Green’s function of the diffusion equation using a limited number of
sources within a finite volume. We study these questions for homogeneous and heterogeneous
media for wave propagation and homogeneous media for diffusion using numerical simula-
tions. These simulations show that for the used model, the angular distribution of sources
is critical in wave problems in homogeneous media. In heterogeneous media, the position
and size of the heterogeneous area with respect to the sources determine the required source
distribution. For diffusion, the sensitivity to the sources decays from the midpoint between the
two receivers. The required width of the source distribution decreases with frequency, with the
result that the required source distribution for early- and late-time reconstruction is different.
The derived source distribution criterion for diffusion suggests that the cross-correlation-based
interferometry is difficult to apply in field condition.
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1 INTRODUCTION

The term interferometry generally refers to the study of the in-
terference of two signals as a measure of the difference between
them (Curtis et al. 2006). The term also refers to the technique
used in seismology to extract the response which describes the
wave propagating between two receivers, as if one of the receivers
were an active source (Lobkis & Weaver 2001; Derode et al. 2003;
Snieder 2004, 2007; Wapenaar 2004; Weaver & Lobkis 2004; Wape-
naar et al. 2005). This technique has been applied in ultrasound
(Weaver & Lobkis 2001; Malcolm et al. 2004; Larose et al. 2006;
van Wijk 2006), crustal seismology (Campillo & Paul 2003; Roux
et al. 2005; Sabra et al. 2005a,b; Shapiro et al. 2005), exploration
seismology (Bakulin & Calvert 2004; Calvert et al. 2004; Bakulin &
Calvert 2006; Mehta & Snieder 2008), helioseismology (Rickett &
Claerbout 1999), structural engineering (Snieder & Safak 2006;
Snieder et al. 2006) and numerical modelling (van Manen et al.
2005). Seismic interferometry was first applied to wave propaga-
tion in non-attenuating and time-reversal invariant media (Lobkis
& Weaver 2001; Derode et al. 2003; Snieder 2004; Wapenaar 2004;
Weaver & Lobkis 2004). Later, it was shown that interferometry
can not only be applied to wavefields, but also to diffusive fields
(Snieder 2006b). Recent proofs have been given showing that the
Green’s function can be extracted for a wide class of linear sys-
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tems including those that are attenuating, as well as those that may
not be invariant for time-reversal because of flow (Godin 2006;
Wapenaar 2006b; Wapenaar et al. 2006; Snieder et al. 2007; Weaver
2008).

Seismic interferometry in the exploration geophysics community
is also referred to as the ‘virtual source method’ (Bakulin & Calvert
2004, 2006; Calvert et al. 2004), and has been applied to imaging
(Mehta et al. 2007; Vasconcelos et al. 2007). The sources used in
seismic interferometry can be either controlled shots (Bakulin &
Calvert 2004, 2006; Calvert et al. 2004; Schuster et al. 2004; van
Wijk 2006; Mehta et al. 2007) or ambient noise (Roux et al. 2005;
Shapiro et al. 2005; Weaver 2005; Curtis et al. 2006; Godin 2006;
Stehly et al. 2006; Miyazawa et al. 2008).

Although the extraction of the Green’s function is usually based
on cross-correlation, deconvolution can also be used (Snieder &
Safak 2006; Vasconcelos & Snieder 2008a,b). The term ‘interfer-
ometry’ in this paper refers to cross-correlation based interferom-
etry. Interferometry applied to acoustic waves can be expressed in
the frequency domain as (Snieder et al. 2007)

1
G(ra, rg, w) — G*(ra, rp, w) = 7{ —{G*(ra, r, 0)VG(rg, r, w)
s P

—[VG*(ra, r, ©)G(rg, )i - dS,
)
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Figure 1. An arbitrary surface element dS and its projection dS’.

where G(ra, rs, w) is the pressure Green’s function that describes
wave propagation from rg to ra, respectively, * indicates complex
conjugation, S is the surface where sources are located, 1 is the unit
vector perpendicular to the surface dS, w the angular frequency,
p the density and ¢ the wave velocity. When the waves satisfy a
radiation boundary condition on the surface S, VG(ra, r, w) =~
i(w/c)G(ra, r, )T, and eq. (1) becomes

G(rp, 1R, ®) — G*(ra, Ip, ®)
1
~ 2ia)y§ —G(ry, r,w)G*(rg, r, w)(r-n)dS. 2)
s pC

Thus, the integration over all source positions of the cross-
correlation of G(ra, r, w) and G(rg, r, ) yields the superposition of
the causal Green’s function G(ra, rg, @) and time-reversed Green’s
function G*(rg, r, ). Using the geometric relationship defined in
Fig. 1, eq. (2) becomes

G(rp, g, ®) — G*(ra, rp, ®)
1
~ 2@% —G(rp, v, )G*(rp, ¥, 0)dS’, 3)
r pC

in which dS” = dS cos ¥ is the projection of the surface element dS
on a circle with radius ». A similar mathematical expression exists
for the extraction of the Green’s function for diffusion. The main
difference is that the surface integral becomes a volume integral
(Snieder 2006b)

G(ra, rg, ) — G*(ra, r3, w) = 2ia)/ G(ra, r,w)G*(rg, r, w)dV,
v
“)

in which V is the volume containing the sources. The meaning of
other terms are the same as those in eq. (3).

Eqs (3) and (4) show that the main difference between wave equa-
tion and diffusion equation interferometry is the required source
distribution. For waves, eq. (3) shows that if two receivers are sur-
rounded by active sources on a closed surface, the response that
describes waves propagating between two receivers can be recon-
structed as if one of the receivers were an active source. For diffu-
sion, eq. (4) states that sources are required to be everywhere in the
volume (Snieder 2006b). In practice, there are only a finite number
of sources. Therefore, we can never have a closed source surface for
waves or sources throughout the volume for diffusion. This raises
the question: what is the required source density and how should
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we locate these sources in order to reconstruct the Green’s function
accurately?

The importance of cross-correlation-based interferometry for
waves has been addressed by numerous authors. Cross-correlation-
based interferometry for diffusion is still at the theory stage. In
exploration geophysics, there are at least two important diffusive
fields: pore pressure and low-frequency inductive electromagnetic
fields. From the pore pressure we can infer the fluid conductivity be-
tween wells (Bourdet 2002; Kutasov ef al. 2008). Electromagnetic
fields carry information about the resistivity of the pore fluid and
may thus help distinguish between hydrocarbons and water. For off-
shore oil exploration, controlled-source electromagnetic (CSEM)
is an important technique used to detect hydrocarbons (Hoversten
et al. 2006; Constable & Srnka 2007; Darnet et al. 2007; Scholl &
Edwards 2007).

2 MODEL AND RESULTS

We study the required source distribution in both homogeneous and
heterogeneous media for waves, and a homogeneous model for dif-
fusion, with a finite number of sources using numerical experiments.
In the next section, we discuss these simulations, providing expla-
nations of the observations. We first show numerical experiments
demonstrating the extraction of wave equation Green’s function.

2.1 Waves in homogeneous media

For simplicity we first show numerical tests using a 2-D model
with a velocity of 1 km s~!. To define the source position, we use
two parameters: the source angle and source radius as shown in
Fig. 2. A and B are two receivers with a separation b. The vectors
connecting the source to the two receivers are denoted by rsa and
rsp, respectively. The source function we use for the examples in
the wave part for homogeneous media is a Ricker wavelet with a
central frequency of 0.5 Hz. The source amplitude is the same for
all sources in all the experiments in this paper.

2.1.1 Experiment 1: uniformly distributed source angle

We first study the effect of the source angle distribution. Sources are
uniformly distributed on a circle with a radius of 40 km. The distance
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"

Figure 2. Definition of the source radius 7 and source angle 6 that define a
source position in 2-D.
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Figure 3. Reconstructed responses (solid lines) for uniform angle distribu-
tion with different number of source N (the dashed line in the bottom panel
is the exact response between the two receivers).

between the two receivers is 6 km. Fig. 3 shows the reconstructed
response between the two receivers for a homogeneous distribution
of sources with increasing number of sources. The response has
two parts, the causal and anticausal parts as represented by eq. (3).
The causal part of the signal represents the signal propagating from
receiver A to B and the anticausal part is the time-reversal of this,
that is, the signal propagating from receiver B to A. If we replace
one of the receivers with an active source, the received signal arrives
after a propagation time of 6 s. To make the shape of the received
signal the same as that of the reconstructed signal, we correlate the
received signal with the source-time function. This new signal is
represented by the dashed line in the bottom panel and is virtually
indistinguishable from the causal part of the reconstructed response
with 50 sources (the amplitudes of both reconstructed and active
signals are normalized). The main point in Fig. 3 is that the os-
cillations observed in the middle part of the reconstructed signal
decreases with increasing number of sources N. Hence, a minimum
source density needs to be exceeded for extracting the response suc-
cessfully. This required source density is derived in the discussion
part of this section.

We quantify the spurious fluctuations that arrive between the
anticausal and the causal response by defining the fluctuation energy

N

1 12
Em = Nim ;A[l] ) (5)

in which N, is the number of the discrete sample points in the middle
part of the signal (i.e. the part between the two main pulses), 4[7]
is the amplitude of the ith sample point in the middle part. Fig. 4
shows this fluctuation energy decay as a function of number of
sources N. Weaver & Lobkis (2005) showed that these fluctuations
decay as N~! if the sources are randomly distributed. Fig. 4 shows
that when the sources are uniformly distributed in angle, the decay
rate is much faster than N~!'. The reason of this is shown in the
discussion part of the wave problem.

Note that the sources are always distributed starting from angle
zero (the line crossing two receivers) in the example. By doing
this, there is always a source located at angle zero (one stationary
point). If the starting point of angle distribution is arbitrary, the
energy fluctuation behaviour with a small number of sources is

0.1
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L
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Number of sources N
Figure 4. Fluctuation energy decay as a function of number of sources N

for the uniform angular distribution of sources. The dashed and solid line
represent two different power laws in the log—log coordinate system.

Figure 5. Stationary phase zone (denoted by the dashed curves) in a homo-
geneous medium.

not exactly the same as the one shown in Fig. 4. This difference
in the energy fluctuation is caused by different sampling of the
stationary phase zone by sources. The stationary phase zones for
the configuration in this example are shown by the dashed curves in
Fig. 5. The sources that are located in the stationary phase zones give
the most contribution to the physical arrivals in the Green’s function
reconstruction (Snieder 2004). For small number of sources, the
sampling of the stationary phase zone is sensitive to where the first
source is located. Therefore, the decaying behaviour of the energy
fluctuation E,, varies depending on where the first source is located
when the number of sources is small (<50 in this case). With a
large number of sources, it does not matter anymore where the first
source is located because the stationary phase zone can always be
sampled sufficiently.

2.1.2 Experiment 2: randomly distributed source angle

In this experiment, the source angles are randomly distributed with
constant source radius. Fig. 6 shows the reconstructed response
as a function of the number of sources N for a random angular
distribution of sources along the circle. Compared with Fig. 3, the
random distribution gives a much poorer reconstruction than does
the uniform distribution with the same number of sources.
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Figure 6. Reconstructed responses (solid lines) for random angular distri-
bution with different number of sources N (the dashed line in the bottom
panel is the exact response between the two receivers).
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Figure 7. Fluctuation energy decay as a function of number of sources N
for the random angular distribution of sources. The solid line represents a
N~! power-law decay in the log—log coordinate system.

Fig. 7 shows this fluctuation energy decay, as defined in eq. (5), as
a function of N for randomly distributed sources. The fluctuation de-
cay behaviour is consistent with the prediction of Weaver & Lobkis
(2005): the decay is proportional to N~!. In contrast to the uniform
distribution, it does not matter where the first source is located for
the random distribution. In this experiment, the source radius re-
mains much larger than the distance between the two receivers. If
the radius is very small (for example, 6 km), the fluctuation £,, de-
cays more slowly (N'/?) because the radiation boundary condition
that reduces eqs (1) to (2) is inaccurate. Experiment 2 suggests that
not only the number of sources is important, but also their angular
distribution. The difference of this decay rate of uniformly and ran-
domly distributed sources is explained in the discussion part of this
section.
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2.1.3 Experiment 3: smooth source angle distribution

From experiments 1 and 2, we might conclude that the source angle
needs to be uniformly distributed with angle to apply this technique
successfully with a small number of sources. Fig. 8 shows that
the angles not necessary have to be uniformly distributed but may
be smoothly varying. Next we show examples with non-uniform but
smoothly varying angle distribution where the response is accurately
reconstructed. In the example shown in Fig. 8, the sources are
uniformly distributed on a circle with the centre of the two receivers
moved away from the centre of the circle [from (0,0) to (—5,6)]. This
makes the source angle distribution no longer uniform, but it’s still
smooth. The numerical simulation shows accurate reconstruction
of the response from 50 sources. The amplitude differences of the
causal and anti-causal parts are due to the different energies from
the two stationary-phase zones on the left- and right-hand side of the
receivers as illustrated by the two dashed curves in the upper panel of
Fig. 8. Only sources within these two stationary zones contribute to
the extraction of the direct wave (Snieder 2004; Roux et al. 2005). In
this case, the stationary zone on the right-hand side corresponds to
the causal pulse and the left-hand side stationary zone corresponds
to the anticausal pulse. In the right-hand side stationary zone there
are more sources than on the left-hand side. This explains why
the causal pulse is stronger than the anticausal one. Note that the
distance of the sources to the midpoint of the receiver locations is
not constant in this experiment. In the example shown in Fig. 9,
the sources are uniformly distributed on the sides of a triangle. The
source angle is not uniform but is smoothly varying. The lower
panel in Fig. 9 shows that for 72 sources, the reconstruction of
the response is still accurate. In this case, the required number of
sources is slightly larger than that for the uniform distribution but
much smaller than for the accurate reconstruction of the Green'’s
function with the random source distribution. The value of this
number depends on the smoothness of the angular variation. Similar
to an acquisition geometry with sources along a line (Bakulin &
Calvert 2006; Mehta et al. 2007), the source radius now varies with
the source position. Note that in this example the source radii are
much larger than the distance between the two receivers. Thus, the
influence of varying source radii is negligible. This is shown in
detail in the next experiment.
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Figure 8. Reconstructed response (solid line in the lower panel, dashed
line is the exact response) for a smoothly varying source angle distribution
(upper panel).
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Figure 9. Reconstructed response (solid line in the lower panel, dashed line
is the exact response) for source spaced equidistantly on a triangle (upper
panel).

2.1.4 Experiment 4: varying source radius

In the previous three experiments we learned how the angular distri-
bution influences the response extraction. The uniform angular dis-
tribution has a faster decay rate of the fluctuation energy E,, (N~'%)
than for the random angular distribution (N~'). The number of
sources required for a smoothly varying angle distribution is be-
tween these two extreme cases and it depends on how smooth the
angular distribution is. There is, however, still another parameter:
the radius r as defined in Fig. 2. In this example we compare the
result from two distributions with the same angular distribution but
different source radii. The first one is the example we showed in
experiment 1, when 50 sources are uniformly distributed on a circle
(stars in the upper panel of Fig. 10). The second one is for sources
with the same angle distribution but the radius is randomly vary-
ing in a range in which all radii are much larger than the distance
between the two receivers (dots in the upper panel of Fig. 10. The
reconstructed responses in Fig. 10 suggest that varying the source
radii does not degrade the accuracy of the Green’s function extrac-
tion. This is only true when source radii are much larger than the
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Figure 10. Two source distributions with the same angular distribution
but different radii (top panel) and the reconstructed responses: solid (same
radius), dashed line (different radius).

distance between the two receivers. The reason for this is explained
in the discussion part.

2.2 Waves in heterogeneous media

It is commonly believed that the source distribution is less important
for the heterogeneous medium than for a homogeneous medium
because the heterogeneity scatters the wave fields into different
directions. In an extreme case, one might think that one source
is sufficient to reconstruct the Green’s function if the medium is
sufficiently complicated. In this study, we find that these beliefs are
not correct and more sources are required to reconstruct the full
Green’s function for a strongly heterogeneous medium than for an
homogeneous medium.

The heterogeneous medium in this section consists of 200
isotropic point scatterers in a 80 m x 80 m square around the
two receivers. The source radius is 90 m and the receivers are
20 m apart. The wavefield was modelled using the theory of
Groenenboom & Snieder (1995), which takes all multiple scatter-
ing events into account. The waveform is a Gaussian wavelet with
600 Hz the centre frequency and bandwidth 400 Hz. The phase
velocity in the background medium is 1500 ms™".

Fig. 11 shows the reconstructed responses between the two
receivers using full illumination (sources uniformly distributed
around the medium) and one single source. The red dashed curve
is the signal received by one receiver when the other one acts as
a real source. The black solid curve is the signal reconstructed by
interferometry. Panel (a) shows the reconstruction when 300 uni-
formly distributed sources are used while panel (c) is the case when
a single source is used. Panels (b) and (d) are the enlarged ver-
sion of panels (a) and (c), respectively. The correlation coefficient
between the exact and the causal part of the extracted signal is
0.97 for the 300 uniformly distributed sources while it is —0.03
for the single source. In this scattering medium, the wavefield from
a single source is equipartitioned, see the discussion part. Perhaps
surprisingly, the reconstructed signal from a single source does not
represent the Green’s function between the two receivers at all. We
also find that more sources are needed to reconstruct the Green’s
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Figure 11. The Green’s function reconstruction in a strongly scattering
medium. The red dashed curve is the active experiment and the black solid
curve is the reconstruction. Panel (a) shows the reconstruction when 300
uniformly distributed sources are used while panel (c) is the case when a
single source is used. Panels (b) and (d) are the enlarged version of panels
(a) and (c), respectively.
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function accurately for this heterogeneous medium (300 sources)
than for a homogeneous medium (140 sources) with the same ve-
locity, source wavelet and source distribution. Derode ef al. (2003)
reached a similar observation based on their finite difference simu-
lations. An explanation and required source density in an strongly
scattering medium is given in the discussion section.

2.3 Diffusion

Eq. (4) shows that we need sources in the entire volume to extract
the diffusion Green’s function. To simplify the problem, we first
analyse a 1-D medium with a constant diffusion coefficient and
then extend our investigations to 3-D.

2.3.1 Experiment 1: diffusion Green's function recovery in 1-D

We choose the origin of the coordinate system to be the mid-point
between the two receivers. The separation of the two receivers is
2 km. The diffusion coefficient used in this model is D = 1 km? s™".
We distribute sources uniformly on the 1-D line with the centre of
the distribution at origin. Fig. 12 shows the geometry of 1-D source
distribution. We define two parameters to characterize this source
distribution. As shown in Fig. 12, W is the width of the distribution
and p, = N/W; is the source density. Next we test three different
distributions. The first is a distribution with narrow width W, and
high source density p, (Fig. 13). The second is a distribution with the
same number of sources, but with a wide width W, and low density
(Fig. 14). The third distribution has more sources and has wide
W, and high density p, (Fig. 15). Figs 13—15 show that different

| H?z : width of the distribution
| |
. YA ‘# A *
A B
— ‘Nr
Ps = 7

5

Figure 12. 1-D source distribution and the definitions of geometric
parameters.
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Figure 13. 1-D source distribution (upper panel) with Ws = 14 km, p; =
1.143 km~! and the extracted Green’s function (lower panel).
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Figure 14. 1-D source distribution (upper panel) with Ws = 34 km, p, =
0.47km~! and the extracted Green’s function (lower panel).
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Figure 15. 1-D source distribution (upper panel) with Ws = 34 km, p; =
1.147km™! and the extracted Green’s function (lower panel).

source distributions are needed for the accurate reconstruction of
the early- and the late-time response. The early-time response is
defined as the response before the peak in the Green’s function of
the diffusion equation, the late-time part is defined as the response
after the main peak. The early-time reconstruction is controlled by
the source density p, (Figs 13 and 15) and late-time reconstruction
is more affected by the distribution width Ws (Figs 14 and 15).

2.3.2 Experiment 2: Green's function reconstruction
for diffusion in 3-D

Following the same strategy we extend the diffusion experiment to 3-
D. Instead of putting the sources on a line, we uniformly distributed
them in a cube. We define W; as the side length of the cube, and the
source density is defined as p, = N /( W,)3.

In Fig. 16(a), a source distribution with small W; is used. As in
1-D, the early-time of the Green’s function is reconstructed well, but
the late-time behaviour is not. When the width of the distribution
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Figure 16. 3-D reconstruction of diffusion Green’s function: (a) W, =
2.5km and p; = 0.51 km ™3, (b) W, = 10 km and py = 0.51 km—3.

increased, with sufficiently high source density p;,, both early and
late-time can be extracted well (Fig. 16b).

3 DISCUSSION

3.1 Waves in homogeneous media

The Green’s function of the wave equation of a homogeneous
medium in 2-D is represented in the frequency domain by the first
Hankel function of degree zero (Snieder 2006a)

Gy = L H k). ©

In the numerical simulations for waves in homogeneous media, we
use the far-field approximation of eq. (6), which is

1 .
G — 1(kr+rr/4). 7
") =\ g2ir (N

Inserting this into eq. (3), we obtain

G(FA, Ig, a)) — G*(I'A, Ig, a))

. 1 _
~ 1 % elk(rsAfrsB)dS/’ (8)
4p Jo | rsarss

When the source radius is much larger than the distance between
the two receivers, the distance in the geometrical spreading can be
approximated as rsy & rsg ~ r, while for the phase the approxi-
mation rsa — rsg & b cosf is accurate to first order in b/r (These
parameters are defined in Fig. 2.) Using these approximations and
the relationship dS" = rd6, eq. (8) becomes

27

G(ra, rp, @) — G*(ra, 15, @) ~ glkbeosf g, )

4rp Jo
Note that the right-hand side does not depend on the source radius
r. Experiment 4 in the wave part supports this conclusion: in that
experiment, variations in the source radius do not influence the
Green’s function extraction.

The source radius enters this interferometry problem in three
ways. The first is the geometrical spreading term 1/r, the second is
the relationship between the surface element and the increment in

source angle dS" = rd#, and the third is the width of the stationary-
phase zones as illustrated in the upper panel of Fig. 8. Eq. (9)
confirms that the first two factors compensate each other. Conse-
quently, only the width of the stationary-phase zones contribute to
the amplitude of the reconstructed signal. The different number of
sources in the left- and right-hand stationary-phase zones cause the
asymmetry in the amplitude of causal and anticausal response as
shown in the lower panel of Fig. 8.

Another interesting observation is that the right-and side of eq. (9)
is the integral representation of the Bessel function (Snieder 2006a),

which is related to the exact Green’s function
1 27

o eikbcos(-)de — J()(kb)
2w 0

— % [ 13 0eb) — H (kb |. (10)

This shows that by using only far-field of the waves in the inter-
ferometry, both far-field and near-field response are reconstructed.
This was shown for elastic waves by Sanchez-Sesma et al. (2006)
and Sanchez-Sesma & Campillo (2006).

For the dependence on the angle 6, we need to study the charac-
ter of the integrand in eq. (9). The real part of this integrand is the
oscillatory function shown in Fig. 17. The extraction of the Green’s
function depends on the sampling of this integral over source an-
gle 0, and reduces to the numerical integration of a continuous
oscillatory function. For a homogeneous source distribution we
effectively use Simpson’s rule to represent this integral by sum-
mation [ F(6)d6 — ZlN:  F(6,)A6]. While for random angu-
lar distribution, this would not give an accurate estimation with a
small number of sources by using summation to replace integral
[f F(6)dd — ZINZ L F(6;)A6;]. If the angle separation for each
source is known, we may use A6; as a weight in the summation as
it does in the numerical integral. However, if there is no informa-
tion on Af;, the average over repeated experiments with different
random distributions converges to a more accurate reconstruction.
Fig. 18 shows a histogram of 100 repeated estimations of the in-
tegration of the function (Fig. 17) using random sampling points.
In each realization, 1000 randomly distributed sources are used to
estimate this integral. The estimated value for a specific realization
can be far from the exact value while the average over all realiza-
tions (dashed line) is close to the accurate value (solid line). For a
smoothly varying source angle, Af; is locally fairly constant and
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Figure 17. The real part of the integrand in eq. (9).
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Figure 18. Histogram of 100 repeated estimations of the integral in Fig. 17
using 1000 randomly placed sources in each estimate.

therefore the reconstruction is still accurate with a relatively small
number of sources. For most of the applications of interferometry
using controlled shots, the source angle is actually smoothly chang-
ing (Bakulin & Calvert 2006; Mehta et al. 2007). Here we explain
why those smooth source angle distributions from experiment 3 for
waves give accurate Green’s function reconstruction.

What is the minimum required source density if the sources are
uniformly distributed in a homogeneous medium? As shown in
Fig. 17, the oscillations have a variable period. In order to make the
highest frequency oscillations cancel so that the stationary phase
contribution remains (Snieder 2004), we need to have enough sam-
pling points at the fastest oscillation. This oscillation depends on
the phase term @ = kb cosf of eq. (9). The change in the phase
for an angular increment A6 is A® = kb sin O A6. The most rapid
oscillation happens at sinf = 1. In order to have N, number of
sources within the period of the most rapid oscillation, the required
source density becomes

_ Nkb
T 2
Based on the numerical simulations, when N, > 2.5, the fluctuation

energy between the two main pulses in the reconstruction vanishes,
this gives the sampling criterion

(rad™"). (11)

0

ps = 0.4kb (rad™"). (12)

In practical applications, sources may only be located in the sta-
tionary zone. In tat case, there is no need to cancel the high oscilla-
tions in Fig. 17, and the required source density can be smaller than
the one shown in eq. (12). The source density needed to adequately
sample the stationary zone is derived below. The width of the sta-
tionary zone (the angle between the two nearest minimum points) is
2 cos™! (1 — m/kb). In order to have N, number of sources within
this stationary zone, the required source density is

N,

_ -1
= 2eos (1 —n/kp) 24 (13)

Ps
If four sources sample the stationary zone, which in practice is
sufficient, the source density is

Ps (rad™"). (14)

- cos~!(1 — /kb)
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Figure 20. Source and receiver configuration of in an virtual source survey.

Next, we show an application of the derived source density in
a virtual source survey. The configuration of the survey is shown
in Fig. 19. The sources are denoted by the stars and receivers as
triangles. The receivers can be located in an horizontal well in
an land survey, or at the ocean bottom in a marine survey. The
target layer is at depth d; and receivers are at depth d; — d,.
The two receivers (r4 and rg) to which interferometry is applied
are separated by a distance /. What kind of source distribution is
required to apply the interferometry in this configuration? If we
use the target layer as a mirror, the configuration in Fig. 19 can
be transfer to the one shown in Fig. 20. Term b in eqs (11) and

(13) becomes ,/4d? + I2. Source radius 7 (distance from reflection

point O to sources in the stationary phase zone) is \/d? + [2/4d, /d;.
Apply these parameters to eq. (12) and the source density on the
surface becomes
0.8k (d5 +1%/4)d
dr =rp, = (2—/)1 (m™). (15)
d>
This is the required source density if the contributions from the
fastest oscillations in Fig. 17 must cancel. If only the sources in the




1240 Y. Fan and R. Snieder

stationary zone are used in the summation, eq. (14) should be used
and source density on the surface becomes

. dy JAd3 + 12
dy cos™! [1 -/ <k‘/40122 +12>]

In conclusion, for wave interferometry in a homogeneous model,
the most important parameter is the source angle distribution. If we
know the source distribution, and hence the source angle, different
weighting of the sources can be used to more accurately replace the
integral over sources by a sum over sources. If randomly distributed
sources are used and there is no information on the source angle
distribution, the average of a large amount of extracted signals is
more accurate to describe the real response than a single extracted
signal.

This conclusion holds when all sources have the same amplitude.
If the amplitude of the sources fluctuates randomly, a uniform angle
distribution gives similar reconstruction of the Green’s function as
the random angle distribution for a constant source strength.

(m™). (16)

3.2 Waves in heterogeneous media

We find that one single source never gives an accurate Green’s
function reconstruction in the open scattering medium used in the
example (see Fig. 11). In contrast, a dense source distribution is still
needed in this strongly scattering medium. In our numerical exper-
iment 140 uniformly distributed sources are enough to reconstruct
the Green’s function accurately if the scatterers are absent (homo-
geneous medium). This number is consistent with the criterion of
expression (12). This suggests that more sources are needed to re-
construct the full Green’s function accurately for this heterogeneous
medium (300 sources) than the homogeneous medium with the same
parameters (140 sources). This contradicts the common notion that
the heterogeneity around the receivers would reduce the required
number of sources. When the wave propagation is equipatitioned
in the heterogeneous medium (propagation path >> transport mean
free path /,), the wave field is diffusive. Cross-correlating these dif-
fusive fields at two receiver locations is believed to give the Green’s
function between two locations (Lobkis & Weaver 2001). Because
of the equipatitioning one might think that the source distribution
should not matter. This is not what we observe in our numerical
experiment (Fig. 11), as 200 isotropic scatters in our experiment
suffice to produce equipatitioning.

The optical theorem states that the total scattering cross sec-
tion in 2-D medium can be represented as ¢ = —ImA/ky
(Groenenboom & Snieder 1995), in which ImA4 is the imaginary
component of the forward scattering amplitude 4 and & is the wave
vector in the background medium. For isotropic scatters, the imag-
inary component of 4 is restricted by —4 < ImA4 < 0 because of
the energy conservation (Groenenboom & Snieder 1995). In our
numerical experiment, Im4 is chosen to be —3.99 to give strong
scattering. For isotropic scatterers, the transport mean free path /, is
equal to the scattering mean free path (Ishimaru 1997). The scatter-
ing mean free path is given by /, = 1 /(No), in which N is the density
of scatterers (Sheng 1990). Using these expressions, the transport
mean free path in our 200 isotropic scatterers area is about 5 m and
the transport mean free time is about 3 ms. As the shortest propa-
gation path in the heterogeneous area from a source to a receiver
is 30 m, the earliest signal arrives at the receivers has propagated 6
mean free path in the heterogeneous area; therefore the energy flow
associated with wave propagation is very close to being equipati-

Figure 21. The configuration of wave propagation with receivers in a het-
erogeneous area.

tioned. We also cross correlated the later part of the signal (later
than 50 mean free times) but the cross-correlation does not give the
full Green’s function at all with the 300 random sources. This raises
a fundamental question: is equipationing a necessary condition in
Green’s function reconstruction, or is it a sufficient condition? Our
experiment suggests that equipatitioning is necessary but not suf-
ficient. A source distribution with a sufficiently large aperture and
source density is still important to retrieve the full Green’s function.

Another question is how we can understand that more sources are
needed in this heterogeneous medium than that in the homogeneous
one? To answer this question, we show in Fig. 21 a medium with
heterogeneity (scatterers) around the receivers. The stars are sources
and triangles are receivers. The gray part represents the heteroge-
neous area. The signal recorded at each receiver is the superposition
of wavefields from all possible scattering paths. First, consider one
possible path of wave propagation from source S to receiver A. The
wave hits the first scatterer (not necessary to be a scatterer on the
boundary of the heterogeneous area) after a propagation distance
L 4 and then propagates to receiver A in the heterogeneous part in a
complicated path with a propagation distance P 4. The dashed lines
in Fig. 21 means that we do not know the exact path from the first
scatterer to the receivers. Another possible path from source S to re-
ceiver B is also shown in the same manner. When we cross-correlate
these two fields received at A and B from source S, the phase of
the cross-correlation is ¢ = k(Lx — Lg) + (¢a — ¢p), in which
k is the wave numbers in the homogeneous area, ¢ and ¢p are
the phase shifts along the paths P, and Pg, respectively. When the
source is moved with a small step from S to S, the propagation paths
in the heterogeneous area P, and Py stay the same while the paths
in the homogeneous part changed to L/, and Lj;. The phase of the
cross-correlation becomes ¢’ = k(L, — Ly) + (¢a — ¢s). There-
fore, the phase change of the cross-correlation when the source is
moved from S to S"is A¢p = k(L, — L) — k(L — Lg). We can
quantify this phase change using the parameters shown in Fig. 22.
The angle between the path from the source to the first scatterers and
the source radius r is defined as «. From the geometry of Fig. 22,
we obtain L', — L = drsino,. Similarly we can get L; — Lg =
—dr sinag. Therefore, the phase change is given by

A¢ = k(sinap + sinag)dr. (17)
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Figure 22. Parameters used to quantify the phase change in cross-
correlation

In order to avoid aliasing, this phase change should be smaller than
7 /2. Consequently, we obtain the following criterion for the source
separation

T

<. 18
~ 2k(sinap + sinag) (18)
Applying k = 2m /A, the criterion becomes
A
r < —— (19)

~ sinaa + sinag

Eq. (19) shows that the source density is controlled by the size
and position of the heterogeneous area with respect to the source
position, rather than by the heterogeneity itself. When heterogene-
ity appears around the receivers, the maximum angle between the
source radius and the path from the source to the first scatterer be-
comes larger. In eq. (19), it means s p increases. Consequently,
the required source separation dr needs to be smaller than that for
homogeneous medium. Therefore, more sources are needed for the
heterogeneous medium than for the homogeneous one.

If one is interested in the direct arrival Green’s function only, the
requirement of the source distribution can be relaxed. For example,
Malcolm et al. (2004) showed that the ensemble-averaged Green'’s
function in a granite can be retrieved from a single source by averag-
ing over a pair of receivers with constant offset. The low frequency
component of the direct surface wave Green’s function has been re-
trieved from several irregularly distributed earthquakes (Campillo
& Paul 2003). However, the full Green’s function is not retrieved in
those studies. One interesting study shows that in a layered model
with enough horizontal layers to give strong scattering and refrac-
tion, the full Green’s function can be reconstructed by one-sided
illumination with sources uniformly distributed on the free surface
(Wapenaar 2006a). In his 1-D layered model with normal-incident
plane wave, the subsurface acts like a mirror when the heterogeneity
of the layers is strong enough, with the result that sources on one
side suffice for the Green’s function reconstruction.
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Figure 23. The real part of the integrand in eq. (21) at two different
frequencies.

3.3 Diffusion

The frequency domain Green’s function of the diffusion equation in
a 1-D homogeneous medium is given by

G'P(x, w) e(-1-xVo2D 20)

1
(14 i)v2wD
Inserting this expression into eq. (4), gives

G(I'A, Ig, a)) — G*(FA, rg, a))

— i -/e—(VSA+rsB)«/w/2De—i(l‘SA—rsrs)«/w/ZDd)C7 1)
X

in which rsp and rgp are the distances between the source to the
receiver A and B, respectively. Similar as for the analysis of the
waves, we study the real part of the integrand of eq. (21) as a
function of source position x. Notice that the integrand is a function
of frequency w. Fig. 23 shows the real part of this integrand for two
different frequencies. The width of the distribution decreases with
frequency. Qualitatively we can conclude that because the early-
time behaviour of the Green’s function has more high-frequency
components, the required source distribution can be narrower. This
explains experiment 1 of the diffusion part: with small W;, the
early-time behaviour is reconstructed well. With increasing Wi,
more lower frequency components are recovered. Since the tail
of the Green’s function mostly contains low frequencies, the late-
time Green’s function is recovered accurately with a large width
W,. Consequently, the source density p, controls the retrieval of
the high-frequency components of the Green’s function (eg. early-
time of the Green’s function), and the width of the distribution
W controls lower frequency components (e.g. the late-time of the
Green’s function).
The frequency domain Green’s function for diffusion in 3-D is

(~1—i)yr/w/2D
—c . 22
4 Dr (22)

Inserting this into eq. (4) we obtain

G*P(r,w) =

G(ra, 13, ®) — G*(ra, 13, ®)

— Ziw/ e (rsa+rsBIV@/2D o —i(rsa—rsp)Vw/2D q 7.
v (47 DY*rsarsy (23)

The integrand of eq. (23) has two singularities at the receiver posi-
tions where s and rgp vanish. The integrand in eq. (23) is largest
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for the sources near the receivers. In fact, it has an integrable sin-
gularity. One needs to integrate over this singularity to retrieve the
exact Green’s function since the integrand of eq. (23) itself is not
equal to the Green’s function.

‘We next address the question how to quantify the required source
distribution width W, and source density p,. As we learned from
the examples in the diffusion part, W, determines the late-time
reconstruction of the Green’s function. We define 7, to be the time
up to which we want to reconstruct the Green’s function accurately.
Sources within a source-receiver distance 2, /(4Dt,) = 1 give
the largest contribution (Mehrer 2007). Therefore, the required W
should be

W, =4Dt, + b 4)

for an accurate reconstruction up to time 7,, in which b is the
distance between the two receivers. We define the error as the ratio
of'the difference between the exact and extracted signals to the exact
signal at time 7,. The error is less than 5 per cent with W, from the
criterion 24.

The source density p, controls the early-time reconstruction. In
other words, it determines the accuracy of the reconstruction for the
high-frequency components. For the maximum frequency f,, in the
problem—either the highest frequency component of the Green’s
function itself or the maximum frequency of the source function—
there is a sensitivity function of source position. This sensitivity is
controlled by the decay factor e~ sa+7sBWe/2D a5 shown in eqs (21)
and (23). The 1/e width of this sensitivity function is

o =+2D/w. (25)

Then if N, is the number of sources needed in this range o to
estimate the integral accurately, the required source density is

psa = Nv/o/2D. (26)

Based on the numerical examples, when N, is larger than 2, the
early-time response is reconstructed accurately. Then criterion (26)
becomes

psa = 24/ w/2D. (27)

We can estimate the maximum frequency component in the Green’s
function as 1/(4t,), in which #, is the arrival time of the amplitude
peak in the Green’s function. We define the error as the ratio of
the difference between the exact and extracted signals to the exact
signal at time #,/2. The error is less than 5 per cent with source
density from the criterion in eq. (27).

In conclusion, for cross-correlation-based diffusion interferome-
try, instead of having sources everywhere in the volume, it suffices to
have sources in only a small volume surrounding the receivers. For
the 1-D problem, the source distribution width controls the late-time
(low-frequency components) reconstruction of the Green’s function
and source density controls the early-time (high-frequency compo-
nents) reconstruction. For the 3-D problem, sources should not be
located too close to the receivers position because of the singulari-
ties at those points.

4 CONCLUSION

Cross-correlation-based interferometry used to extract the Green’s
function which describes the field propagation between two re-

ceivers can be applied to the solution of both the wave equation and
the diffusion equation. The main difference is the required source
distribution.

For wave interferometry in a homogeneous medium, the source
angle distribution is the most important parameter. With the as-
sumption that the source radii are much larger than the distance
between the two receivers, the variation in the source radius has a
negligible effect, and the interferometry problem can be represented
by a numerical integral of an oscillatory function of source angle.
If cross-correlations from different sources are simply added in the
Green’s function extraction, the uniform source angle distribution
gives a high decay rate of the non-physical fluctuation as a function
of number of sources (faster than N~!?). With the same number of
sources, the random distribution gives much poorer Green’s func-
tion reconstruction. The rate of the non-physical fluctuation decay is
approximately N~!. The decay rate of the smoothly angular varying
distribution is between those of uniform and random distributions
and depends on how smooth the source angle varies. The required
source density is determined by the distance between the two re-
ceivers and the wavenumber.

For wave interferometry in a heterogeneous medium, one sin-
gle source is not sufficient to give accurate reconstruction even the
wavefield is equipartitioned. This suggests that equipartition is a
necessary but not sufficient condition in the Green’s function re-
construction. Besides, more sources are needed to reconstruct the
full Green’s function in an heterogeneous medium than that for an
homogeneous medium. The required source density is determined
by the position and size of the heterogeneous area with respect to
the sources.

For diffusion interferometry in a homogeneous medium, although
the study shows that a finite number of sources suffice to reconstruct
the Green’s function, the cross-correlation-based interferometry is
not applicable for real applications because the sources are required
to be close to the receivers. For a 1-D model, the sensitivity of the
sources decays from the centre of the two receivers. The width of
the distribution controls the late-time of the reconstructed Green’s
function while the source density controls the early-time of the re-
constructed Green’s function. For a 3-D model, the main properties
are the same as for the 1-D problem. The important point is that
the sources between the two receivers give most of the contribu-
tion and these source distributions are hard to realize in practice.
Because the requirement on the source distribution for diffusion
interferometry is difficult to match in practice, it is preferable to
use multidimensional deconvolution methods instead of correlation
for diffusive fields, such as low-frequency electromagnetic fields
(Wapenaar et al. 2008; Snieder et al. 2009).
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