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Tutorial

The Fresnel volume and transmitted waves

Jesper Spetzler∗ and Roel Snieder‡

ABSTRACT

In seismic imaging experiments, it is common to use
a geometric ray theory that is an asymptotic solution
of the wave equation in the high-frequency limit. Con-
sequently, it is assumed that waves propagate along in-
finitely narrow lines through space, called rays, that join
the source and receiver. In reality, recorded waves have
a finite-frequency content. The band limitation of waves
implies that the propagation of waves is extended to a
finite volume of space around the geometrical ray path.
This volume is called the Fresnel volume. In this tutorial,
we introduce the physics of the Fresnel volume and we
present a solution of the wave equation that accounts
for the band limitation of waves. The finite-frequency
wave theory specifies sensitivity kernels that linearly re-
late the traveltime and amplitude of band-limited trans-
mitted and reflected waves to slowness variations in the
earth. The Fresnel zone and the finite-frequency sensitiv-
ity kernels are closely connected through the concept of
constructive interference of waves. The finite-frequency
wave theory leads to the counterintuitive result that a
pointlike velocity perturbation placed on the geometric
ray in three dimensions does not cause a perturbation
of the phase of the wavefield. Also, it turns out that Fer-
mat’s theorem in the context of geometric ray theory is
a special case of the finite-frequency wave theory in the
limit of infinite frequency. Last, we address the miscon-
ception that the width of the Fresnel volume limits the
resolution in imaging experiments.

INTRODUCTION

In seismic imaging techniques, ray theory is frequently used
as the workhorse to construct the forward and inverse wave-
field operators in modeling and inversion. The popularity of ray
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theory is partly due to the limitations in computer power and
memory because ray theory is computationally efficient and
easy to implement in seismic imaging methods. On the other
hand, seismic imaging experiments (Berkhout, 1984; Yilmaz,
1987; Williamson, 1991; Wordward, 1992) have shown clear
indications that ray theory, because of its approximate descrip-
tion of wavefield propagation, is inadequate in imaging of me-
dia where diffraction effects are important. A comprehensive
overview of seismic ray theory is given by Červený (2001).

In seismological experiments, recorded reflection and trans-
mission signals emitted from a broadband source contain
mostly low-frequency components because the earth attenu-
ates high-frequency waves. Ray theory, however, is based on
a high-frequency approximation. This implies that there may
be a methodological conflict between the imaging technique
based on ray theory and the measured wavefield. The region
around a ray that mostly influences the propagation of a band-
limited wave is called the first Fresnel zone. Ray theory works
well in media with structures that have a length-scale larger
than the first Fresnel zone of the recorded wavefield (Sheriff
and Geldart, 1982; Berkhout, 1984; Yilmaz, 1987; Williamson,
1991; Williamson and Worthington, 1993; Chen and Schuster,
1999). For low-frequency reflected waves (e.g., frequency con-
tents in the range 10–70 Hz) and transmitted waves (e.g., with
frequencies between 300 and 800 Hz), the width of first Fres-
nel zone can be on the order of 500 m and 50 m, respectively.
This width is larger than most of the features that one aims
to image in land and marine reflection seismic surveys or in
crosswell and vertical seismic profiling (VSP) experiments.

In this tutorial, we show how the seismic resolution limit can
be extended to heterogeneous structures with a size smaller
than the first Fresnel zone. We show how to generalise the
ray theoretical formalism for traveltimes and amplitudes to
a more accurate wave theoretical approach that accounts for
the band limitation of reflection and transmission signals. The
finite-frequency wave theory provides sensitivity kernels (also
known as Fréchet kernels) for reflected and transmitted waves.
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These finite-frequency Fréchet kernels linearly relate veloc-
ity perturbations to changes in traveltime and amplitude. The
finite-frequency wave approach is directly applicable to seis-
mic tomographic experiments such as crosswell, VSP, reflec-
tion, and migration experiments. The Fréchet kernel naturally
connects to the Fresnel zone because both concepts are derived
using the idea of constructive interference of waves.

This tutorial has the following structure. Starting from the
Kirchhoff integral, we formulate the concept of Fresnel zones
in a homogeneous medium. Next, the sensitivity kernel for
finite-frequency waves in a homogeneous medium is intro-
duced. Then, an example of the breakdown of ray theory is
illustrated. Afterwards, we extend the formalism for Fresnel
zones and Fréchet kernels to heterogeneous media, and we
show several examples of high-resolution seismic experiments
wherein the resolution is not limited to the first Fresnel zone.

THE FRESNEL VOLUME

In ray theory, waves propagate along rays that form a line or
several lines connecting the source to the receiver. In reality, a
wave does not strictly propagate along a line. A wave is a col-
lective phenomenon in which the particle motion is organized
over a finite region of space (Scales and Snieder, 1999). For
waves with a finite-frequency band, discontinuities in the wave-
field tend to be smoothed out as the waves propagate. Hence,
the wavefield is continuous over a limited area of propagation.
The size of the region over which the wavefield varies is given
by the wavelength, which decreases for increasing frequency.
This is the physical reason that ray theory is progressively more
accurate with increasing frequency.

For finite-frequency wave propagation, the propagation path
extends to the tubelike volumes that straddle the rays run-
ning from a source to a receiver. In ray theory, these volumes
are collapsed into one line (the ray) by the employed infinite-
frequency approximation. Here, we follow Kravtsov (1988) and
use the Kirchhoff integral to derive the region of space through
which the waves travel for a given source-receiver pair.

In Figure 1, a source at location rs excites waves. The rep-
resentation theorem says that the wavefield recorded at the
receiver location rr can be represented as an integral over a
surface Sthat is placed between the source and receiver. Using
the geometry shown in Figure 1, the wavefield at the receiver
location can be written as

p(rr )=
∫

S

1
ρ(r)

(p(r)∇G(r, rr )−G(r, rr )∇ p(r)) · dS,

(1)
where p(rr ) is the acoustic pressure at the receiver position rr ,
ρ denotes the mass density and G(r, rr ) is the Green’s function.

Figure 1. The wavefield at the receiver location rr expressed as
an integral over the surface S.

This expression holds for acoustic waves; its derivation can be
found in Morse and Feshbach (1953) and in Snieder (2001). The
medium for which the Green’s function G(r, rr ) is defined can
be either homogeneous or inhomogeneous. For elastic waves, a
similar expression is known under the name of Betti’s theorem
(Aki and Richards, 1980). Since the mathematical complexity
resulting from the tensor character of elastic waves obscures
the underlying ideas, we proceed with the representation the-
orem of equation (1) for acoustic waves. The wavefield on the
surface S in the integral (1) is the total wavefield. However,
when backscattering is weak, the wavefield in the integral can
be replaced by the incident waves that travel directly from the
source to the surface S. This is called the Kirchhoff approxi-
mation.

In the Kirchhoff approximation, the integral (1) can be in-
terpreted as a superposition of waves that have been scattered
from different points on the surface S; the associated wave
paths are indicated in Figure 1 with thin solid lines. The waves
that propagate from points on Sclose to the geometric ray ar-
rive almost in phase with the primary arrival (i.e., the direct
wave). The waves that are radiated from points far from the
geometric ray arrive much later than the direct arrival. For this
reason, the main contribution to the transmitted wave in inte-
gral (1) comes from points on the surface S that are close to
the geometric ray. This argument, however, does not tell us yet
what “close” means. We make this more specific by considering
in the next section the special case of a homogeneous medium.

Example: A homogeneous medium

For a homogeneous model, the geometry of the diffraction
process is shown in Figure 2. The incident wave (with wave-
fronts drawn with solid gray lines) radiates from the source at
rs to the point r, and gives rise to a diffracted wavefield (with
wavefronts drawn with dashed grey lines) that propagates to-
wards the receiver at rr . The point r lies on the integration
surface Sof the expression in equation (1) at a distance x from
the source, measured along the geometric ray. The perpendic-
ular distance from the integration point to the geometric ray
is denoted by q, and the source-receiver distance is given by
L . The detour of the diffracted wave that travelled from the
source at rs via the integration point r to the receiver at rr is
then compared to the length of the geometric ray.

We consider the path-length difference D between the geo-
metric ray with the propagation length equal to the source-
receiver distance and the diffracted wave that travels the

Figure 2. Definition of the geometric variables in a homoge-
neous velocity model. Wavefronts of the wavefield emitted
from the source and the wavefronts of the diffracted wave-
field due to the diffractor at position r are illustrated with the
solid and dashed gray lines, respectively.
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detoured path from the source at rs via the integration point r
to the receiver at rr . The path-length difference of the detour
and direct ray is given by

D =
√

x2 + q2(x)+
√

(L − x)2 + q2(x)− L . (2)

When the deflection q(x) is much smaller than x and L − x, a
first-order Taylor expansion in q2 gives the following expres-
sion for the detour:

D ≈ 1
2

(
1
x
+ 1

L − x

)
q2(x). (3)

The wave passing through the diffraction point r interferes con-
structively with the direct wave when the path-length differ-
ence is small compared to the wavelength λ. The main contri-
bution from the scattering integral in equation (1), therefore,
comes from points satisfying the requirement that

D < λ/n. (4)

The number n denotes the fraction of the wavelength that is al-
lowable for the detour to still provide constructive interference
of waves. In the next section, we show analytically that in two di-
mensions the value n= 8/3 is appropriate, whereas in three di-
mensions n= 2. By using the value of n for wave propagation in
two dimensions in the equation (4) combined with equation (3),
the following condition for constructive interference is derived:

q(x) <

√
3
4
λx(L − x)

L
. (5)

This condition defines the central white area shown in Figure 3,
which illustrates the first six Fresnel zones in a homogeneous
2D medium. The first, third, and fifth Fresnel zones corre-
spond to detours that give constructive interference (the white
areas), whereas the second, fourth and sixth Fresnel zones
imply detours that yield destructive interference (the black
regions). It is clear from Figure 3 that the most important
area is the first Fresnel zone, which generates diffracted waves
that interfere constructively with the direct arrival. Hence, a
velocity perturbation of the medium affects the direct wave
when this perturbation is located inside the first Fresnel zone.

In contrast to the first Fresnel zone, the higher order Fresnel
zones alter rapidly between positive and negative wavefield
interference so that the total response from the higher order
Fresnel zones to the wavefield recorded at the receiver cancels
out upon integration over the surface S. Here, the first Fresnel
zone is simply referred to as the Fresnel zone, or alternatively
as the Fresnel volume (Červený and Soares, 1992).

FINITE-FREQUENCY FRÉCHET KERNELS IN A
HOMOGENEOUS MEDIUM

The Fresnel volume is based on the concept of construc-
tive inference of scattered waves with respect to the geometric

Figure 3. The first six Fresnel volumes for a homogeneous ve-
locity model.

arrival. This may suggest that the Fresnel volume has a sharp
cutoff, and that the sensitivity of the wavefield to perturbations
of the medium is uniform within the Fresnel zone. However,
the continuity of the wavefield ensures that the related sensi-
tivity has a gradual rather than a sharp cutoff. In Appendix A,
we study this cutoff by showing a derivation of the Kirchhoff
integral and the sensitivity kernels of the wavefield as functions
of the slowness perturbation field. Here, we continue the treat-
ment of the Fresnel volume by using the sensitivity kernels as
an indicator for the shape of the Fresnel volume.

The sensitivity of the phase and amplitude of wavefields
is extracted from the sensitivity kernel, also known as the
Fréchet kernel (Tarantola, 1987), which is a function of the
wavelength, the velocity, and the positions of the source and
receiver. The Fréchet kernel for phase and amplitude variations
can be derived from the first-order Rytov approximation (e.g.,
Aki and Richards, 1980; Snieder and Lomax, 1996; Spetzler
and Snieder, 2001), which accounts for the first-order pertur-
bation of the phase and amplitude of waves. In general, the
perturbation of phase and amplitude is an integral of the sensi-
tivity kernel K (r) multiplied by the slowness perturbation field
δu(r) [or the velocity perturbation field δv(r)] over the volume
between the source and receiver. For instance, the traveltime
variation δt due to scattering and diffraction phenomena can
be written as

δt =
∫

V
K (r)δu(r)dV. (6)

For the geometry in Figure 2, the sensitivity kernel for a point
source in a 2D constant reference-velocity field v0 is given by

K 2D(x, z) =
√

L

v0

∫ ν0+1ν

ν0 −1ν
A(ν)
√
ν

×
sin

(
πνL

v0

z2

x(L − x)
+ π

4

)
√

x(L − x)
dν, (7)

where x is the distance along the reference ray, z is the dis-
tance perpendicular to the ray path, L is the propagation dis-
tance of the primary arrival and ν denotes frequency. The in-
tegration over the frequency band [ν0−1ν; ν0+1ν] indicates
a band-limited wavefield. The function A(ν) is the normalized
amplitude spectrum of the recorded wavefield using the nor-
malization condition

∫ ν0 +1ν
ν0 −1ν A(ν)dν= 1. In three dimensions,

the Fréchet kernel for a point source in a homogeneous back-
ground medium is given by

K 3D(x, y, z) = L

v0

∫ ν0+1ν

ν0−1ν
A(ν)ν

sin
(
πνL

v0

y2 + z2

x(L − x)

)
x(L − x)

dν.

(8)

The distance perpendicular to the ray path is equal to
√

y2+ z2

in three dimensions. Spetzler and Snieder (2001) give a detailed
derivation of the sensitivity kernels in equations (7) and (8).

An example of a 2D Fréchet kernel for the traveltime de-
lay of a transmitted wave is illustrated in Figure 4a. The
grayscale indicates the sensitivity of the arrival time of a
band-limited wave to slowness perturbations throughout the
medium. The source wavelet contains frequencies ranging from
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Figure 4. Finite-frequency traveltime delay Fréchet kernels for
a transmitted and reflected wave in a homogeneous medium.
The ray path between the source and receiver is shown with
the white line, and the Fresnel zone boundary for the central
frequency is plotted with the white dashed line. (a) Fréchet
kernels for a transmitted wave. The constant reference velocity
equals 4 km/s, the source-receiver distance is L = 100 m, and
the frequency range is between 250 and 750 Hz. (b) Fréchet
kernels for a reflected wave. The velocity is 4 km/s above the
reflecting interface at 1 km. The two-way ray path distance L
is equal to 2 km, and the frequency is between 40 and 60 Hz.

250 to 750 Hz, which is representative for borehole-to-borehole
and VSP experiments. Because of the homogeneous back-
ground velocity, the geometric ray path (solid line) is a straight
line and the first Fresnel zone for the central frequency at
500 Hz (dashed line) has the form of an ellipse [except near the
source and receiver where the approximate Fresnel zone equa-
tion in equation (5) is not accurate]. Notice that the width of
the Fresnel zone is as large as 25 m in this experimental geom-
etry, which is several times larger than the central wavelength
λ= 8 m. The sidelobes of the Fréchet kernel in Figure 4a can-
cel out due to destructive interference of the sensitivity kernel
at higher-order Fresnel zones when integrating over a broad
frequency band.

This cancellation is explicitly demonstrated in Figure 5a
which shows cross-sections of the Fréchet kernel in Figure 4a
for different frequencies as a function of the distance perpen-
dicular to the geometric ray. The values for the reference ve-
locity, frequency, and distance from the source to the receiver
are the same as in Figure 4a. The curves with the thin solid line
are computed for a single-frequency component starting from
250 Hz and increasing in steps of 100 Hz to 750 Hz. Adding the

Figure 5. Cross-sections of transmission Fréchet kernels for 2D
and 3D wave experiments. The cross-sections are obtained at
the halfway between the source and receiver, where the width
of the Fresnel zone is largest. (a) Cross-sections (single fre-
quency, thin solid line; frequency averaged, thick solid line) for
a 2D Fréchet kernel. The maximum sensitivity to slowness per-
turbations is away from the ray path. (b) Cross-section for a 3D
frequency-averaged Fréchet kernel. Notice the zero sensitivity
to the slowness perturbation field on the geometric ray.
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single-frequency cross-sections gives the broadband Fréchet
kernel in Figure 5a indicated with a thick solid line.

We show in Figure 5b, the cross-section of a broadband
sensitivity kernel for timeshifts of transmitted waves prop-
agating in three dimensions. The values for the reference
velocity, frequency, and distance from the source to the
receiver are identical to those applied in Figure 4a. In both
plots of Figure 5, it is clear that the sensitivity to slowness
perturbations is greatest away from the geometric ray. The
3D Fréchet kernel actually vanishes on the ray path, which
was also observed by Woodward (1992). Physically speaking,
this implies that in three dimensions a velocity perturbation
placed on the geometric ray does not alter the arrival time of
a wave. Fermat’s theorem, which is a corollary of ray theory,
states that the perturbation of the arrival time is given by the
line integral of the slowness perturbation along the geometric
ray (Aldridge, 1994). Ray theory thus predicts a nonzero sen-
sitivity to slowness perturbations on the geometric ray. This
phenomenon has recently been called the banana-doughnut
paradox by Marquering et al. (1999).

At first glance, it may seem that there is a contradiction be-
tween ray theory and the finite-frequency wave theory. The ap-
parently conflicting sensitivities of ray theory and wave theory
for slowness perturbations on the geometric ray can be rec-
onciled when the slowness perturbation has a geometric size
greater than the width of the Fresnel volume. In that case, the
requirements for ray theory are valid. One can then show ana-
lytically with the stationary phase approximation that the band-
limited traveltime perturbation of equation (6) gives the same
traveltime perturbations as predicted by ray theory (Spetzler
and Snieder, 2001; Dahlen and Baig, 2002). However, for a
slowness perturbation with a size much smaller than the width
of the Fresnel volume, the conditions for applying ray theory
are not satisfied. In this case, wave theory predicts that in three
dimensions the slowness perturbation does not alter the arrival
time when the perturbation is located on the geometric ray.

The Fréchet kernel for wave propagation in a 2D homoge-
neous medium given in equation (7) has its first zero crossing
near the reference ray when the argument of the sine func-
tion equals π , thus πνLz2/(v0x(L − x))+π/4=π . Equating z
in this equation with the distance q in expression (3) gives the
detour’s path length difference D to be equal to 3λ/8 at the
first zero crossing of the Fréchet derivative. Hence, the value
of n= 8/3 for constructive interference of waves as mentioned
earlier. A similar analysis for the 3D Fréchet kernel in equation
(8) gives D= λ/2 for the zero crossing of the Fréchet kernel.
Thus in three dimensions, n= 2.

The formalism for the Fréchet kernels of phase and am-
plitude variations of wavefields can be extended to reflected
waves. According to one-way wave theory (e.g., Wapenaar and
Herrmann, 1996), reflected waves can be decomposed into a
downgoing wavefield from the source to the reflector and an
upgoing wavefield from the reflector to the receiver. Accord-
ingly, the sensitivity kernel for the timeshift of a reflected wave
can be obtained from the composition of two Fréchet kernels:
one sensitivity kernel for the downward propagating wavefield
and another Fréchet kernel for the upward propagating wave-
field. An example of the sensitivity kernel for a reflected wave
is illustrated in Figure 4b. In this case, the width of the Fres-
nel volume at the reflector of depth 1 km is on the order of
400 m (λ= 100 m and the two-way path length L is 2-km long).

This is four times the wavelength and a fifth of the two-way
path length. This example shows that the width of the Fres-
nel volume can be large for realistic wave experiments in ex-
ploration seismology. Similar estimates of the Fresnel volume
width for reflected waves can be found in Sheriff and Geldart
(1982), Berkhout (1984), Knapp (1991), Hubral et al. (1993),
and Schleicher et al. (1997).

We return to the sensitivity kernel for the relative ampli-
tude variations of finite-frequency waves. According to Aki
and Richards (1980), the Fréchet kernel K (r) for the rela-
tive amplitude perturbation δA/A is given by expression (7)
for two dimensions or by expression (8) for three dimensions
where the sine function is replaced by a cosine. Plots of sensi-
tivity kernels for amplitude perturbations can be found in Aki
and Richards (1980) and Snieder and Lomax (1996). In seis-
mic experiments, the amplitude information has a larger uncer-
tainty than the phase information. The amplitude of a recorded
wavefield is influenced by several other factors that include at-
tenuation due to energy losses, geometrical spreading, source
and receiver coupling, and directivity (e.g. Williamson, 1991).
In the remaining part of this tutorial, we focus on seismic
imaging techniques that use phase information only as data
input.

Gaussian beam theory represents an alternative approach to
extend the sensitivity of propagating waves to a finite volume
around the geometric ray (Červený, 2001). This theory pro-
poses that high-frequency wavefields propagate along the ray
path between the source and receiver. The amplitude along
the wavefront decays as a Gaussian function away from the
ray path. One major difference between Gaussian beam the-
ory and the finite-frequency wave theory is in the prediction of
the traveltime sensitivity on the ray path. Gaussian beam the-
ory predicts maximum sensitivity on the geometric ray, whereas
the scattering theory presented for finite-frequency waves pre-
scribes a minimum sensitivity on the ray for 2D and 3D media.
In addition, the width of the Gaussian beam needs to prescribed
in an ad hoc fashion, whereas the theory presented here is self-
consistent in the sense that it does not require any additional
parameters.

RAY THEORY AND FINITE-FREQUENCY WAVE THEORY
REGIME EXAMPLE

In Figure 6, we present a comparison of ray theory and
scattering theory with a finite-difference solution of the wave
equation. A horizontally propagating plane wave is incident
from the left, and a vertical receiver line is placed at 100 m
offset. The slowness perturbation (grayscale) has fluctuations
with a length scale that decreases with depth. The strength of
the velocity perturbation field is 2.5% relative to the constant
reference-velocity field of 4 km/s. The central frequency of the
plane wave is 200 Hz. The average width of the Fresnel zone
for plane waves is approximately 65 m at the position of the
heterogeneous slab. The width of the Fresnel volume is smaller
in size than the characteristic length scale of velocity anoma-
lies above 250 m depth, while below this depth the length scale
of the slowness variations is less than the width of the Fresnel
volume. This implies that the conditions for the validity of ray
theory are satisfied only in the top part of Figure 6 down to 250
m. For depths below 250 m, the length scale of the slowness
perturbation is so small that ray theory is not valid. The jagged
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line at 250 m depth represents the transition zone between the
regimes of ray theory and scattering theory.

The “true” delay time of the waves was determined by cre-
ating synthetic seismograms using a finite-difference scheme
for a homogeneous model and for a model including the slab
of slowness perturbations. The difference in the arrival time of
these modeled waveforms in the two models gives an estimate
of the “true” perturbation in the arrival time. This delay time is
indicated with a red line. The delay time predicted by ray theory
is shown with a yellow line, whereas the time shift computed
with scattering theory using expression (6) is shown with a blue
line. Both ray theory and scattering theory do well in predicting
the delay time from the finite-difference modelling for depths
less than 250 m, where ray theory is valid. For greater depths,
only scattering theory is capable of estimating the correct value
of the timeshift. At these depths, the delay times computed with
ray theory are too large in magnitude compared to the travel-
time shifts determined from the finite-difference synthetics. At
several depths, the ray-theoretical traveltime delays are anti-
correlated with the observed ones. If these delay times were to
be inverted with a ray-geometrical tomographic algorithm, the
inferred slowness perturbations would have the wrong sign.

Figure 6. Synthetic test of the scattering theoretical approach
using a plane incoming wave that propagates through a medium
with small-scale structure. The perturbed slowness field is
shown in grayscale. The timeshifts retrieved from the finite-
difference computation are indicated with a red line, and the
residual times computed with ray theory and scattering the-
ory are shown in yellow and blue, respectively. The horizontal,
jagged line separates the regime of ray theory from that of
scattering theory.

Notice that the strength (i.e., 2.5%) of the velocity perturba-
tions in the synthetic transmission experiment in Figure 6 are
smaller than the values of the velocity perturbation strength
observed in typical seismic transmission experiments, where
the velocity perturbations can be as large as 10–15%. How-
ever, if the breakdown of ray theory for finite-frequency waves
is significant in a weakly perturbed velocity field, this compli-
cation will certainly be important in heterogeneous media with
a larger strength of velocity perturbations. Examples of finite-
frequency transmission experiments using a more complex ve-
locity perturbation field with a strength of 10% compared to
the reference medium are shown in Spetzler et al. (2002), Spet-
zler (2003), and in the next sections.

FRESNEL VOLUMES AND FRÉCHET KERNELS IN
HETEROGENEOUS MEDIA

The theory for Fresnel volumes and finite-frequency waves
can be extended to heterogeneous reference media. Efficient
methods for computing Fresnel volumes have been formulated
using either expressions for the wavefront curvature (Červený
and Soares, 1992) or a formulation based on paraxial rays
(Pulliam and Snieder, 1998). Snieder and Lomax (1996) and
Snieder and Chapman (1998) generalise the finite-frequency
wave theory to heterogeneous background models by taking
the wavefront curvature and geometrical spreading factor for
curved rays into account.

An example of two 2D finite-frequency Fréchet kernels for
traveltime delays of transmitted waves in a reference medium
with a constant velocity gradient is presented in Figure 7. The
frequency content is between 250 and 750 Hz, the source-
receiver distance is on the order of 100 m, and the veloc-
ity varies linearly with depth with v(z= 0 m)= 3.5 km/s and
v(z= 150 m)= 5 km/s. This example is relevant for crosswell
and VSP tomography. The rays joining the source and receiver
are indicated with the solid white lines, and the Fresnel zone for
the central frequency at 500 Hz is illustrated with the dashed
white lines. To reduce the computation time of the band-limited
Fréchet kernels, the volume integration in equation (6) is trun-
cated to a higher Fresnel zone (i.e., dashed black lines). The
grayscale colors indicate the sensitivity of the broadband waves
to slowness perturbations for the two source-receiver pairs. No-
tice that the Fréchet kernels bend towards larger depths since
the reference velocity increases with depth.

The finite-frequency Fréchet kernels for heterogeneous ref-
erence media have been validated in the numerical finite-
difference experiment similar to the one in Figure 6. The re-
sult of a numerical modeling experiment is shown in Figure 8a.
We apply the same colour convention for the finite-difference
scheme and ray-theoretical and finite-frequency predicted
timeshifts as in Figure 6. The velocity model (the grayscale
color) consists of a large-scale and a small-scale structure. For
the heterogeneous large-scale structure, we use the linear gra-
dient medium as in Figure 7 combined with two negative small-
scale velocity perturbations with a strength of 8% at depths
about 68 m and 83 m. The vertical characteristic length (i.e.,
5 m) of the two anomalies is much smaller that the Fresnel
zone of the transmitted waves (i.e., 25 m), hence the require-
ments for ray theory are invalid in this velocity model. From
the three curves of the travel timeshift in Figure 8a, it is clear
that only the finite-frequency wave theory predicts well the
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finite-difference traveltime delays. Interestingly, we see that
the finite-frequency timeshift curves have one maximum in-
stead of two peaks, which is the case for the ray-theoretical
time delay curve. An interpretation based on ray theory of
the “observed” travel timeshifts would lead to the idea of one
velocity anomaly only, but in fact there are two small-scale
velocity perturbations present in the velocity model.

To show the effect of focusing-defocussing effects, we have
used a shooting method to trace rays with different incident
angles from the source depth at 75 m in Figure 8b. We clearly see
that two foci (related to caustics and triplications) are present
at the 60–80 m offset range. In the vertical section between the
foci, the rays are sparse because of defocussing. In general, the
effect of focusing and defocussing complicates an estimation of
traveltimes. The example in Figure 8b illustrates that the linear
finite-frequency wave theory in this case explains the arrival
time very well, despite the severe ray bending and focusing
that is caused by the velocity anomalies.

Figure 9 shows a remarkable example of a Fresnel zone with
a complicated shape. The example is from global seismology,
and shows the Fresnel zone projected on the earth’s surface
of a PP-wave arrival with the epicentral distance of 107◦. Such

Figure 7. Sensitivity kernels for band-limited transmitted wave-
fields with different source-receiver positions in a heteroge-
neous reference slowness field. The background model is a
constant velocity gradient medium having the velocity 3 km/s
at 0-m depth and 5 km/s at 150-m depth. The frequency of the
wavefield is in the range from 250 to 750 Hz. The white solid
line indicates the ray path between the source and receiver,
the white dashed line shows the Fresnel zone boundary, and
the dashed black line refers to the truncated volume for the
integration in equation (6).

an event is called a minimax phase because the traveltime de-
creases when the surface coordinate of the wave is moved away
from the specular reflection point (at 0◦ latitude and 53.5◦ longi-
tude) along the source-receiver line (i.e., aligned to 0◦ latitude),
whereas the traveltime increases when the surface coordinate
is moved perpendicular to the source-receiver line. The Fresnel
zone of the PP-wave at the surface of the earth has a hyperbolic
shape with thin arms that extend far from the geometric ray
(e.g., Kravtsov, 1988; Neele and Snieder, 1992).

HIGH-RESOLUTION SEISMIC IMAGING EXPERIMENTS

We present two examples of high-resolution experiments
that are relevant for exploration seismology. In both experi-
ments, the heterogeneous velocity models have structures with
a length scale that is smaller in size than the Fresnel volume of
the recorded wavefield. The first example is a crosswell tomo-
graphic inversion of traveltime shifts from broadband transmis-
sion signals, and the second example is a migration experiment.

The “observed” traveltime delays in the borehole-to-
borehole inversion experiment are computed with equation
(6), and the velocity structure in Figure 8 is the true velocity
model. The frequency content of the wavefield ranges between
250 and 750 Hz. The vertical line of sources is located at 0-m
offset, while the vertical receiver line is at 100-m offset. There
are 101 sources and receivers between the depths of 25 and 125
m, with a separation of 1 m; thus in total the data set consists of
10 201 traveltime perturbations. The presented crosswell exper-
iment is similar to the experiments of Pratt and Coulty (1991)
and Reiter and Rodi (1996). We use an ordinary least-squares
inversion to invert the synthetic data using sensitivity kernels
compiled with the finite-frequency wave theory and the ray
theory. In Figure 10, the true velocity model (a) and the in-
verted velocity models inferred from diffraction theory (b) and
ray theory (c) are shown. It is clear from this synthetic experi-
ment that the inversion based on scattering theory reproduces
the true velocity model well. In contrast, the inverted velocity
model from the ray theoretical inversion shows an indication
of one anomaly only located at a depth of about 70–75 m. This
spurious anomaly is located in between the two true velocity
perturbations. For a recent example of finite-frequency cross-
well tomography using ultrasonic broadband waveform data
in a laboratory experiment, see Spetzler (2003).

The issue of resolution in migration experiments has been
studied both analytically and numerically. Berkhout (1984) and
Chen and Schuster (1999) formulate criteria for the horizontal
resolution limit, which depends on parameters such as aper-
ture, diffractor depth, and wavenumber. Berkhout (1984) and
Yilmaz (1987) show synthetic examples of high-resolution mi-
gration experiments using reflection models with significant
small-scale structure. Following Berkhout (1984) and Yilmaz
(1987), we illustrate with a synthetic migration experiment in
Figure 11 that it is possible to obtain a clear image of reflecting
interfaces with a horizontal length scale that is much smaller
than the width of the Fresnel volume at the reflector. The syn-
thetic migration experiment employs band-limited zero-offset
data with a central frequency of 50 Hz. The input-model con-
sists of six reflectors with decreasing horizontal extent (indi-
cated with closed solid lines) at 1-km depth. The horizontal
extent of the reflectors is 400, 250, 75, 25, 15, and 5 m. The ref-
erence velocity field is 4 km/s everywhere, so the width of the
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Fresnel volume at the reflectors is approximately 400 m. The
Fresnel volumes for three different source positions are shown
with three semiellipses in Figure 11. To account for the band
limitation of the waves in the migration experiment, we used
a 45◦ finite-difference migration scheme for zero-offset data
to simulate the wave propagation (Claerbout, 1984; Stockwell,
1997). The grayscale in Figure 11 shows the migrated model.
Reflectors with the horizontal extent as small as 25 m are clearly
seen, while the two smallest reflectors are nearly or completely
invisible. Notice that the horizontal resolution in this synthetic
migration experiment is much smaller than the width of the
Fresnel zone.

Another interesting example of a high-resolution experi-
ment closely connected to migration is synthetic aperture radar
(SAR) (e.g., Bamler and Hartl, 1998; Massonnet and Feigl,
1998). SAR is usually used from satellites that circle the Earth,
but this technique has also been employed using radar sys-
tems mounted in aircraft. These satellites emit radar waves
that are reflected at the earth’s surface and are recorded by the
satellite. Thus, SAR has a close analogy to reflection seismic
experiments. Within the earth sciences, SAR is mostly used
to create high-resolution images of topography. In SAR appli-
cations from space, the highest resolution is on the order of
100 m while the footprint of the radar beam is a factor 25 times
larger in size (about 2.5 km). Both migration techniques and
SAR combine the information acquired in many different shot-
receivers combinations to unscramble the averaging that has
occurred in the reflection of a wave for a single shot-receiver
geometry. The example shown in Figure 11 shows that seismic
migration indeed carries out this process and that the resolu-
tion of the final image is not limited by the width of the Fresnel
zone.

DISCUSSION

The concept of the Fresnel volume and the sensitivity ker-
nels that account for the influence of small-scale velocity per-
turbations on the traveltime of waves serve not only to pro-
vide a better understanding of wave propagation. This theory
can also be used in a number of ways in seismic imaging. The

Figure 8. Validation of the finite-frequency
Fréchet kernels in Figure 7 using a synthetic
forward modelling experiment. The “true” ve-
locity medium is a combination of a heteroge-
neous reference medium and two small-scale
anomalies located at depths 68 m and 83 m,
respectively. (a) Finite-difference experiment
as in Figure 6 using the wavefield modelling
parameters in Figure 7. The colour conven-
tion for the travel timeshifts is the same as in
Figure 6. (b) A ray-path shooting experiment
showing that nonlinear defocusing effects are
operative in the wavefield modelling experi-
ment.

integral in equation (6) provides a simple expression for the
leading order perturbation in the arrival time of waves caused
by small-scale velocity perturbations. It also can be used to
compute the effective velocity of waves propagating through
media with small-scale velocity perturbations.

In migration, one needs to compute the wavefield propa-
gators that specify how waves propagate from the source to
reflection points in the subsurface and from there to the re-
ceivers. In applications where one wants to account for the
imprint of small-scale velocity perturbation on the wave prop-
agation operators used in migration, one can use expression (6)
for computing the imprint of these small-scale velocity pertur-
bations on the phase propagators.

An important application of the theory presented here is
transmission tomography, which is relevant in cross-borehole
tomography and VSP experiments. In many applications, trans-
mission tomography is based on geometric ray theory. In that

Figure 9. The Fresnel volume (shaded) for a PP-wave at its
bounce point for an epicentral distance of 107◦ and a period of
20 s. The source-receiver direction is indicated with the dashed
line at 0◦ latitude.
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context, the well-known Fermat’s theorem states that the trav-
eltime perturbation is given by the line integration of the slow-
ness perturbation along the reference ray. The application of
Fermat’s theorem is unjustified when the velocity perturbations
have a size smaller than the width of the Fresnel volume. In that
situation, expression (6) can be used as a basis for a linear in-
version scheme, as illustrated with the borehole-to-borehole
experiment in Figure 10. Because of its linear character, it is as
easy to implement the finite-frequency wave theory stated in
equation (6) as the ray-geometric line integral in tomographic
inversions.

The Rytov approximation can also be used as the basis for
diffraction tomography. This approach was taken by Yomogida
and Aki (1987), who inverted surface wave data for the struc-
ture under the Pacific Ocean. Woodward (1992) used a similar
technique for the analysis of seismic reflection data. In general,
the theory presented here seems most useful for the analysis
of transmission data and for the computation of the Green’s
functions that are needed for imaging seismic reflection data
in the presence of small-scale velocity variations.

The theory presented here relies on the linearized relation-
ship between the small-scale velocity perturbations and the
perturbation of the phase and amplitude of the waves. In real-
ity, higher order perturbations of the phase may also be impor-
tant. Within the context of geometric ray theory, ray bending
leads to a second-order relation between the arrival time and
the slowness perturbation (Snieder and Sambridge, 1992). An-
other nonlinear phenomenon is wavefront healing, wherein
the diffraction of waves around velocity perturbations leads
to a different imprint of fast velocity anomalies on the wave-
fronts than slow velocity anomalies (Wielandt, 1987; Nolet and
Dahlen, 2000). The theory presented here does not account for
the nonlinearity due to ray bending and wavefront healing, and
one should be aware that these mechanisms may be operative
in strongly heterogeneous media. The theory presented here
nevertheless does account for the first-order imprint of the ve-
locity perturbation on the propagation of seismic waves.

Figure 10. Finite-frequency borehole-to-borehole inversion experiment. (a) The true velocity model is the same
as in Figure 8. (b) The inverted velocity using finite-frequency wave theory. (c) The inverted velocity compiled
with ray theory.
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APPENDIX A

THE RELATIONSHIP BETWEEN THE KIRCHHOFF
INTEGRAL AND THE FRÉCHET KERNEL

In this appendix, we show how the Kirchhoff integral is con-
nected to the finite-frequency sensitivity kernel. The starting
point of the derivation is the Kirchhoff integral (1) for the cal-
culation of the recorded wavefield that propagates through the
surface Sof diffractor points as illustrated in Figure 1.

When the diffraction point r is in the far field, the gradient of
the pressure and the Green’s function is approximately given
by

∇ p(r) = ik ŝp(r) and ∇G(r, rr ) = −ik r̂G(r, rr ).

(A-1)
As shown in Figure A-1, the unit vectors ŝ and r̂ point along the
geometric ray that joins the source to r and along the geomet-
ric ray from r to the receiver, respectively. Using the far-field
approximation, equation (1) can be written as

p(rr ) = −
∫

S

ik

ρ(r)
p(r)G(r, rr )(cos θs + cos θr ) dS,

(A-2)
where the angles θr and θs are defined in Figure A1. The factor
(cos θs+ cos θr ) is called the obliquity factor (Jackson, 1962).

Next, we turn to traveltime perturbation theory. Let the slow-
ness u(r) be perturbed with a small perturbation δu(r). To first
order, the wavefield p(r) is perturbed with a perturbation δp(r).
There are (at least) two ways to compute the first-order pertur-
bation in the arrival time. Luo and Schuster (1991) and Mar-
quering et al. (1999) show that the perturbation of the trav-
eltime computed from a crosscorrelation technique to leading

Figure A-1. Definition of the unit vectors ŝ and r̂ that point
along the geometric rays indicated with dashed lines, and the
angles θs and θr that these vectors make with the normal vector
n̂ to the surface.

order is given by

δt =
∫

ṗ(t)δp(t)dt∫
p̈(t)p(t)dt

, (A-3)

where the time integration is over a time window in which
the wave event of interest arrives. Spetzler and Snieder (2001)
show with the Rytov approximation that the traveltime shift δt
is given by

δt = ω−1=m

(
δp(ω)
p(ω)

)
. (A-4)

With the Born approximation for the first-order perturbation
of the wavefield δp(rr ) that is

δp(rr ) = −
∫

V
2ω2 p(r)G(r, rr )u(r)δu(r) dV, (A-5)

the change in traveltime can to leading order be related to the
slowness perturbation through

δt =
∫

V
K (r)δu(r) dV. (A-6)

The latter formula is again equation (6). It follows from equa-
tion (A-5) that the sensitivity kernel for travel timeshifts
is proportional to 2ωu(r)p(r)G(r, rr ) whereas the Kirchhoff
integral in equation (A-2) has an integrand proportional
to (iωu(r)/ρ(r))(cos θs+ θr )p(r)G(r, rr ). Apart from different
multiplicative factors, which in general vary smoothly over
space, the Fréchet derivative for the traveltime perturbation
and the integrand of the Kirchhoff integral have the same de-
pendence on the wavefields p(r)G(r, rr ). For this reason, we
use the sensitivity kernel to monitor the properties of the Fres-
nel zone. The advantage of using the sensitivity kernel is that it
is defined over the volume of the medium, whereas the Kirch-
hoff integral is defined on a surface only; the sensitivity kernel
in expression (A-6) thus provides information on the Fresnel
zone throughout the volume.
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