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SUMMARY

Reciprocity is an important property of acoustic and elastic waves. In this work it
is explicity verified that acoustic waves also satisfy the reciprocity theorem in a ray-
geometric approximation. This is achieved by deriving a reciprocity relation for the
geometric spreading. The analysis is based on integrating the equations of dynamic ray
tracing from the source to a receiver and in the reverse direction. It is shown that for a
point source the geometric spreading for rays travelling in opposite directions differs by
a factor depending on the velocities at the endpoints of the ray. This factor depends on
the number of dimensions that one considers. Since the equations of kinematic and
dynamic ray tracing are the same for elastic waves and acoustic waves, the derived
reciprocity relations for the geometrical spreading hold for elastic waves as well. The
results obtained are used to correct some errors in the derivation of an averaging

theorem by Snieder & Lomax (1996).
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1 INTRODUCTION

It is well known that solutions of a variety of wave equations
such as the Helmholtz equation, the acoustic wave equation or
the elastic wave equation satisfy reciprocity. This implies that
when a point source and a receiver are interchanged the
recorded wavefield is the same. In practical applications, ray
theory is an extremely powerful tool in solving forward and
inverse problems in wave propagation. The question addressed
in this work is whether the ray-geometric approximations
to the solutions of the wave equations satisfy reciprocity as
well. Using the symplectic properties of the equations of
dynamic ray tracing it has been shown by Kendall, Guest &
Thomson (1992) and Chapman & Coates (1994) that the ray-
geometric approximation to the elastic wave equation satisfies
reciprocity. Richards (1971) gives the reciprocity relation
for geometrical spreading based on a proof of G. E. Backus
that employs the reciprocity of traveltime and geometric
considerations.

In this work the reciprocity properties of geometrical
spreading are derived from the evolution equations for
the wave-front curvature. It turns out that the reciprocity
properties depend on the number of dimensions. The result is
used to show that the ray-geometric approximation of the
acoustic wave equation satisfies reciprocity. The analysis is
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based on the equations of dynamic ray tracing presented
by Cerveny & Hron (1980), hereafter referred to as CH. It
turns out that the geometrical spreading for rays travelling
in opposite directions is different when the velocities at the
endpoints of the ray are different. The velocity terms that
enter when source and receiver are interchanged cancel other
velocity terms in such a way that the ray-geometric solutions
indeed satisfy reciprocity. The equations of dynamic ray
tracing depend on the velocity only; the reciprocity relations
derived here for the geometrical spreading for the acoustic
wave equation therefore also hold for the elastic wave equation
and the Helmholtz equation.

The acoustic wave equation and the dependence of the
amplitude of the pressure field and the displacement field
on velocity and density are introduced in Section 2. The ray-
geometric Green’s functions in two and three dimensions are
derived in Section 3. The effect of interchanging a point source
and a receiver on the geometrical spreading in two dimensions
is derived in Section 4, while the corresponding result for
three dimensions is presented in Section 5. In Section 6 it
is shown that the ray-geometric Green’s functions indeed
satisfy reciprocity. The results derived in Sections 3-5 are used
in Appendix A to correct some errors that occurred in the
derivation of the averaging theorem by Snieder & Lomax
(1996).
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2 THE DEPENDENCE OF THE AMPLITUDE
ON DENSITY AND VELOCITY

In this section the acoustic wave equation is analysed:
1 ?

V.(, Vp)+—p=o, (M
o K

where p is the density and x the bulk modulus. The principles
stated here can immediately be generalized to waves in an iso-
tropic elastic medium. By setting the density constant, eq. (1)
reduces to the Helmholtz equation. In a ray-geometrical
treatment the pressure field is written as

p(r, @)= A(r, o) exp [i(r, )], 2

where the amplitude 4 and the phase { are real numbers.
The standard ray-geometrical treatment proceeds by inserting
(2) into (1) and by taking the terms of highest power in @ of
the real part of the resulting equation; this gives the eikonal
equation

2
VU= @

with the velocity v given by

o=/~ )
P

Similarly, by inserting (2) into (1) and taking the imaginary

part one finds without making any approximation the

transport equation:

v. <ﬂ> _0. 5)
p

From the eikonal eq. (3) it follows that
V=i (©)

in this expression fi is the unit vector along the ray. By inserting
this result in (5) it follows that the amplitude satisfies

A=C%. (7

In this expression J is the geometrical spreading and C is a
constant that depends on the source of the wavefield.

The important point of this expression is that the amplitude
varies in proportion to ,/pv. However, the amplitude in
expression (7) is for the pressure field. The amplitude of the
displacement field follows by inserting the solution (2) and
eq. (6) in Newton’s law pw?u=Vp, and by retaining the terms
of highest power in w; this gives
Ay

(3)
POO

This expression states that acoustic waves have a longitudinal
polarization; they oscillate in the ray direction . Using (7) it
follows that the amplitude 4, of the displacement satisfies

Ao L
Nk
Comparing this result with the amplitude of the pressure field

one sees that the displacement field and the pressure field differ
by a factor pv. This quantity is equal to the acoustic impedance;

&)
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this result reflects the fact that the acoustic impedance is
defined as the ratio between the pressure and the displacement.
Note that the displacement amplitude in expression (9) has the
same form as the displacement amplitude derived by CH for
elastic waves.

3 RAY-GEOMETRIC GREEN’S FUNCTIONS
IN TWO AND THREE DIMENSIONS

The Green’s functions used here are solutions of
1 0 wz J A
'z ;VG(r,r) +7G(r,r)=5(rfr). (10)

Using Green’s theorem one readily shows that the Green’s
function satisfies the following reciprocity theorem:

G(ry, 1) =G(ry, 1p) . (11

Sometimes the Green’s function is not defined by eq. (10), but
by a similar expression with the right-hand side multiplied by
1/v*(r). The Green’s functions defined in that way do not
satisfy (11), but do satisfy a similar equation that contains
additional terms 1/0%(r;) and 1/02(r»).

It follows from (2) and (7) that in the ray-geometric limit the
Green’s function is given by

G, 1) = ciyj—;‘“)v(r“; explion(ry, 1)),
1, I2

where the coefficient C is not yet determined. In this
expression 1(ry, ry) is the traveltime of a wave that travels
from r, to r;, while J(r;, r;) is the geometrical spreading
at r; for a point source at rp. The coefficient C follows by
analysing eq. (12) close to the source. In doing so one can
replace the medium by a homogeneous medium with the
properties of the medium at the source. This part of the
analysis depends on the number of dimensions. In the analysis
one should account for the fact that (10) is not equivalent to
the scalar wave equation. In order to establish the connection
with the solutions of the scalar wave equation for a homo-
geneous medium, eliminate k from (10) using (4) to rewrite (10)
in the following form:

(12)

1 w?
pV: (— VG(r, r’)> + — G(r, r)=pé(r—r). (13)
o v

Note the density term on the right-hand side.

In three dimensions, the Green’s function (13) in a homo-
geneous medium with the properties of the source at r; is
given by

p(r2)

GIm(r, 1)) = —
3D ( 1> 2) 47r|r1—r2|

exp (io|r; —ra|/v(ra)) . (14)

The density term arises from the right-hand side of (13).
Close to the source the wavefield expands spherically and
the geometrical spreading is given by J(r, r;)=|r; —r,|*
(as r; —ry). Using this one finds comparing (12) and (14) that

C=—/p(ry)/(4m+/v(ry)). The ray-geometric Green’s function
is thus given by

Glry, 1) = — 1 /p(r)pr2)e(ry) exp[iot(r, 1)]
1, 12 y Vo s

(three dimensions). (15)
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Note that this Green’s function can only satisfy reciprocity (11)
when the geometric spreading has reciprocity properties that
depend on the velocity at the endpoints of the ray.

In two dimensions the Green’s function of a homogenous

space with the properties of the source at r; is given by Morse &
Feshbach (1953):
GhOM (£, 1y) = — % p(r)H) <% Ity 7r2|) , (16)
with H(()l) the zeroth-order Hankel function of the first kind.
Again, the density term arises from the right-hand side of (13).
Using the asymptotic expansion of the Hankel function
(H((,l)(x)z expi(x—mn/4)/vnx/2), and using the fact that in
a 2-D medium the geometrical spreading is given by
J(r1, 1) =|r; —r2| (as r; —ry), one finds by comparing (12) with
(16) that C= —exp(in/4)/p(r2)/v8nw. The ray-geometric
Green’s function in two dimensions is thus given by

in/4 X
Gir1,12) = = e V/pE (AT %/(_“r;z”
1, I2
(two dimensions). (17)

Note that in contrast with the ray-geometric Green’s function
(14) for three dimensions, the 2-D ray-geometric Green’s
function depends only on the velocity r; at the observation
point but not on the velocity v(r;) at the source point. This
implies that reciprocity of the ray-geometric Green’s functions
can only be satisfied when the geometric spreading has differ-
ent properties in two dimensions than in three dimensions
when the source and the receiver are interchanged. For this
reason the 2-D case and the 3-D case are analysed separately in
the next two sections.

4 THE EFFECT OF CHANGING SOURCE
AND RECEIVER ON THE GEOMETRICAL
SPREADING IN TWO DIMENSIONS

The geometric spreading can be determined using the
equations of dynamic ray tracing as given by CH. The
geometric spreading satisfies

aJ
ds

In this expression the scalar K denotes the wave-front curva-
ture. As shown in CH this quantity satisfies a Ricatti equation:

dK 1 dv 1
$:;$K7K27zqu’ (19)

where v,, denotes the second derivative of the velocity
perpendicular to the ray. Given the wave-front curvature,
expression (18) can be integrated to give

KJ . (18)

InJ(s)= JS K(s')ds' . (20)

Let us now consider two rays: one ray runs from point 4
to point B [the quantities associated with this ray are given
the superscript (+)], and the second ray runs in the reverse
direction from point B to point A [the quantities associated
with this ray are given the superscript (—)]; see Fig. 1. The arc
length along the ray to point A4 is denoted by s, the total arc
length of the ray is denoted by S. All quantities are measured
with s as independent parameter, and wherever the arc length
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A (Ray g A
X

Figure 1. Definition of the geometric variables for rays travelling
from A to B (left panel) and reverse rays running from B to A
(right panel).

(-)-Ray B

K §=8s

S S

to point B occurs it is replaced by s¢7)=S—s. Eq. (20) for
the geometrical spreading can be integrated when the
initial conditions are specified. For a point source the initial
conditions for the forward and the reverse ray are given by

JH(s)=s as s]0, (1)

J()=S—s as s18S, (22)

where the identity s(—) = § —s was used in the last expression.
Consider the wave-front curvature of the two rays. For the
ray running from 4 to B the wave-front curvature satisfies (19):

dK)  1dv 1
=—— KT K2y, . 23
ds vds v e 23)
The reverse ray satisfies the same equation, but with s replaced
by s(7) =S5 —s; using this to eliminate s in favour of s, using
0/0s'=) = —0a/0s, gives
dK) 1 dv 1
— == KOk, 24
ds v ds + + v bag 24
Adding (23) and (24) and dividing by (K(+) + K()) gives
1 d 1 dv
Z (KA gy =222 (k) gy, 25
K®) +K(=) ds( * ) v ds ( ) 25)
This expression can be integrated to give
K+ kNP =S S S
{m <#>} _ J Kds— J K s (26)
v s=0 Jo 0

The quantity on the left-hand side needs to be evaluated at the
endpoints of the ray. From (18), (21) and (22) one finds that

K(+)(s)=% as )0, (27
KH(s):S_S as s1S. (28)

This means that at the point 4 (s | 0) the wave-front curvature
K) dominates on the left-hand side of (26), so that regardless
of the value of K(—),

{ln (M)} =In (&) =1In (1) —Inv(s=0);
v 510 U(O) s 510

(29)
similarly, at point B (s 1 S),
(+) (=)
{m(w)} _ ln( ! ) ~Inu(s=S)= 1n(1>
v sTS S—s sTS S/ 510
— Inv(s=S). (30)
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Combining these results gives

K+ 4 K ‘Y:S_ v(s=S)
(=)L =) @
With (26) this gives
s S
(=) gg Fgoe _ 1 (PE8=S)
JOK ds .‘0K+ds— ln(v(s=0))' (32)

Expression (20) can be used to relate this result to the
geometric spreading:

an(f)(s:O)_ an(+)(S:S): —In (U(SZS)) , (33)
v(s=0)

which can also be written as

J(s=0) JH)(s=5)
o(s=0) —  u(s=S)

(34)

In order to change to a more general notation, let J(ry, r,) be
the geometrical spreading at point r; for a point source at r;.
Taking r, to be the point 4 (i.e. s=0) and r; to be the point B,
expression (34) can be written as

J(ry, r J(p,r . . . .
(r.r) _ Jr.n) (point source in two dimensions).

o(r2) o(ry)

(35)

It thus follows that the geometrical spreading is not reciprocal
and that scale factors related to the velocity at the endpoints of
the ray are needed to relate the geometrical spreading for rays
travelling in opposite directions.

5 THE EFFECT OF CHANGING SOURCE
AND RECEIVER ON THE GEOMETRICAL
SPREADING IN THREE DIMENSIONS

For three dimensions the analysis is similar to the derivation
of the previous section. The only difference is that the wave-
front curvature is now characterized by a 2 x2 wave-front
curvature matrix K rather than the scalar K, see CH for details.
Instead of (18) the geometric spreading in three dimensions
satisfies

@ =trK J, (36)
ds

where trK denotes the trace of K. This expression can be
integrated to give

InJ(s)= J trK ds’ . (37

As shown in CH, the wave-front curvature matrix satisfies a
(matrix) Ricatti equation:

dK 1 dv 5
ds v ds K_K_vv’ (38)
where V is the 2 x 2 matrix of second derivatives of the velocity
perpendicular to the reference ray, Vj;= v/ 0q;0q;, with g; the
ray-centred coordinates.

As in the previous section the superscript (+) denotes
quantities for a ray running from point 4 to point B, while
the superscript (—) refers to quantities associated with the
ray in the reverse direction. Analogously to expressions (23)
and (24) the curvature matrices for the forward and reverse
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ray satisfy

dK™) 1 dv 1
=- —K®P K2 —v 39
ds v ds v (39)
K™ 1dv 1
a7 _Ldvye  geng Lty (40)
ds v ds v

By direct substitution of these expressions one can verify
that

d

ds

2 5
det (K" +K )= - % det (KM +K)

+ (K™ —trK ) det (K + K )) .

(41)
This expression can be integrated to give
s=S
K £ K S S
In <det(—2+) - J trK s — J trK ) ds
v 0 0
s=0
(42)

Ass |0, K*) dominates the contribution of K=, and just as in
the previous section the value of the left-hand side of the K(+)
contribution as s | 0 is cancelled by the K= contribution for
571§ so that

S S 2(q—
J trK(’)ds—J trK(+)ds=—ln(#). 3)
0 0 v*(s=0)

With (37) this gives

Js=0) JH(s=S)
2(s=0)  02(s=S)

(44

Reverting now to a more general notation where r, is
associated with the point 4 (s=0) and r; with the point B
(s=>S) this result can be written as

J@ra, 1) _ J@r, )

= oint source in three dimensions) .
2w 2wy P )

(45)

This result is equivalent to the reciprocity relation (18) given by
Richards (1971) that was derived from the reciprocity of
traveltimes and geometric considerations. Comparing (45)
with the corresponding results (35) for two dimensions one
sees that the geometrical spreading has different reciprocity
properties in different dimensions.

6 RECIPROCITY OF THE
RAY-GEOMETRIC GREEN’S FUNCTIONS

Using the relations (35) and (45) one can show that the ray-
geometric Green’s functions (15) and (17) indeed satisfy the
reciprocity relation (11). For two dimensions, interchanging r)
and r; in the Green’s function (17) gives

Gles. )= = )00 W .46

The traveltime is the integral of the slowness along the ray;
this integral does not depend on the direction of integration,
so that

©(r2, r1)=1(r1, 12) . 47

in/4
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Using this result and (35) for the reciprocity of the geometrical
spreading one obtains, with (17),

_ e ) 2T expliot(ry, ra)]
G(ry, 1)) = N p(r2)p(r)o(rz) W) o)

=G(r, 12). (48)

For three dimensions the Green’s function (15) with source
and receiver interchanged is given by

Glea, 1) = — 1 /p(r2)p(r)u(rz) exp [iwt(ra, r1)] (49)
> 4n V() VI, 1)

Using (47) for the reciprocity of the traveltime and (45) for the
reciprocity of the geometrical spreading one finds, with (15),
that

1 /p(r2)p(r)o(rs) v(ry) exp[iwt(ry, 1)]
4n \/o(ry) o) \/J(rr, 1)

=G(ry, 7). (50)

Gy, 1)=—

This implies that the ray-geometric Green’s functions in two
and three dimensions indeed satisfy reciprocity. Note that in
establishing these results it was crucial that the velocity enters
in the reciprocity relations (35) and (45) for the geometrical
spreading in two and three dimensions respectively.

7 PHYSICAL INTERPRETATION OF THE
VELOCITY TERMS IN THE RECIPROCITY
RELATION OF THE GEOMETRICAL
SPREADING

The velocity terms that appear in the reciprocity relations (35)
and (45) may appear to be unnatural. However, a simple
example will show why the velocity enters these relations.
Consider a point source in a medium where the velocity
depends on depth only and assume that the velocity increases
with depth. For simplicity we consider a ray that travels
vertically downwards or upwards; see Fig. 2. For the down-
ward-travelling ray in the left panel of Fig. 2, the rays diverge
more rapidly than they would for a homogeneous medium
because rays curve away from high velocities. This means that
the geometrical spreading for this ray is larger than it would
be for a homogenous medium. Conversely, for the upward-
travelling ray on the right-hand side of Fig. 2 the paraxial rays
curve towards the central ray, again because the rays curve
away from high velocities. This means that for the upward-
travelling ray the geometrical spreading is less that it would
be for a homogeneous medium. It is for this reason that the
geometrical spreading cannot satisfy a reciprocity relation
such as J(r, r;) =J(rp, r1) without velocity-dependent factors.
The example presented here also makes it possible to
understand why the reciprocity relations for geometrical
spreading in two and three dimensions are different. In three
dimensions, the rays shown in Fig. 2 diverge (or converge) in
two spatial directions, whereas in two dimensions the rays
diverge (or converge) in only one spatial direction. For this
reason, the geometrical spreading in three directions is the
square of the geometrical spreading in two dimensions. Indeed,
the velocity terms in the relation (45) for three dimensions are
the square of the velocity factors in (35) for two dimensions.
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V low V low

V high V high

Figure 2. Paraxial rays for a reference ray running vertically down-
wards (left panel) and a ray running vertically upwards (right panel) for
a medium where the laterally homogeneous velocity increases with
depth.

The reciprocity relations (35) and (45) for the geometrical
spreading only hold for a point source. The reason is that in the
steps going from (26) to (29) the wave-front curvature K(*)
dominates the wave-front curvature K¢~ at the source point 4
so that the value of the wave-front curvature K(~) is irrelevant.
However, this is only the case for a point source which gives a
singular wave-front curvature K(*) at the source. For a plane
wave, the wave-front curvature at the source would be K(+) =0,
and the value of the wave-front curvature K‘=) of the reverse
ray would be important. The example shown in Fig. 2 allows us
to understand why the reciprocity relations (35) and (45)
cannot hold for a plane wave. Suppose one replaces the
point source in Fig. 2 by a plane-wave source. A plane wave
travelling upwards or downwards remains a plane wave, so
that both the upward- and the downward-travelling plane
waves satisfy J(ry, r,) =J(rp, r;) =1, rather than (35) or (45) for
two or three dimensions respectively.

8 CONCLUSIONS

The reciprocity relations (35) and (45) imply that the geo-
metrical spreading is not invariant when source and receiver
are interchanged. This reflects the physical fact that when a
wave is focused by the variations in the velocity travelling one
way, it is defocused when it travels in the opposite direction. It
is shown here that the change in the geometrical spreading
when source and receiver are interchanged depends only on the
velocity at the endpoints of the ray. Curiously, this change
in the geometrical spreading is balanced by other velocity-
dependent terms in the response, so that reciprocity of the
wavefield is valid within geometrical optics.

One should note that for elastic waves the equations of
kinematic ray tracing and dynamic ray tracing are identical
to the equations used here. This means that the geometrical
spreading satisfies the same equations as analysed in Sections 4
and 5. This implies that the reciprocity relations (35) and (45)
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for two and three dimensions, respectively, are valid for elastic
waves as well.
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APPENDIX A: CORRECTIONS TO THE
WORK OF SNIEDER & LOMAX

Snieder & Lomax (1996) (hereafter referred to as SL) showed
that for media with velocity perturbations that are so rough
that the requirements for the validity of ray theory are violated,
the phase of the wavefield is to first order given by a weighted
average of the velocity perturbation over the first Fresnel
zone with a weight function that follows from theory. Although
their derivation is correct for the case of a homogeneous
reference medium, their work contains some errors for the case
of an inhomogeneous reference medium. These errors are
corrected in this appendix. The equations in the work of SL are
referred to with the prefix ‘SL’. SL studied the Helmholtz
equation:

2
V2u+U§"—(r)(1+n(r))u=o. (A1)
This expression is equivalent to (1) when one assumes when the
density is set to a constant value. The relative perturbation
in 1/¢% is denoted by the perturbation n(r). In the following, the
3-D case is analysed first.

SL incorrectly assumed in (SL6.1) that the amplitude varies
in proportion to 1/,/v, whereas it is shown in (7) that the
amplitude is proportional to \/v. This means that expression
(SL6.6) should be replaced by the ray-geometric Green’s
function (15). In addition, SL assumed that the geometric
spreading contained in the Green’s function satisfied
J(rg, ¥)=J(r, r9), whereas it is shown in (45) that this is not
correct. Using the fact that the Green’s function satisfies
reciprocity (G(rg, r)=G(r, ro)) and using the correct Green’s
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function (15) one arrives at an expression identical to
eq. (SL6.8). This implies that SL obtained the right result
(SL6.8) for the wrong reason. The remainder of Section 6 of SL
is correct.

However, in the steps leading to (SL7.1) one should use the
relation

A(s) J(s0)v(s)

- , A2
Ao~ Tt (A2
rather than (SL6.1). [This expression follows immediately
from (7)]. Taking this into account, eq. (SL7.1) for the 3-D case
should be corrected to read

io
m uo(ro)

JJ v/ J(50) n(r exp [ioT(r,ro)]
\/./(S) \/.](S,So) \/det(Ki"+K°m)

j ‘ explio (. ro)ldg1dg»

up(ro)=

h(s, q1, 42)dq1dq>

ds.

X J
(A3)

This implies that the factor wv(sg)/v(s) in (SL7.1) should be
deleted. Using this in the subsequent analysis of SL, one finds
that (SL7.3) should be replaced by

v(r) ds .
JJ exp [ioT(r, vo)ldg1dq>

io JJ r) exp [ioT(r,xo)h(s, q1, ¢2)dq1dqn
up(ro) = — uO(rO)J

(A4)

Compared to (SL7.3) one finds that the term v?(sp)/v%(s) is
absent and that n(r) is divided by v(r) rather than v(ry).

For the 2-D case treated in SL similar corrections need to be
made. The Green’s function (SL8.1) should be replaced by (17)
and reciprocity should be applied to the Green’s function
G(rg, r) rather than to J(ro, r). Taking this into account one
finds that (SL 8.3) must be replaced by

ug(ro) =y / 2 gin *uo(ro)
87

A(r) 1 exp [ioT(r, rp)]
8 J{ J A(ro) v3/2(r) (r) J(r, rp)

h(s, q)dq } ds.

(A5)

The difference with (SL8.3) is that the terms v(r)/v(rg), in the
denominator of (SL8.3) are replaced by v*/2(r). Taking this into
account in the subsequent analysis, one finds that (SL8.5) must
be replaced by

up(ro) = % uo(ro)

J Ar) /o(s) n(®) explioT(r, r))]  h(s, q)
§ J A(rg) v3/2(r) \/J(l‘, 1) VKP4 Kout s
Jexp[in(r,ro)]dq
(A6)

Hence, the velocity-dependent terms should be +/v(s)/v*/?(r)
instead of /v(rg)v(s)/v(r)v(ry). The final result (SL8.8) for the
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2-D case should therefore be replaced by
J@ exp [ioT'(r, ro)lh(s, g)dgq
J u(s) ds. (A7)
[ exp [ioT(r, ro)ldg

uplr)= "3 (o)

Note that the expressions (54) and (57) for three and two
dimensions, respectively, have the same form. In both
expressions the perturbation enters the Born field (and hence
the phase shift) through the combination wn/2v, despite the
fact that in the intermediate steps of the derivation the velocity
terms multiplying n(r) are different in two and in three
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dimensions. The factor wn/2v can be understood as follows.
It follows from (51) that the local wavenumber is given by
k? =(w?/v*(r))(1 +n(r)). The wavenumber can be written as the
sum of a reference wavenumber w/v(r) plus a perturbation ok:
k=ow/v(r)+ ok. Inserting this in the above expression one finds
to first order in the perturbation n(r):

o _on(r)
5k—m{\/l+n(r)—l}— () (A8)

This implies that with the corrections to the theory of SL pre-
sented in this appendix the correct wavenumber perturbation is
retrieved for both the 2-D case and the 3-D case.




