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S U M M A R Y
Green’s function reconstruction relies on representation theorems. For acoustic waves, it has
been shown theoretically and observationally that a representation theorem of the correlation-
type leads to the retrieval of the Green’s function by cross-correlating fluctuations recorded
at two locations and excited by uncorrelated sources. We extend the theory to any system
that satisfies a linear partial differential equation and define an ‘interferometric operation’ that
is more general than cross-correlation for the reconstruction. We analyse Green’s function
reconstruction for perturbed media and establish a representation theorem specifically for
field perturbations. That representation is then applied to the general treatment of scattering
problems, enabling interpretation of the contributions to Green’s function reconstruction in
terms of direct and scattered waves. Perhaps surprising, Green’s functions that account for
scattered waves cannot be reconstructed from scattered waves alone. For acoustic waves,
retrieval of scattered waves also requires cross-correlating direct and scattered waves at receiver
locations. The addition of cross-correlated scattered waves with themselves is necessary to
cancel the spurious events that contaminate the retrieval of scattered waves from the cross-
correlation of direct with scattered waves. We illustrate these concepts with numerical examples
for the case of an open scattering medium. The same reasoning holds for the retrieval of any
type of perturbations and can be applied to perturbation problems such as electromagnetic
waves in conductive media and elastic waves in heterogeneous media.
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1 I N T RO D U C T I O N

The extraction of Green’s functions from wave field fluctuations
has recently received considerable attention. The technique, known
in much of the literature as interferometry, is described in tutorials
(Curtis et al. 2006; Larose et al. 2006; Wapenaar et al. 2008) and
has been applied to a large variety of fields including ultrasonics
(Lobkis & Weaver 2001; Weaver & Lobkis 2001; Roux & Fink
2003; Malcolm et al. 2004), global (Campillo & Paul 2003; Sabra
et al. 2005a; Shapiro et al. 2005; Ruigrok et al. 2008) and explo-
ration (Bakulin & Calvert 2006; Miyazawa et al. 2008) seismol-
ogy, helioseismology (Rickett & Claerbout 1999), medical imag-
ing (Sabra et al. 2007), structural engineering (Snieder & Safak
2006; Thompson & Snieder 2006; Kohler et al. 2007) and ocean
acoustics (Roux & Kuperman 2004; Sabra et al. 2005b). The the-
ory relies on representation theorems (of either the convolution or
correlation type) and allows for the retrieval of Green’s functions
for acoustic (Wapenaar & Fokkema 2006), elastic (Snieder 2002;
Wapenaar et al. 2004; Van Manen et al. 2006) and electromagnetic
(Wapenaar et al. 2006; Slob et al. 2007; Slob & Wapenaar 2009)
waves. For acoustic media, the impulse response between two re-
ceivers is retrieved by cross-correlating and summing the signals

recorded by the two receivers for uncorrelated sources enclosing the
studied system. This process, sometimes referred to as the virtual
source method (Bakulin & Calvert 2006), is equivalent to having a
source at one of the receiver locations. Further studies have extended
the concept to a wide class of linear systems (Wapenaar & Fokkema
2004; Wapenaar et al. 2006; Snieder et al. 2007; Gouédard et al.
2008; Weaver 2008) and our work aims to accomplish the same
objective.

We explore a general formulation of a representation theorem for
any system that satisfies a linear partial differential equation (or,
mathematically, for any field in the appropriate Sobolev space).
In particular, this formulation involves no assumption of spatial
reciprocity or time-reversal invariance. We introduce a bilinear in-
terferometric operator as a means of reconstructing the Green’s
function. We study the influence of perturbations on the interfero-
metric operator and thereby derive a general representation theorem
for perturbed media. The perturbed field can be retrieved by using a
process characterized by the interferometric operation, which is gen-
erally more complex than cross-correlation. For common systems,
this interferometric operation can be simplified using the symmetry
properties of differential operators. We apply the theory to scatter-
ing problems and illustrate the approach with an example involving
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Representation theorem for perturbed media 1649

Figure 1. Two receivers, A and B, separated by a distance d = 1.9 km, are embedded in a 2-D acoustic scattering medium (unperturbed velocity c0 =
3.8 km s −1) characterized by n uniformly distributed isotropic point scatterers localized inside a circle of radius r = 1.0 km. A dense distribution of N = 1000
sources evenly spaced along a circle of radius R = 4.0 km surrounds the medium. The source is a band-limited signal with central frequency ω0 = 100 Hz and
frequency range �ω = 20 Hz. For n = 500, the heterogeneous medium is considered strongly scattering. For n = 10, the scattering regime is weak.

scattered acoustic waves, obtaining a result that concurs with that
published by Vasconcelos et al. (2009) on the representation theo-
rem for scattering in acoustic media. In geophysics, applications of
perturbation reconstruction exist in the areas of, for example, crustal
seismology, seismic imaging, well monitoring and waveform inver-
sion.

After exposing this general representation theorem for perturbed
media, we give an innovative interpretation of Green’s function
reconstruction. To emphasize the connection between the general
formulation and the particular case of scattering problems, we refer
to field perturbation as scattered field and unperturbed field as direct
field. Perturbation retrieval can be understood in terms of interfer-
ences between unperturbed fields and field perturbations. One might
think that field perturbations can be reconstructed with contributions
from just field perturbations alone. However, the retrieval of field
perturbations requires the interferences with unperturbed fields. For
acoustic media, this means that the scattering response between two
receivers cannot be retrieved by cross-correlating only late coda
waves. Here, the scattering response is defined as the superposition
of the causal and acausal scattering Green’s functions between the
two points. In the numerical experiments (see Fig. 1), two receivers
are embedded in a scattering medium and surrounded by sources
that are activated separately and consequently, generate uncorre-
lated wavefields. The numerical scheme is based on computation of
the analytical solution to the 2-D heterogeneous acoustic wave equa-
tion for a distribution of isotropic point scatterers (Groenenboom &
Snieder 1995). In Fig. 2, we compare the actual scattering response
for a source at the receiver location with the signal reconstructed by
cross-correlating and summing the scattered waves recorded at the
receiver positions. For a strongly scattering medium [average wave-
length is of the same order as the scattering mean free path (Tourin

et al. 2000)], Fig. 2(a) shows that the reconstruction completely
fails to retrieve the scattering response from cross-correlation of
only the scattered waves recorded at the receiver locations. The re-
constructed wave with only scattered waves is totally inaccurate: the
early arrivals are non-physical because they do not respect causality,
arriving before the minimum traveltime between the two receivers,
while the late arrivals show no resemblance to the actual scattering
response. Accurate retrieval of the scattered waves requires instead
contributions from both direct and scattered waves, as shown in
Fig. 2(b).

In this paper, we provide an interpretation of this result;
one can find a similar approach by Halliday & Curtis (2009)
and Snieder & Fleury (2010), the latter of which describes the
case of multiple scattering by discrete scatterers. In Snieder
& Fleury (2010), we identify different scattering paths, show
their contributions to the retrieval of either physical or non-
physical arrivals and analyse how cancellations occur to allow
the scattering Green’s function to emerge. Our interpretation,
along with that given by Halliday & Curtis (2009), leads to the
same important conclusion: the cross-correlation of purely scat-
tered waves does not allow extraction of the correct scattered
waves.

The paper is organized as follows. In Section 2, we describe the
general systems under consideration and introduce the concept of
perturbation. In Section 3, we define the interferometric operator and
its relation to representation theorems, emphasizing the influence
of perturbations on this operator. Section 4 presents the general
representation theorems for perturbations that follow this approach.
In Section 5, we apply this theory to interpret the reconstruction
of Green’s function perturbations; Section 6 offers discussions and
conclusions.
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1650 C. Fleury, R. Snieder and K. Larner

Figure 2. The blue curves show the actual scattering response (superposition of the causal and acausal scattering Green’s functions) between two points
embedded in a strongly heterogenous medium. The red curves represent the wave reconstructed by cross-correlating the waves recorded by two receivers at the
same locations. Note the black arrow, which corresponds to the time of the first expected physical arrival. In panel (a), only scattered waves are cross-correlated.
The reconstruction fails no matter how dense is the distribution of sources enclosing the medium. This failure of interferometry is not caused by restrictions
of source distribution, aperture, or equipartitioning, but is a consequence of the missing contribution of recorded direct waves. In panel (b), both direct and
scattered waves are cross-correlated. The latter result confirms that the scattering response can be retrieved by interferometry.

2 G R E E N ’ S F U N C T I O N
P E RT U R B AT I O N S F O R G E N E R A L
S Y S T E M S

Consider a general system governed by a linear partial differen-
tial equation in the frequency domain. To avoid the complexity
of formalism that could obscure the main purpose of this paper,
we leave the vector case for Appendix A. Let the complex scalar
field u0(r , ω) be defined in a volume Dtot. One can adapt the re-
sult of this work to the time domain using the Fourier convention
u0(r, t) = ∫

u0(r, ω)exp(− jωt)dω. Henceforth, we suppress the
frequency dependence of variables and operators. The unperturbed

field u0(r) is a solution of the unperturbed equation

H0(r) · u0(r) = s(r), (1)

where H0 is the linear differential operator and s is the source
term, associated with the unperturbed system. The dot denotes a
tensor contraction when vectors and tensors are considered. For
scalars, the dot reduces to multiplication of fields and action of
operators on fields. For acoustic waves, one may define H0 as the
propagator for non-uniform density media: H 0 = ∇ · (ρ−1

0 ∇) +
ρ−1

0 ω2/c2
0, where ρ and c denote density and velocity,

respectively.

C© 2010 The Authors, GJI, 183, 1648–1662

Geophysical Journal International C© 2010 RAS



Representation theorem for perturbed media 1651

Assuming a perturbation of the system, confined to a subvolume
DV of the total domain Dtot, the perturbed field u1(r) follows from

H1(r) · u1(r) = s(r) (2)

H0(r) · u1(r) = V (r) · u1(r) + s(r), (3)

where V is the perturbation operator and H 1 = H 0 − V is the
linear differential operator associated with the perturbed system.
For example, for acoustic waves, with a change in velocity for the
medium, the perturbation operator is V = ρ−1

0 ω2/c2
0 (1 − c2

0/c2
1).

Alternatively, a change in experimental conditions might imply a
variation in density; then, a way to account for this perturbation
is to consider V = (ρ−1

0 − ρ−1
1 )ω2/c2

0 + ∇ · ((ρ−1
0 − ρ−1

1 )∇) for
homogeneous density changes [or follow Martin (2003) for inho-
mogeneous density changes]. One could also neglect attenuation
in the medium in the first approximation and correct for it by in-
troducing the perturbation V = jα, where α is a real coefficient,
function of the attenuation mechanisms. We are free to arbitrar-
ily choose or even interchange the reference 0 and perturbed 1
states for any perturbation problem. Indeed, the perturbation need
not necessarily introduce more complexity; its definition depends
on the characteristics of the perturbation problem that one tries to
solve.

For a problem to be well-defined, one needs to specify boundary
conditions. Assume that the boundary conditions are unperturbed
and consider a regular problem with homogeneous boundary con-
ditions:

B(r) · u0,1(r) = 0, r ∈ δDtot , (4)

where B denotes the linear boundary condition operator that acts
on the boundary δDtot of total volume Dtot. One can, for example,
apply the Sommerfeld radiation condition for acoustic waves. In
general, however, the boundary conditions need not be limited to
being homogeneous. In Appendix B, we extend our reasoning to
any unperturbed boundary conditions.

The Green’s functions G0(r , rS) and G1(r , rS) for both unper-
turbed and perturbed systems are defined as solutions for an impul-
sive source at location rS ,

s(r) = δ(r − r S). (5)

From the above equations, one obtains the familiar relation be-
tween unperturbed and perturbed Green’s functions, known as the
Lippmann–Schwinger equation (Rodberg & Thaler 1967):

G1(r, r S) = G0(r, r S) +
∫

Dtot

G0(r, r1) · V (r1) · G1(r1, r S)d3r1.(6)

The perturbation operator V vanishes outside of DV so that we
can replace the volume of integration in eq. (6) by DV , or by any
subvolume D of total domain Dtot that contains DV (see Fig. 3).
Let’s choose such a volume D and introduce the tensor notation,

(F|O|G)D ≡
∫

D
F(r) · O(r) · G(r)d3r, (7)

so that the Lippmann–Schwinger equation can be written as

G1(r, r S) = G0(r, r S) + (G0(r, r1)|V (r1)|G1(r1, r S))D . (8)

The variable of integration is always the space coordinate that is
shared by all functions and operators present inside the round brack-
ets. For brevity, we don’t specify the domain of integration when
equal to D and note (F|I |G) = (F|G) for the case of the identity
operator I . Finally, we define the Green’s function perturbation or

scattering Green’s function, that characterizes the field perturbation
uS(r) = u1(r) − u0(r), as

GS(r, r S) = G1(r, r S) − G0(r, r S), (9)

or

GS(r, r S) = (G0(r, r1)|V (r1)|G1(r1, r S)). (10)

To clarify the terminology used throughout this paper, unperturbed
field, perturbed field and field perturbation denote u0, u1 and uS ,
respectively.

3 D E F I N I T I O N O F T H E
I N T E R F E RO M E T R I C O P E R AT O R

To establish a representation theorem for perturbations, we first
derive a general expression for Green’s function retrieval by us-
ing a representation theorem of the correlation type (Wapenaar &
Fokkema 2006). Given the volume of interest D, defined accord-
ing to Fig. 3, consider two states of the field u, labelled A and B,
governed by the partial differential equation LA,B ,

LA,B : H (r) · u A,B(r) = sA,B(r), (11)

where the subscript A,B refers to either state A or B. Following
Fokkema & Van den Berg (1993) and Fokkema et al. (1996), we
evaluate (u A|LB) − (uB |LA), where f denotes the complex conju-
gate of f (for an operator O, understand O as changing in O every
imaginary number j to − j); consequently,

(u A|H |uB) − (uB |H |u A) = (u A|s B) − (uB |sA). (12)

For impulsive sources, sA,B(r) = δ(r − rA,B) and the fields
uA,B(r) = G(r , rA,B), the Green’s functions in states A and B, so (12)
becomes the general representation theorem of correlation-type for
interferometry,

G(r B, r A) − G(r A, r B) = (G(r, r A)|H (r)|G(r, r B))

− (G(r, r B)|H (r)|G(r, r A)). (13)

This result is a general extension of the representation theorem
in Snieder et al. (2007). To interpret and characterize the Green’s
function reconstruction more conveniently, we define the operator
IH ,

IH { f, g} ≡ ( f |H |g) − (g|H | f ), (14)

so that the general representation theorem can be written as

G(r B, r A) − G(r A, r B) = IH {G(r, r A), G(r, r B)}. (15)

The operation IH {· , ·} describes how Green’s functions in a subvol-
ume D ‘interfere’ to reconstruct the Green’s function between the
two points A and B. We consequently refer to IH as the interferomet-
ric operator, associated with H , that acts on functions f and g and
call the result of operation (14) an interference between f and g. The
interferometric operation generalizes the concept of interferometry
by cross-correlation for acoustic waves to a wider class of physical
systems. For the specific case of acoustic waves in lossless media,
the interferometric operation is the following volume integration:

IH { f, g} =
∫

D
[ f (r)∇ · (ρ−1∇g)(r) − g(r)∇ · (ρ−1∇ f )(r)]d3r.

(16)

Using Green’s theorem, this volume integral becomes an integral
over the bounding surface δD enclosing volume D:

IH { f, g} =
∮

δD
ρ−1(r)[ f (r)∇g(r) − g(r)∇ f (r)] · n̂d2r, (17)

C© 2010 The Authors, GJI, 183, 1648–1662
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Figure 3. The studied physical system is defined over the total volume Dtot bounded by the surface δDtot . Inside Dtot , the system is perturbed in the region
DV with boundary δDV . The region of interest, for which we study the interferometric operator, is D. The volume D contains the domain of perturbation
DV and its boundary δD encloses two points A and B for which representation theorems (25) and (30) are defined.

where n̂ is the outward unit normal vector at r . Then, eq. (15)
retrieves the familiar representation theorem for acoustic waves
(Wapenaar & Fokkema 2006):

G(r B, r A) − G(r A, r B)

=
∮

δD
ρ−1(r)[G(r, r A)∇G(r, r B) − G(r, r B)∇G(r, r A)] · n̂d2r.

(18)

Returning to the general case, just as the unperturbed linear partial
differential operator H0 becomes H 1 = H 0 − V after perturbat-
ing the system, the interferometric operators for unperturbed and
perturbed systems I0 and I1, relate in the following way:

I0 = IH0

I1 = I0 − IV . (19)

Note that, in general, I0 and I1 differ; that is, the interferometric
operator is perturbed for a perturbed system. The exception (I 1 =
I 0) occurs when IV = 0. Consider, for example, the acoustic case
previously described. The unperturbed Green’s function is retrieved
using expression (18) and, for a perturbation in velocity only,

IV { f, g} =
∫

D

ω2

ρ0(r)c0(r)2

×
[(

1 −
(

c0(r)

c1(r)

)2
)

−
(

1 −
(

c0(r)

c1(r)

)2
)]

f (r)g(r)d3r = 0,

(20)

so I 1 = I 0. If, instead, density rather than velocity is perturbed,

IV { f, g} =
∮

δD
(ρ−1

0 (r) − ρ−1
1 (r))

×[ f (r)∇g(r) − g(r)∇ f (r)] · n̂d2r �= 0. (21)

Therefore, the interferometric operator changes (I 1 �= I 0) with such
a perturbation. Similarly, with a perturbation in attenuation,

IV { f, g} = −2 j

∫
D

α(r)g(r) f (r)d3r �= 0. (22)

These examples illustrate that, in general, the same interferometric
operation cannot be used to reconstruct both perturbed and unper-
turbed Green’s functions; we need to estimate the perturbation of the
interferometric operator, IV , to apply interferometry for perturbed
media. As seen in eqs (21) and (22), the interferometric operator in
general requires knowledge of medium properties for the perturbed
system, a limiting factor because usually we know only the unper-
turbed medium properties. Eq. (20), however, is a specific example
of an interferometric operator that remains unperturbed (I 0 = I 1)
for nonzero perturbation. For benign cases such as this one, we need
only know or estimate unperturbed medium properties and measure
or extrapolate both perturbed and unperturbed fields, to reconstruct
the Green’s functions, which make these cases of major interest.

Before investigating such systems for which the interferometric
operator is unperturbed (IV = 0), let us discuss another characteristic
of the interferometry operator. Starting by reformulating the general
representation theorem for both perturbed and unperturbed media,
we retrieve the Green’s functions using

G0,1(r B, r A) − G0,1(r A, r B) = I0,1{G0,1(r, r A), G0,1(r, r B)}.
(23)

This expression clearly depends on the properties of the interfero-
metric operator and, according to definition (14), the reconstruction
involves integration over the volume D. Because the integrand is a
function of differential operators H0 or H1 and of the Green’s func-
tions between any point in D and points A or B, we need to know H 0,
V and the Green’s functions for all points in the volume D to apply

C© 2010 The Authors, GJI, 183, 1648–1662
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the interferometric operator and retrieve the Green’s functions be-
tween A and B. In particular, the estimation of the Green’s functions
for all points in D requires having receivers (or sources for spatially
reciprocal systems) throughout the entire volume D. To apply in-
terferometry in practice, this requirement for receivers (or sources)
over the entire volume is yet more limiting than the need to estimate
perturbations of the medium properties; it will severely restrict the
possibility of retrieving even unperturbed Green’s functions.

In practice, we are interested in systems for which we can re-
construct Green’s functions with a limited number of sources and
receivers. Just as for acoustic waves in eq. (18), we therefore aim
for problems that enable us to transform the integration over vol-
ume D in expression (14) into integration over its boundary δD.
This transformation allows significant reduction in the number of
sources. In Appendix C, we show that this transformation can be
done if and only if operators are self-adjoint. For non self-adjoint
operators, an extension of representation theorem (23) may apply.
We also demonstrate that the self-adjoint symmetry of the opera-
tors implies spatial reciprocity under specific boundary conditions.
Spatially reciprocal systems are of major interest for interferometry
applications because these systems allow for the permutation of the
role of sources and receivers in the formulation of representation
theorems (23) and are therefore favourable for Green’s function
retrieval. In addition, the transformation of volume integrals into
surface integrals also constrains to just the surface δD the medium
properties that must be known for the reconstruction. For perturba-
tion problems that we are considering (see Fig. 3), we can always
find a boundary of integration δD (for example, δDtot) along which
the system is unperturbed (there are no changes of the medium
properties along δD). Then, under the assumption that H0 and V
are self-adjoint, the interferometric operation associated with this
particular volume D can be reduced to an integration over δD and
the interferometric operator is then unperturbed under the assump-
tion that the properties of the medium are unchanged along this
boundary. Consequently, we can reconstruct the perturbed Green’s
function independently of the perturbations in the rest of the volume.
For example, for a perturbation of densities in an acoustic medium,
expression (21) illustrates that the interferometric operator is un-
perturbed (IV = 0) when the density is unchanged on the boundary
δD. For an attenuative acoustic medium, however, expression (22)
shows that the perturbation V breaks the self-adjoint symmetry of
the operator H0. This prevents us to reduce the representation the-
orem to only a surface integral and links to further discussions on
interferometry for dissipative media (Snieder 2007; Snieder et al.
2007).

To summarize, interferometry can be interpreted as the applica-
tion of an interferometric operator. This technique is practical for
systems characterized by self-adjoint operators and for perturbation
problems where the interferometric operator is unperturbed.

4 R E P R E S E N TAT I O N F O R G R E E N ’ S
F U N C T I O N P E RT U R B AT I O N S

In the previous section, we established a general representation
theorem for perturbed systems. Here, we derive a representation
for field perturbations. This general representation differs from the
traditional representation theorem for the special case of scattered
acoustic waves (Vasconcelos et al. 2009) because, in general, we
must take into account the perturbation of the interferometric oper-
ator. The perturbation of Green’s function, defined in Section 2, can
be retrieved by interferometry by taking the difference of the two

eqs (23) for the perturbed and unperturbed states to give

GS(r B, r A) − GS(r A, r B) = I1{G1(r, r A), G1(r, r B)}
− I0{G0(r, r A), G0(r, r B)}. (24)

Using relation (19) between unperturbed and perturbed interfero-
metric operators, we have

GS(r B, r A) − GS(r A, r B) = I0{G1(r, r A), G1(r, r B)}
−I0{G0(r, r A), G0(r, r B)}
−IV {G1(r, r A), G1(r, r B)}. (25)

Eq. (25) is a general representation theorem for field perturbations.
In addition, the interferometric operator is bilinear, that is, IH {α f ,
g} = IH { f , αg} = α IH { f , g}, IH{ f , g + h} = IH{ f , g} +
IH{ f , h} and IH{ f + g, h} = IH{ f , h} + IH {g, h}. We exploit
the bilinearity of I0 and expand I0{G1(r, r A), G1(r, r B)} in terms
of unperturbed fields and field perturbations:

I0{G1(r, r A), G1(r, r B)} = I0{G0(r, r A), G0(r, r B)}
+ I0{GS(r, r A), GS(r, r B)}
+ I0{G0(r, r A), GS(r, r B)}
+ I0{GS(r, r A), G0(r, r B)}. (26)

This decomposition allows for the identification of different types
of interference between unperturbed Green’s functions and Green’s
function perturbations. Then, inserting eq. (26) into representation
theorem (25), gives

GS(r B, r A) − GS(r A, r B) = I0{GS(r, r A), G0(r, r B)}
+I0{G0(r, r A), GS(r, r B)}
+ I0{GS(r, r A), GS(r, r B)}
− IV {G1(r, r A), G1(r, r B)}.

(27)

Representation theorem (27) illustrates that the retrieval of Green’s
function perturbations requires a combination of not just interfer-
ences between Green’s function perturbations, but interferences be-
tween both unperturbed Green’s functions and Green’s function
perturbations. In Section 5, we analyse the individual contributions
of the different terms on the right-hand side of eq. (27) to the recon-
struction. Note in particular the term IV {G1(r, r A), G1(r, r B)} that
represents the interference between perturbed Green’s functions as-
sociated with the operator V and accounts for the perturbation of the
interferometric operator. We prefer to consider situations for which
IV = 0 because in such cases,

GS(r B, r A) − GS(r A, r B) = I0{GS(r, r A), G0(r, r B)}
+ I0{G0(r, r A), GS(r, r B)}
+ I0{GS(r, r A), GS(r, r B)}. (28)

Representation theorem (28) is a function of only the unperturbed
interferometric operator I0 and, consequently, depends only on the
properties of the unperturbed medium. For these special cases, such
as lossless acoustic media with velocity perturbation, the pertur-
bation retrieval does not require an estimation of the perturbation
V .

Now, let us return to the general case where IV can be nonzero and
establish another form of representation theorem for perturbations,
one that characterizes only the causal Green’s function perturbation,
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GS(rB, rA), rather than the superposition of the causal and acausal
functions, GS(r B, r A) − GS(r A, r B). This representation will help
us analysing the individual contribution of the interference between
direct and scattered fields to the partial retrieval of the scattered
field GS(rB, rA). Rearranging relation (23) for unperturbed systems
and inserting it into eq. (10) yields

GS(r B, r A) = ([I0{G0(r, r1),

G0(r, r B)} + G0(r1, r B)]
∣∣V (r1)

∣∣G1(r1, r A)
)

= I0{
(
G0(r, r1)

∣∣V (r1)
∣∣G1(r1, r A)

)
, G0(r, r B)}

+ (
G0(r1, r B)

∣∣V (r1)
∣∣G1(r1, r A)

)
. (29)

Using once again expression (10), which defines the Green’s func-
tion perturbation, we identify the first term on the right-hand side
of (29) with I0{GS(r, r A), G0(r, r B)} to obtain

GS(r B, r A) = I0{GS(r, r A), G0(r, r B)}
+ (

G0(r, r B)
∣∣V (r)

∣∣G1(r, r A)
)
. (30)

This representation theorem for perturbations generalizes to any
physical system the representation theorem for the special case of
acoustic waves (Vasconcelos et al. 2009),

GS(r B, r A) =
∮

δD
ρ−1

0 (r)[GS(r, r A)∇G0(r, r B)

− G0(r, r B)∇GS(r, r A)] · n̂d2r

+
∫

D
G0(r, r B)V (r)G1(r, r A)d3r. (31)

Our derivation of eq. (30) assumes that DV ⊂ D. However, eq. (30)
can be extended to any perturbation domain DV ⊂ Dtot. Rewrite
eq. (10) by specifying the domain of integration,

GS(r B, r A) = (G0(r B, r1)|V (r1)|G1(r1, r A))DV ∩ D

+ (G0(r B, r1)|V (r1)|G1(r1, r A))DV \D, (32)

where DV ∩ D and DV \ D denote the intersection and complement
of D in DV , respectively. The derivation of eq. (29) can be applied
to the first term of the right-hand side of eq. (32) and(
G0(r B, r1)

∣∣V (r1)
∣∣G1(r1, r A)

)
DV ∩ D

= I0{
(
G0(r, r1)

∣∣V (r1)
∣∣G1(r1, r A)

)
DV ∩ D

, G0(r, r B)}
+(

G0(r, r B)
∣∣V (r)

∣∣G1(r, r A)
)

DV ∩ D
. (33)

For the second term, because it can be shown that r 1 �∈ D im-
plies a modification of relation (23) such that G0(r B, r1) =
I0{G0(r, r1), G0(r, r B)},
(G0(r B, r1)|V (r1)|G1(r1, r A))DV \D

= I0{(G0(r, r1)|V (r1)|G1(r1, r A))DV \D , G0(r, r B)}. (34)

The sum of eqs (33) and (34) reduces to the original representation
theorem (30). Note that for a domain of perturbation DV outside of
D, the representation theorem reduces to

GS(r B, r A) = I0{GS(r, r A), G0(r, r B)}. (35)

Representation theorems (25) and (30) offer the possibility of ex-
tracting field perturbations (e.g. scattered waves) between points
A and B, as if one of these points acts as a source. They allow
calculation of perturbation propagation between these two points
without the need for a physical source at either of the two loca-
tions. These representation theorems have potential for estimating

not only perturbations in fields but perturbations in medium prop-
erties by treating expression (30) as an integral equation for the
perturbation V given the field perturbation GS . They can therefore
be used for detecting, locating, monitoring and modelling medium
perturbations. In geoscience, this theory has application to a diver-
sity of techniques including passive imaging using seismic noise,
seismic migration, modelling for inversion of electromagnetic data
and remote monitoring of hydrocarbon reservoirs, aquifers and
CO2 injection for carbon sequestration.

5 A NA LY S I S O F T H E D I F F E R E N T
C O N T R I B U T I O N S T O T H E R E T R I E VA L
O F P E RT U R B AT I O N S

Here, we analyse the different terms that contribute to representa-
tion theorem (27) for perturbations. In particular, we interpret the
contribution of the interference between field perturbations, cor-
responding to the term I0{GS(r, r A), GS(r, r B)} and explain why
perturbations cannot be reconstructed by using solely the interfer-
ence between perturbations; that is, the reconstruction of perturba-
tions requires knowledge of the unperturbed fields for the system.
We show that the contribution of the interference between unper-
turbed fields and field perturbations, corresponding to the terms
I0{GS(r, r A), G0(r, r B)} and I0{G0(r, r A), GS(r, r B)}, is essential
for the retrieval process. These contributions are responsible for
retrieving the field perturbations plus extra volume terms. For some
cases, these extra volume terms are purely spurious and contami-
nate the retrieval process. The interference between just the field
perturbations is necessary to cancel these extra volumes terms. To
a certain extent, the cancellation mechanism involved in the recon-
struction process can be connected to the general optical theorem
as discussed below.

5.1 Partial retrieval of field perturbations

First, consider the contributions of the interferences between un-
perturbed fields and field perturbations. Rearranging the terms in
representation theorem (30), we have the two following expressions,
eq. (37) being the negative conjugate of eq. (36):

I0{GS(r, r A), G0(r, r B)}
= GS(r B, r A) − (G0(r, r B)|V (r)|G1(r, r A)), (36)

I0{G0(r, r A), GS(r, r B)}
= −GS(r A, r B) + (G0(r, r A)|V (r)|G1(r, r B)). (37)

Eqs (36) and (37) show that the terms I0{GS(r, r A), G0(r, r B)}
and I0{G0(r, r A), GS(r, r B)} contribute to the causal and acausal
Green’s function perturbation between A and B, respectively. Note,
however, the two additional volume integrals that depend on the
perturbation operator:

(G0(r, r B)|V (r)|G1(r, r A)) and (G0(r, r A)|V (r)|G1(r, r B)).
Their presence thus leads to a partial retrieval of field pertur-
bations. The retrieval of field perturbations is incomplete be-
cause the two volume integrals (G0(r, r B)|V (r)|G1(r, r A)) and
(G0(r, r A)|V (r)|G1(r, r B)) can both reconstruct missing contri-
butions of the estimate of the Green’s function perturbation and
contaminate this estimate with spurious contributions (called spu-
rious arrivals by Snieder et al. 2008). In general, we cannot
neglect the contributions of these extra volume terms because
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Figure 4. The causal part of the actual scattering response (blue curves) between two points embedded in heterogeneous media is compared to the reconstructed
wave (red curves) obtained by cross-correlating direct and scattered waves recorded by two receivers at the same locations. Panels (a) and (b) show the signals
for a weakly and strongly scattering medium, respectively. Panel (c) and (d) provide zooms on the late and early parts of experiment in weakly scattering regime,
respectively. In both scattering regimes, the reconstruction is inaccurate. The weakly scattering case, however, suggests a partial retrieval of the scattering
response: the reconstructed and reference signals are similar in their late parts (Panel c) while the early part of the reconstructed signal (i.e., the portion before
the time of the direct arrival, denoted by the arrow) is purely erroneous (Panel d) and contains only the spurious arrivals.

they do not vanish regardless of the subspace D under consid-
eration. Depending on the perturbation V , however, their con-
tribution can be relatively small. For cases such as the acoustic
problems formulated by Snieder et al. (2008), Snieder & Fleury
(2010) and Vasconcelos et al. (2009) in some of their exam-
ples, the contributions of these volume integrals only contribute
to spurious arrivals while all of the physical arrivals arise from
I0{GS(r, r A), G0(r, r B)} and I0{G0(r, r A), GS(r, r B)}. The sum-
mation of eqs (36) and (37) thus gives a retrieval of the field pertur-
bation, GS(r B, r A) − GS(r A, r B), contaminated with extra volume
terms.

To get insight into the physical meaning of this partial recon-
struction, let us particularize the general description of eqs (36) and
(37) to the case of acoustic waves in which direct waves interfere
with scattered waves. Fig. 4 illustrates the reconstruction obtained
by cross-correlating just direct and scattered waves for both weakly
and strongly scattering media (Figs 4a and b, respectively). Inter-
estingly, for a weakly scattering medium [average wavelength is

much smaller than the scattering mean free path], Fig. 4(c) shows
a reconstructed signal that fully retrieves the late portion of the
scattering response. The early part of the signal, however, contains
strong nonphysical arrivals, prior to the true first arrival (arrow), as
seen in Fig. 4(d). These observations suggest that while the signal
reconstructed by cross-correlating direct and scattered waves does
contain the scattering response, it is contaminated by spurious ar-
rivals. Fig. 4(a) shows that, for a strongly scattering medium, the
reconstructed signal is contaminated so severely that no similarities
can be found between the reconstructed and reference signals; the
contribution of the spurious arrivals dominates the reconstruction.
In summary, because the physical nature of the spurious arrival
is the same for both weakly and strongly scattering media, cross-
correlating direct and scattered waves retrieves the scattered waves
but generates unexpected arrivals that can be more intense than the
useful signal. These spurious arrivals, corresponding to the extra
volume terms, must cancel in order for the retrieval of scattered
waves to be completed.
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5.2 Cancellation of the extra volume terms

The interference between direct and scattered waves, that is, the
first two terms in (27), partially retrieves the scattered waves.
We are interested in studying the mechanism for cancelling the
extra volume terms described in the previous subsection. Ac-
cording to representation theorem (27), completion of the re-
construction requires the additional contributions from the inter-
ferences I0{GS(r, r A), GS(r, r B)} and IV {G1(r, r A), G1(r, r B)}.
In the introduction, we showed numerically that the interference
between scattered waves alone does not correctly retrieve scat-
tered waves. Taken individually, the interference between un-
perturbed fields and field perturbations, I0{GS(r, r A), G0(r, r B)}
and I0{GS(r, r A), G0(r, r B)}, the interference between just the
field perturbations I0{GS(r, r A), GS(r, r B)}, or the interference
IV {G1(r, r A), G1(r, r B)} do not reconstruct field perturbations. The
summation of all their contributions, however, is expected to accu-
rately retrieve the perturbations and, consequently, cancel the extra
volume terms.

We develop the following relation for the interference between
field perturbations by rewriting I0{GS(r, r A), GS(r, r B)}:

I0{GS(r, r A), GS(r, r B)}
= I0{(G0(r, r1)|V (r1)|G1(r1, r A)) ,(

G0(r, r2)|V (r2)|G1(r2, r B)
)} = ((I0{G0(r, r1),

G0(r, r2)}|V (r1)|G1(r1, r A))|V (r2)|G1(r2, r B)
)

= ((
[G0(r2, r1) − G0(r1, r2)]|V (r1)|G1(r1, r A)

) |V (r2)|
× G1(r2, r B)

)
= (

(G0(r2, r1)|V (r1)|G1(r1, r A)) |V (r2)|G1(r2, r B)
)

− ((
G0(r1, r2)|V (r2)|G1(r2, r B)

) |V (r1)|G1(r1, r A)
)
,

(38)

where we used expression (10) for field perturbations in the first
identity, the bilinearity of I0 in the second identity and representation
theorem (23) in the third identity; so that finally,

I0{GS(r, r A), GS(r, r B)} = (
GS(r1, r A)

∣∣V (r1)
∣∣ G1(r1, r B)

)
− (

GS(r1, r B)|V (r1)|G1(r1, r A)
)
.

(39)

We next show that the interaction between Green’s function
perturbations indirectly retrieves the Green’s function perturba-
tion by contributing to the cancellation of the extra volume
terms. We identify the right-hand side of eq. (39) as the com-
plement of the contributions − (G0(r, r B)|V (r)|G1(r, r A)) and
(G0(r, r A)|V (r)|G1(r, r B)) in eqs (36) and (37); that is, the summa-
tion of these integrals retrieves the term −IV {G1(r, r A), G1(r, r B)}.
For cases where IV = 0, the interaction between perturbations en-
tirely cancels the extra volume terms,

I0{GS(r, r A), GS(r, r B)} + (G0(r, r A)|V (r)|G1(r, r B))

− (G0(r, r B)|V (r)|G1(r, r A)) = 0

(40)

and the reconstruction is then completed by summing the contribu-
tions from eqs (36), (37) and (39) [the sum reduces to representation

theorem (28)]. For the general case (IV �= 0),

I0{GS(r, r A), GS(r, r B)} + (G0(r, r A)|V (r)|G1(r, r B))

−(G0(r, r B)|V (r)|G1(r, r A))

= −IV {G1(r, r A), G1(r, r B)} (41)

and the summation of eqs (36), (37) and (39) gives

(36) + (37) + (39) = GS(r B, r A) − GS(r A, r B)

+ IV {G1(r, r A), G1(r, r B)}. (42)

The retrieval is incomplete and does not produce the Green’s func-
tion perturbation because of the term IV {G1(r, r A), G1(r, r B)} that
still contaminates the right-hand side of eq. (42). Accurate recon-
struction requires an additional estimate of this interaction between
perturbed fields associated to V .

In any case, one of the direct consequence for scattering prob-
lems is that we cannot reconstruct the scattering Green’s function
by merely using the contribution of scattered waves alone. This ex-
plains the failure of interferometry based solely on the interference
of scattered waves, as shown in Fig. 2. The interference between
Green’s function perturbations nevertheless plays a fundamental
role in the retrieval of the perturbation because they are needed to
cancel the extra volume terms. Our numerical experiments illus-
trate this observation for scattered acoustic waves (Fig. 5). For both
weakly and strongly scattering media, combining the contributions
of both interference between direct and scattered waves and interfer-
ence between just scattered waves cancels the spurious arrivals and
reconstructs the superposition of the causal and acausal scattering
Green’s functions (see Figs 5e and f). Note, additionally, that in or-
der for this experiment to be successful, the distribution of sources
must be sufficiently dense on a close surface surrounding the re-
ceivers (see numerical set-up description in Fig. 1). Considerations
of narrow aperture and limited number of sources are independent
problems that limit the accuracy of reconstructions (Fan & Snieder
2009; Snieder 2004).

5.3 Connection with the general optical theorem

Above, we emphasize the process that leads to the reconstruction
of perturbations. Interestingly, for problems with unperturbed inter-
ferometric operators, the interference between field perturbations
alone contributes entirely to the cancellation of the extra volume
terms that arise from the interferences between unperturbed fields
and field perturbations in the reconstruction process, and rewriting
eq. (40) gives

(G0(r, r B)|V (r)|G1(r, r A)) − (G0(r, r A)|V (r)|G1(r, r B))

= I0{GS(r, r A), GS(r, r B)}. (43)

Eq. (43) with rA = rB directly connects to the work of Carney
et al. (2004) on the optical theorem that gives a similar relation-
ship between scattering amplitude and extinguished power for scat-
tering of scalar waves in an arbitrary background. Carney et al.
(2004) show how their derivation provides insight into the interfer-
ence mechanisms that ensure energy conservation in scattering. For
rA = rB, eq. (43) suggests a relation between cancellation of the
extra volume terms and conservation of scattering energy. In a
sense, we can also interpret this mechanism as an extension of the
general optical theorem, as has been suggested for acoustic waves
(Snieder et al. 2008, 2009). The general optical theorem (Marston
2001; Schiff 1968) concerns the scattering amplitude fk(n̂, n̂′) of
scattered waves with wave number k and unit vectors n̂ and n̂′
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Figure 5. The blue curves show the causal part of the scattering response between two points embedded in heterogeneous acoustic media. The red curves
correspond to the reconstructed signals for the different individual contributions discussed in Section 5. For strongly scattering media (left column), the
summation of the reconstructed signal by cross-correlating direct and scattered waves (a) with that obtained by cross-correlating scattered waves (c) leads to
the retrieval of the scattering response and cancellation of the spurious arrivals (e). Similarly, (b), (d) and (f) show success of the reconstruction for weakly
scattering media (right column).
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representing the directions of the outgoing and incoming waves, re-
spectively. With a far-field approximation in expression (17), the
interferometric operator for the constant density wave equation
(ρ0 = 1) becomes

I0{ f, g} = −2 jk

∮
δD

f (r)g(r)d2r (44)

for a homogenous medium as the unperturbed state (G0(r, r S) =
− e jk‖r−r S ‖

4π‖r−r S‖ ). With the medium perturbed by an unique scattering
object positioned at rx, the scattering Green’s function is in the far
field given by

GS(r, r S) = −4πG0(r, r x ) fk(n̂, n̂S)G0(r x , r S). (45)

If A and B are far from the scatterer and δD is a sphere centred at rx

with radius R, the interference between scattered Green’s functions
is

I0{GS(r, r A), GS(r, r B)} = −2 jk

∮
δD

G0(r x , r A)G0(r x , r B)

× fk(n̂, n̂A) f k(n̂, n̂B)(4π )2G0

× (r, r x )G0(r, r x )d2r. (46)

The integration over the sphere δD is related to an integration over
solid angle by d2r = R2dn̂ and (4π )2G0(r, r x )G0(r, r x ) = R−2 so
that

I0{GS(r, r A), GS(r, r B)} = −2 jkG0(r x , r A)G0(r x , r B)∮
fk(n̂, n̂A) f k(n̂, n̂B)dn̂. (47)

In the far-field approximation for the scattering Green’s function,
one can modify previously established equations by using where
necessary expression (45) instead of (10) for field perturbation.
Consequently, the extra volume terms introduced in eqs (36) and
(37) are

(G0(r, r B)|V (r)|G1(r, r A))

= −4πG0(r x , r B) fk(n̂B, n̂A)G0(r x , r A), (48)

(G0(r, r A)|V (r)|G1(r, r B))

= −4πG0(r x , r A) f k(n̂A, n̂B)G0(r x , r B) (49)

and we thus retrieve the general optical theorem from eq. (43):

fk(n̂B, n̂A) − f k(n̂A, n̂B) = 2 jk

4π

∮
fk(n̂, n̂A) f k(n̂, n̂B)dn̂. (50)

This interpretation of the cancellations, however, is limited to
problems with unperturbed interferometric operators. For general
systems, the extra volume terms do not cancel by summing the
interferences associated with the unperturbed operator H0. Unless
the interferometric operator is unperturbed (IV = 0), the interfer-
ence associated with V on the right-hand side of eq. (42) still con-
taminates the perturbations we desire to reconstruct by adding the
contributions from eqs (36), (37) and (39). In general, we have to
evaluate the contribution of IV {G1(r, r A), G1(r, r B)} to cancel the
extra volume terms and reconstruct the exact field perturbations.
Thus as stated in Section 3, because the perturbation operator is
usually unknown, interferometry appears practical for perturbation
problems only with an interferometric operator that is unperturbed.

In summary, we have shown that the scattering response cannot be
retrieved by cross-correlating scattered waves alone. To reconstruct
scattered waves, we need to consider the contribution from cross-
correlation of direct and scattered waves. The key to the ability to

cancel the extra volume terms and succeed in the reconstruction for
any kind of perturbation problem is that we consider systems for
which the interferometric operator is unperturbed, IV = 0.

6 D I S C U S S I O N A N D C O N C LU S I O N

We have derived a representation theorem for general systems and
in particular for perturbed media. This makes it possible to retrieve
Green’s functions and their perturbations for a large variety of linear
differential systems that include acoustic, elastic and electromag-
netic waves (we show the extension to vector fields in Appendix A).
We investigate the reconstruction of Green’s functions, applying
an interferometric operator to unperturbed fields and field perturba-
tions. This mathematical description of interferometry simplifies the
analysis of the reconstruction of perturbations: we interpret this pro-
cess as summing contributions from different types of interference
between perturbations and unperturbed Green’s functions. In geo-
physics, this description can be applied to a series of problems. For
example, one can extend conventional interferometry techniques for
seismic waves to some possible applications in imaging and inverse
problems: the representation theorem can be related to sensitivity
kernels used in waveform inversion (Tarantola & Tarantola 1987),
in imaging (Colton & Kress 1998), or in tomography (Woodward
1992); the theorem also allows the establishment of formal con-
nections with seismic migration (Clearbout 1985) and with inverse
scattering methods (Beylkin 1985; Borcea et al. 2002).

Our study of the retrieval of perturbations differs from previous
work because we show explicitly that not only fields are perturbed
but the operator itself changes when the medium is perturbed. For
most general systems, we would need to modify the interferometric
process used for the reconstruction after the application of a per-
turbation. We obtain this fundamental result after deriving the per-
turbation of the interferometric operator. Our analysis emphasizes
the importance of systems for which the interferometric operator
is unperturbed because these systems appear to offer the prospect
for practical application of interferometry. In these cases, recon-
struction of the Green’s function perturbations does not require
knowledge or estimation of the perturbations of the medium prop-
erties. We also demonstrate that perturbations cannot be retrieved by
measuring only field perturbations; knowledge of the unperturbed
state of the studied system is essential as well. Perturbations are re-
constructed by combining interferences between field perturbations
and unperturbed fields. The contribution from interference of field
perturbations alone complete the reconstruction from interference
of unperturbed fields with field perturbations.

Simulations for scattering acoustic media clearly show the im-
portance of direct arrivals in the extraction of scattering responses
and verify the failure to reconstruct scattering Green’s function by
cross-correlating just scattered waves. These results are intriguing
and should be carefully considered when designing applications
because our result appears to be counterintuitive with respect to
many results obtained in seismology. Campillo & Paul (2003), for
example, have shown that cross-correlation of just late coda in earth-
quake data, allows for retrieval of direct surface waves. Also, Stehly
et al. (2008) have used the coda of the cross-correlation of seismic
noise for improving the reconstruction of direct Green’s functions.
Direct waves are thus efficiently reconstructed by windowing, cross-
correlating and averaging just late coda waves that mainly contain
scattered waves. So, can a similar method be used for the extrac-
tion of the scattering component of Green’s function? Our study of
representation theorems for scattered waves suggests that the exten-
sion of the correlation technique to the reconstruction of scattered
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waves is not necessarily straightforward because of the the role of
direct waves in the retrieval process. In geoscience, Campillo & Paul
(2003), Halliday & Curtis (2008), Roux et al. (2005) and Shapiro
et al. (2005) have shown that direct surface waves are beautifully
extracted by interferometry; but examples of reconstruction of scat-
tered surface waves are still lacking. There are clear challenges in
the retrieval of scattered waves but, again, the general formulation
of the representation theorem for perturbed media states that we can
in principle retrieve any and all perturbations for a given system.
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A P P E N D I X A : E X T E N S I O N T O V E C T O R
S PA C E S A N D n × n D I F F E R E N T I A L
O P E R AT O R S

Here, we extend our reasoning to vector fields by using the tensor
notation previously introduced. Consider the unperturbed vector
field u0(r), defined in the vector space of dimension n, which is a
solution of equation

H0(r) · u0(r) = s(r), (A1)

where H0 and s are the n × n linear differential operator and the
n × 1 source vector, respectively. For elastic waves, the operator is

H0 = ρω2δ + ∇ · c · ∇, (A2)

where c is the elasticity tensor and δ the Kronecker tensor; u0 is
the displacement vector and s is the body force per unit of volume.
For electromagnetic waves in isotropic media (ε, permittivity; σ ,
conductivity; μ, permeability), the operator is

H0 =
[

( jωε − σ )δ ∇×
∇× − jωμδ

]
with

u0 =
[

e0

h0

]
; s =

[
j e

jm

]
, (A3)

where e and h denote the electric and magnetic fields; j e and jm are
the electric and magnetic current densities. We give two examples
of systems for which our reasoning applies; further cases of study
can be found in Wapenaar et al. (2006). The perturbed field u1(r)
satisfies

H0(r) · u1(r) = V (r) · u1(r) + s(r), (A4)

where V is the perturbation operator. Elastic waves can be perturbed
in the presence of viscosity (η tensor), in which case we write V as

V = − jω∇ · η · ∇. (A5)

A change in medium properties (δε, δσ , δμ) influences electromag-
netic waves by a perturbation

V =
[

(δσ − jωδε)δ 0

0 jωδμδ

]
. (A6)

Assume a regular problem with unperturbed homogeneous
boundary conditions. We relate the Green’s tensors G1(r , rS) and
G0(r , rS) by using the Lippmann–Schwinger equation:

G1(r, r S) = G0(r, r S) + (G0(r, r1) |V (r1)| G1(r1, r S)) ; (A7)

let the perturbation of the Green’s tensor GS(r , rS) be given by
GS(r , rS) =G1(r , rS) −G0(r , rS).

The new bilinear interferometric operator I H now acts on matri-
ces,

IH {F, G} = (FT |H|G) − (GT |H|F), (A8)

where FT denotes the transpose of the matrix F. We introduce the
unperturbed and perturbed interferometric operators as

I0{F, G} = IH0 {F, G}
I1{F, G} = IH0 {F, G} − IV {F, G}. (A9)

Consequently, the general representation theorem for vector systems
becomes

G0,1(r B, r A) − GH
0,1(r A, r B) = I0,1{G0,1(r, r A), G0,1(r, r B)},

(A10)

where GH
0,1 denotes the hermitian conjugate of G0,1. For elastic

waves,

I0{F, G}=
∮

δD
(FT (r)·c(r)·∇ ·G(r)−GT (r)·c(r)·∇ · F(r))·n̂d2r

(A11)

and

IV {F, G}

= jω

∫
D

(FT (r)·∇ ·η(r)·∇ ·G(r) + GT (r)·∇ ·η(r)·∇ · F(r))d3r.
(A12)

For electromagnetic waves,

I0{F, G} =
∮

δD
GT (r) ·

[
0 ×
× 0

]
· F(r) · n̂d2r

+ 2
∫

D
GT (r) ·

[− jωεδ 0

0 jωμδ

]
· F(r)d3r (A13)

and

IV {F, G} = 2
∫

D
GT (r) ·

[
jωδεδ 0

0 − jωδμδ

]
· F(r)d3r.

(A14)

The corresponding representation theorem for electromagnetic
waves is not necessarily the most suitable for applying interfer-
ometry because of the volume integrations in (A13) and (A14) that
depend on the electromagnetic parameters ε, μ, δε, δμ in the entire
volume D. In Appendix C, we show how to use a transformation K
to obtain an extended representation theorem (C8). For the general
perturbation problem,

K H · G0,1(r B, r A) − GH
0,1(r A, r B) · K

= I ′
0,1{G0,1(r, r A), G0,1(r, r B)}, (A15)
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where I ′
0 = IK H0 and I ′

1 = I ′
0 + I K V . For electromagnetic waves,

K =
[ − j I 0

0 j I

]
(A16)

gives

K · H0 =
[

(ωε + jσ )δ − j∇×
j∇× ωμδ

]
(A17)

and

K · V =
[ −( jδσ + ωδε)δ 0

0 −ωδμδ

]
. (A18)

The associated interferometric operators are

I ′
0{F, G} = j

∮
δD

GT (r) ·
[

0 ×
× 0

]
· F(r) · n̂d2r

+2 j

∫
D

GT (r) ·
[ −σδ 0

0 0

]
· F(r)d3r (A19)

and

IK · V {F, G} = 2 j

∫
D

GT (r) ·
[

δσδ 0

0 0

]
· F(r)d3r. (A20)

The volume integration in the corresponding representation theorem
for electromagnetic waves only depends on the conductivity σ and
its perturbation δσ .

Following the same reasoning as for scalar fields, the two repre-
sentation theorems for field perturbations are

GS(r B, r A) − GH
S (r A, r B) = I1{G1(r, r A), G1(r, r B)}

− I0{G0(r, r A), G0(r, r B)} (A21)

and

GS(r B, r A) = I0{GS(r, r A), G0(r, r B)}
+ (

GH
0 (r, r B) |V (r)| G1(r, r A)

)
. (A22)

This leads to the same analysis of contributions to the Green’s
function reconstruction as in Section 5 by applying the following
decomposition:

I0{GS(r, r A), G0(r, r B)} = GS(r B, r A)

− (
GH

0 (r, r B) |V (r)| G1(r, r A)
)
(A23)

I0{G0(r, r A), GS(r, r B)} = −GH
S (r A, r B)

+ (
GT

0 (r, r A)
∣∣V (r)

∣∣ G1(r, r B)
)
(A24)

I0{GS(r, r A), GS(r, r B)} = (
GT

S (r1, r A)
∣∣V (r1)

∣∣ G1(r1, r B)
)

− (
GH

S (r1, r B) |V (r1)| G1(r1, r A)
)
.

(A25)

A P P E N D I X B : T R E AT M E N T O F
G E N E R A L U N P E RT U R B E D B O U N DA RY
C O N D I T I O N S

Here, we generalize the results of this paper to any unperturbed
boundary conditions. For boundary conditions that remain un-

changed after perturbing the system, both perturbed and unper-
turbed fields fulfill equation

B(r) · u0,1(r) = f (r), r ∈ δDtot (B1)

where B denotes the linear boundary condition operator that acts
on the boundary δDtot of total volume Dtot. In particular, the unper-
turbed and perturbed Green’s functions, G0(r , rS) and G1(r , rS),
between points r and rS each satisfy eq. (B1). To account for this, the
relation (8) between unperturbed and perturbed Green’s functions
is modified as follows:

G1(r, r S) = G0(r, r S) + (G0(r, r1)|V (r1)|G1(r1, r S))

− G(r) · (V (r1)|G1(r1, r S)) , (B2)

where G is a solution of the homogeneous unperturbed system with
boundary conditions (B1):

H0(r) · G(r) = 0. (B3)

One can verify that this new formulation satisfies boundary condi-
tions (B1) by applying operator B to eq. (B2). The perturbation of
Green’s function GS(r , rS) satisfies a different expression:

GS(r, r S) = (G0(r, r1)|V (r1)|G1(r1, r S))

− G(r) · (V (r1)|G1(r1, r S)) . (B4)

The main results of this paper, however, remain unchanged. We
introduce the interferometric operator and derive the same gen-
eral representation theorem (23) as for homogeneous boundaries.
Additional derivations are needed in order to demonstrate expres-
sion (30). Consider eq. (B4) for GS(rA, rB) and insert the gen-
eral representation theorem for unperturbed media G0(r B, r1) =
I0{G0(r, r1), G0(r, r B)} + G0(r1, r B) to obtain

GS(r B, r A) = (I0{G0(r, r1), G0(r, r B)}∣∣V (r1)
∣∣G1(r1, r A))

+(G0(r1, r B)|V (r1)|G1(r1, r A))

−G(r B) · (V (r1)|G1(r1, r A))

= I0{GS(r, r A), G0(r, r B)}
+(G0(r1, r B)|V (r1)|G1(r1, r A))

+I0{G(r) · (V (r1)|G1(r1, r A)) , G0(r, r B)}
−G(r B) · (V (r1)|G1(r1, r A)) . (B5)

Additionally,

I0{G(r) · (V (r1)|G1(r1, r A)) , G0(r, r B)}
= (G(r) · (V (r1)|G1(r1, r A)) | H 0(r)|G0(r, r B)︸ ︷︷ ︸

δ(r−r B )

)

− (G0(r, r B)| H0(r)|G(r)︸ ︷︷ ︸
=0

·(V (r1)|G1(r1, r A)))

= G(r B) · (V (r1)|G1(r1, r A)) . (B6)

Summing these two equations yields

GS(r B, r A) = I0{GS(r, r A), G0(r, r B)}
+ (G0(r, r B)|V (r)|G1(r, r A)). (B7)

Eq. (B7) is identical to representation theorem (30), which holds
for unperturbed homogeneous boundary conditions. By analogy,
one can show that all the results presented in Section 5 holds for
any type of unperturbed boundary conditions.
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A P P E N D I X C : P RO P E RT I E S O F
S E L F - A D J O I N T D I F F E R E N T I A L
O P E R AT O R : V O LU M E / S U R FA C E
I N T E G R A L S A N D S PAT I A L
R E C I P RO C I T Y

For multi-dimentional space, the interferometric operator is defined
as

IH {F, G} = (FT |H|G) − (GT |H|F)

=
∫

D
(FT · H · G − GT · H · F)dV (C1)

and the general representation theorem is

G(r B, r A) − GH (r A, r B) = IH {G(r, r A), G(r, r B)}. (C2)

In Section 3, we explain why for practical applications, it is useful
to convert volume into surface integral to reduce the integration
over the sub-volume D to its bounding surface δD. This reasoning
extends to vector fields. In this appendix, we show how this relates to
the concept of self-adjoint operator. We introduce what is sometimes
referred to as extended Green’s identify in the literature (Lanczos
1996) and define the adjoint H̃ of a linear differential operator H :
the adjoint is the unique operator such that for any pair of vectors
( f , g), an operator , P H exits and∫

D

(
gT · H · f − f T · H̃ · g

)
dV

= −
∮

δD
P H ( f , g) · n̂d S = boundary term. (C3)

A differential operator is self-adjoint if H = H̃ . For self-adjoint op-
erators, eq. (C1) can be written using the extended Green’s identify
and consequently,

IH {F, G} =
∮

δD
P H (F, G) · n̂d S, (C4)

so the general representation theorem becomes

G(r B, r A) − GH (r A, r B) =
∮

δD
P H (G(r, r A), G(r, r B)) · n̂d S.

(C5)

For self-adjoint operators, in order to effectively extract the Green’s
function between two points A and B, we need to know the oper-
ator P H , which depends on the properties of the system, and the
Green’s functions on an enclosing surface δD. For more general sys-
tems (H �= H̃), relation (C5) is no longer valid, but we can alway
decompose the interferometric operator into surface and volume
integrals and express the representation theorem as

G(r B, r A) − GH (r A, r B) =
∮

δD
P H (G(r, r A), G(r, r B)) · n̂d S

+
∫

D
GT (r, r A) · (H − H̃) · G(r, r B)dV . (C6)

We can also possibly find a spacially independent transform K of
the operator H so that both the physics of the system is conserved
and K ·H is self-adjoint. This leads to a modified representation
theorem that is even more general and allows us to apply practically
interferometry in many cases. We discuss an example in Appen-
dix A. Consider the linear systems

K · H(r) · G(r, r A,B) = K · Iδ · (r − r A,B) (C7)

and apply a reciprocity relation of the correlation-type to obtain

K H · G(r B, r A) − GH (r A, r B) · K = IK ·H {G(r, r A), G(r, r B)}.
(C8)

Eq. (C8) is a general representation theorem that allows extensions
of representation theorem (C2) (corresponding to K = I). The ma-
trix K being chosen so that K ·H is self-adjoint, the representation
theorem reduces to a formulation with only surface integrals,

K H · G(r B, r A) − GH (r A, r B) · K

=
∮

δD
P K ·H (G(r, r A), G(r, r B)) · n̂d S. (C9)

Note that the results of this paper do not require space- and
time-reciprocity. This means that the order of spatial coordinates
matters in the relations we establish. To facilitate the use and inter-
pretation of representation theorems in practice, we desire systems
that are spatially reciprocal, as holds for particular boundary con-
ditions and symmetry of linear differential operators. For example,
consider a representation theorem of the convolution type. By anal-
ogy with the representation theorem (C2) of the correlation type,
we get

G(r B, r A) − GT (r A, r B)

=
∫

D

(
GT (r, r A) · H(r) · G(r, r B)

−GT (r, r B) · H(r) · G(r, r A)
)

dV . (C10)

For operators such that H = H̃ , which include self-adjoint real
operators, for example, the wave operator, use of Green’s identity
(C3) with D = Dtot yields

G(r B, r A) − GT (r A, r B) =
∮

δDtot

P H (G(r, r A), G(r, r B)) · n̂d S.

(C11)

Depending on boundary conditions, all of the components of the
tensor on the right-hand side of eq. (C11) vanish and consequently,
we obtain G(rB, rA) = GT (rA, rB), that is, spatial reciprocity. Typ-
ically, the components of

∮
δDtot

P H (G(r, r A), G(r, r B)) · n̂d S will
go to zero if some of the components of the Green’s tensors G(r ,
rA,B) or their derivatives vanish at δDtot. For acoustic waves in
lossless media, the Sommerfield radiation and free surface condi-
tions lead to spatial reciprocity. Acoustic systems with free bound-
aries, however, are of limited interest because we cannot practi-
cally apply interferometry. Indeed, in this case, eq. (C5) shows that
G(r B, r A) − G(r A, r B) = 0 for the pressure field; that is, for self-
adjoint operators, free boundaries always lead to reconstruction of
a null pressure field.

In summary, for systems with both appropriate boundary con-
ditions and symmetric linear differential operator, representation
theorem C5 is valid and spatial reciprocity applies. In this case, the
general representation theorem is

G(r B, r A) − G(r B, r A) =
∮

δD
P H (GT (r A, r S), GH (r B, r S))·n̂d S.

(C12)

Given eq. (C12), we retrieve the Green’s function between points
A and B by applying the interferometric operator to the Green’s
functions recorded at A and B for sources S on the boundary δD.
This is today’s commonly used setup for interferometry.
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