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Radiative transfer in layered media and its connection
to the O’Doherty-Anstey formula

Matthew M. Haney1, Kasper van Wijk2, and Roel Snieder1

ABSTRACT

We examine radiative transfer theory, which ac-
counts for the multiple scattering of waves, in a lay-
ered medium composed of randomly placed thin beds
excited by a 1D source. At its most basic level, radia-
tive transfer predicts that the wavefield separates into
a coherent, or wavelike, part and an incoherent, or dif-
fusive, flow after a length scale known as a mean free
path. The dynamic properties of the coherent and in-
coherent wavefield are linked. For 1D Rayleigh scat-
terers, or thin beds, we show that the exponential de-
cay of the coherent wave predicted by radiative transfer
corresponds to the decay predicted by the O’Doherty–
Anstey formula. This equivalence reveals an underlying
relationship between radiative transfer and mean field
theory. Finite-difference simulations of the scalar wave
equation with randomly placed thin beds demonstrate
the diffusive behavior of the incoherent energy at late
times.

INTRODUCTION

The subsurface is disordered at any length scale, includ-
ing the scale of seismic wavelengths. We consider the type
of random medium depicted in Figure 1: a series of layers
embedded in a constant-velocity background that are thin
compared to the dominant wavelength and are of varying
reflection strength. Describing wave propagation in this set-
ting requires the inclusion of thin-bed effects. O’Doherty and
Anstey (1970) state that the amplitude of a wave transmitted
through a stack of thin layers decays exponentially with dis-
tance as

|T | ∼ exp(−R̃(k)z), (1)

where R̃(k) represents the power spectrum of the average
reflection coefficient series normalized by two-way travel
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distance (Banik et al., 1985; Shapiro and Zien, 1993). The
fundamental physics that emerges from equation 1 is the
stratigraphic filtering that a wave undergoes as it propagates
through thin layers. This filtering action is rooted in the phe-
nomenon of multiple wave scattering: the amplitude of a wave
transmitted through a stack of thin layers is much larger
than can be expected by considering only the direct, purely
forward-scattered wave. Hence, multiple scattering defines
the amplitude of waves transmitted through thin layering.

Equation 1 is commonly referred to as the O’Doherty–
Anstey formula and has subsequently been derived from a sta-
tistical point of view, or mean field theory (Banik et al., 1985),
from a deterministic approach (Resnick et al., 1986), and via
the concept of self-averaging quantities (Shapiro and Hubral,
1999). The method we present falls into the statistical cate-
gory: we verify the O’Doherty–Anstey formula by studying
the second statistical moment of the average wavefield, or av-
erage intensity, instead of the first statistical moment, or mean
field. The theory for the spatial and temporal evolution of a
wavefield’s average intensity is known as radiative transfer
(Chandrasekhar, 1960). It has its origins in the kinetic theory
of gases and is sometimes referred to as Boltzmann transport
theory (Saaty, 1981, p. 321) in honor of its earliest proponent.
In the earth sciences, it first appeared within the context of
light propagation through the atmosphere (Schuster, 1905).
Since the 1980s, geophysicists have begin to investigate multi-
ply scattered seismic waves using the theory of radiative trans-
fer (Wu and Aki, 1988; Wu, 1993, 1998; Wu and Xie, 1994;
Sato and Fehler, 1998; Margerin et al., 1999). The theory has
several strengths; for instance, using radiative transfer, scat-
tering attenuation and intrinsic absorption can be estimated
individually (Wu and Aki, 1988; Wu, 1998; van Wijk et al.,
2004).

We derive results from radiative transfer that agree with
results from mean field theory (Banik et al., 1985), namely,
the O’Doherty–Anstey formula. Such an equivalence suggests
that radiative transfer is a proper extension of mean field the-
ory (a variance field theory) for the fluctuating, multiply scat-
tered waves in this regime. We note that, following Shapiro
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and Hubral (1999), mean field theory and the O’Doherty–
Anstey formula coincide only for low frequencies. In ad-
dition, we show that at late times the equation of radia-
tive transfer can be simplified to the diffusion equation. This
agrees with the observation that the individual solutions to
these equations match at late times (Sheng, 1995; Ishimaru,
1997; Paasschens, 1997; Scales and van Wijk, 2001). Results
of finite-difference simulations of the 1D scalar wave equa-
tion with random thin beds are presented to support the
accuracy of this approximation. After estimating the two pa-
rameters needed to describe energy transport—the group ve-
locity and mean free path—we find that the average inten-
sity of the numerical simulations approaches the diffusive limit
with time. Our results complement previous numerical exper-
iments in 1D random media by Wu and Xie (1994) that exam-
ined the stationary (time-integrated) problem. By additionally
looking at the temporal behavior, we gain more insight into
the applicability and limitations of radiative transfer in one
dimension.

As a result of interference phenomena in the presence of
thin beds, or interbed multiples, radiative transfer is, strictly
speaking, not completely valid in describing energy transport
in randomly layered media (Papanicolaou, 1998). We address
this shortcoming of radiative transfer when discussing our nu-
merical results. Though critical in one dimension, these same
interference phenomena become much less important in the
presence of higher dimensional disorder (e.g., 3D disorder),
making radiative transfer the theory of choice when studying,
for instance, the coda of earthquakes (Hennino et al., 2001).
The fact that interference dominates in one dimension has ef-
fectively kept the terminology of radiative transfer out of the
study of randomly layered structures. But before discarding
such a theory, we demonstrate that radiative transfer, despite
these reservations, has more applicability in one dimension
than has been believed.

Figure 1. The model considered in this paper: a wave transmit-
ted through a random sequence of thin beds that are separated
by more than one wavelength. The thin beds are embedded in
a constant-velocity background medium and may themselves
have varying reflection coefficients. Adapted from O’Doherty
and Anstey (1970).

RADIATIVE TRANSFER THEORY

The radiative transfer equation can be derived from
energy balance considerations (Morse and Feshbach,
1953; Chandrasekhar, 1960; Turner, 1994; Ishimaru, 1997).
Heuristically, the equation takes the form

[∂t + v · ∇] intensity = source − loss + gain. (2)

The left-hand side of equation 2 is the total time derivative
of the intensity. On the right-hand side, loss and gain mecha-
nisms in addition to sources determine the dynamic behavior.
In the absence of loss or gain, this equation becomes the one-
way wave equation. Scattering and absorption show up as loss
mechanisms since both remove energy from the forward di-
rection. Only scattering can put energy back into the original
direction of propagation. Hence, scattering and absorption en-
ter equation 2 in fundamentally different ways: scattering en-
ters the gain term while the loss term contains both scattering
and attenuation. This fact leads to the possibility of separating
their effects with radiative transfer theory.

By squaring a wavefield and averaging over many realiza-
tions of a random medium, we lose the phase information of
the underlying wavefield. What remains is the average inten-
sity, or squared amplitude—the quantity appearing on the left-
hand side of equation 2. The advantages of studying the spatial
and temporal evolution of the intensity via radiative transfer
lie in the ability to gain statistical information about the struc-
ture of a medium at scales less than a wavelength and the de-
scription of the decoupling of scattering and absorption for
incoherent wave energy.

Using the same form as equation 2, we present a scalar
radiative transfer equation valid for any dimension (Turner,
1994):

∂I (	r,�, t)
∂t

+ vn̂(�) · ∇I (	r,�, t) = S(	r,�, t)

− 1
τs

I (	r,�, t) − 1
τa

I (	r,�, t)

+ 1
τs

∫
1
σs

∂σs

∂�′ I (	r,�′, t) d�′, (3)

where I(
→
r , �, t) is the intensity, or average squared wavefield,

at position
→
r and time t propagating in direction �, v is the

group velocity of the average (coherent) wavefield, n̂ is the
unit vector in the direction of propagation, and S(

→
r , �, t) is

the angle-dependent source function. The differential scatter-
ing cross-section ∂σ s/∂�

′ describes the exchange of energy
traveling from direction � into direction �′. The character-
istic time between these exchanges is τ s, the scattering mean
free time. The total scattering cross-section σ s is a measure of
the energy exchanged in all directions:

σs =
∫

∂σs

∂�′ d�
′. (4)

Intrinsic attenuation is included via the characteristic absorp-
tion time τ a.

Using terminology originally coined by Clausius in the
1800s (Lindley, 2001, p. 25), it is common to define mean free
paths for scattering and absorption, �s and �a, according to the
relations �s = vτ s and �a = vτ a. The scattering mean free path
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�s can be thought of as the typical distance a wave travels be-
tween scattering events. Both �s and �a can be related to the
parameter Q more commonly used in seismology:

�s = vQs

2πf
and �a = vQa

2πf
,

where Qs and Qa refer to the scattering and absorption Q, re-
spectively, and f is the frequency.

The scattering mean free path �s is inversely proportional
to the number of thin beds per unit depth (the number den-
sity) ρ and their scattering cross-section. As a reasonable
approximation,

�s = 1
ρσs

. (5)

This equation, called the independent scattering approxima-
tion, holds when the scatterers are weak and separated by
more than a wavelength. It is one of the fundamental results
from multiple scattering theory, and it also appears in the ki-
netic theory of gases. Equation 5 can be found in standard
texts (Lax, 1951; Morse and Feshbach, 1953; Feynman et al.,
1963). Certainly, more general expressions for �s exist within
the field of multiple wave scattering (van Tiggelen et al., 1991);
however, in the interest of simplicity, we adopt equation 5 for
this paper. Note that, from equation 5, �s contains information
about the product of ρ and σ s in a way analogous to a wave
reflected from an interface containing information about the
acoustic impedance.

RADIATIVE TRANSFER IN LAYERED MEDIA

Since in one dimension only two directions of propagation
exist (forward/backward or up/down), a general expression for
the differential scattering cross-section, appearing under the
integral in equation 3, is

∂σs(�,�′)
∂�′ = Ef δ(�′ − �) + Ebδ(�′ + � − 180◦), (6)

where Eb and Ef represent amounts of energy back-scattered,
and forward-scattered, divided by the energy of the incident
wave. Hence, Eb and Ef are dimensionless. Their sum is equal
to the total scattering cross-section,

σs = Eb + Ef . (7)

Thus, in equation 3 the differential scattering cross-section
divided by the total scattering cross-section becomes

1
σs

∂σs(�,�′)
∂�′ = Ef

Eb + Ef

δ(�′ − �)

+ Eb

Eb + Ef

δ(�′ + � − 180◦). (8)

We denote the ratios Ef /(Eb + Ef ) and Eb/(Eb + Ef ) by F
and B, respectively. These ratios satisfy B + F = 1. In the case
of isotropic scattering, B = F = 1/2; (Paasschens, 1997). For
a general 1D scatterer, B and F can be related to the total
transmission and reflection coefficients of a thin bed, Tt and
Rt (Sheng, 1995):

B = |Rt |2
|Rt |2 + |Tt − 1|2 and F = |Tt − 1|2

|Rt |2 + |Tt − 1|2 . (9)

Note that a thin bed consists of two interfaces. Hence, Rt

and Tt are not simple reflection and transmission coefficients;
rather, they include all orders of intrabed multiples. The quan-
tities Rt and Tt can be related to a geometric summation of the
interface reflection and transmission coefficients via general-
ized rays (Aki and Richards, 1980).

Inserting equation 8 into equation 3, we obtain, in one
dimension,

∂I (z,�, t)
∂t

+ vn̂(�)
∂I (z,�, t)

∂z
= B

τs
I (z, 180◦ − �, t)

− B

τs
I (z,�, t) − 1

τa
I (z,�, t) + S(z,�, t), (10)

where we use B + F = 1. Equation 10 can be evaluated for
the two possible directions in one dimension, � = 0◦ and 180◦.
We refer to these directions as down and up, respectively. For
simplicity, the total intensity propagating in direction � = 0◦,
I(z, 0◦, t), is represented by Id, I(z, 180◦, t) is represented by
Iu, and the source function S is split into Sd and Su. The coor-
dinate system is defined such that n̂(0◦) = 1 and n̂(180◦) = −1.
The two equations that describe the propagation of downgo-
ing and upgoing intensities are

∂Id

∂t
+ v

∂Id

∂z
= B

τs
(Iu − Id) − Id

τa
+ Sd, (11)

∂Iu

∂t
− v

∂Iu

∂z
= B

τs
(Id − Iu) − Iu

τa
+ Su. (12)

This system of partial differential equations comprises radia-
tive transfer in one dimension and has been derived by other
methods (Goedecke, 1977). In Appendix A, the system of par-
tial differential equations is solved for both Id and Iu. How-
ever, we choose to study the total intensity, It = Id + Iu, since
this is most easily measured in practice. The Green’s function
for the total intensity It can be expressed for B ∈ [0,1] as

It(z, t) = 1
2

exp
(

−Bvt

�s
− vt

�a

)[
(1 − c)δ(vt + z)

+ (1 + c)δ(vt − z) + B

�s
H (vt − |z|)

×
[
I0

(
B

�s

√
v2t2 − z2

)
+ vt + cz√

v2t2 − z2

× I1

(
B

�s

√
v2t2 − z2

)]]
, (13)

where I0 and I1 are the modified Bessel functions of the ze-
roth and first orders and H is the Heaviside step function. The
parameter c varies the source function from upgoing (c = −1)
to isotropic (c = 0) to downgoing (c = 1) and any combination
in between (see equation A-5 in Appendix A for a formal def-
inition of c). In equation 13, we place the source at the origin
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of the coordinate system. A previous solution to 1D radiative
transfer obtained by Hemmer (1961) follows from equation 13
for the case of an isotropic source (c = 0) and isotropic scat-
tering, B = 1/2. A result identical to that of Hemmer can also
be found in work by Sato and Fehler (1998).

The Green’s function for the total intensity can be divided
into two parts. The terms containing the δ-function propagate
like a wave and are called the coherent intensity. The rest of
the total intensity is referred to as the incoherent intensity. It
does not propagate ballistically and, as illustrated later, at late
times it propagates diffusively. Also, in Appendix A we show
that each Bessel function represents a different direction of
propagation for the incoherent energy.

From equation 13 we find that the decay of coherent inten-
sity as a result of scattering, described by the first exponential
term, varies with distance vt by the factor �s/B and not �s. The
fact that the length scale of the exponential decay is �s/B in-
stead of �s is unique to one dimension (Paasschens, 1997).

COHERENT INTENSITY AND THE
O’DOHERTY-ANSTEY FORMULA

From the solution for the total intensity, equation 13, we
know radiative transfer predicts an exponential decay from
scattering for the transmitted, or coherent, wave:

|T | ∼ exp(−Bz/2�s), (14)

where the distance z replaces vt in equation 13 since the δ-
function is nonzero only at z = ±vt. The factor of 1/2 in the
exponent of equation 13 shows up since radiative transfer pre-
dicts decay of the transmitted intensity—the square of the
transmission coefficient. We investigate the equivalence of the
exponential decay predicted by radiative transfer, equation
14, and that obtained from O’Doherty–Anstey

|T | ∼ exp(−R̃(k)z), (15)

which is the same as equation 1, for the transmission of nor-
mally incident scalar waves through assemblages of weak 1D
Rayleigh scatterers (thin beds). Comparing equations 14 and
15, we see that the two theories are equivalent if

R̃(k) = B

2�s
. (16)

The reflection coefficient series RC(z) for a medium like
that shown in Figure 1 is a series of delta functions of oscil-
lating plus and minus signs:

RC(z) =
N∑

j=1

Rj [δ(z − dj ) − δ(z − h − dj )] , (17)

where h is the thickness of the beds; Rj and dj represent the
reflection coefficient and location of the jth bed, respectively;
and N is the number of beds. For the purposes of simplify-
ing the derivation, we assume that h is the same for all the
thin beds. To calculate R̃(k), we take the Fourier transform of
equation 17, square its magnitude to get the power spectrum,
and divide by the two-way travel distance:

R̃(k) = 1
2L

∣∣∣∣
∫ ∞

−∞
RC(z) exp (−i2kz)dz

∣∣∣∣
2

, (18)

where L is the one-way travel distance, or the source–receiver
distance. Note that the Fourier transform is with respect
to 2k and not k, similar to a Born inversion formula in
one-dimension (Banik et al., 1985; Shapiro and Zien, 1993;
Bleistein et al., 2001).

Inserting equation 17 into equation 18 results in

R̃(k) = 1
2L

∣∣∣∣∣∣
N∑

j=1

Rj exp(2ikdj )(1 − exp(2ikh))

∣∣∣∣∣∣
2

. (19)

For thin layers, kh � 1 and a first-order Taylor series expan-
sion in h leads to 1 − e2ikh ≈ −2ikh. Pulling this term out of
the summation yields

R̃(k) = 4k2h2

2L

∣∣∣∣∣∣
N∑

j=1

Rj exp (2ikdj )

∣∣∣∣∣∣
2

. (20)

We now use a standard argument from the theory of mul-
tiple scattering: if dj, the spacing of the thin beds, is a ran-
dom variable, the crossterms in the square of the summation
in equation 20 cancel in the average and the squaring can be
brought inside the summation:

R̃(k) = 2k2h2

L

N∑
j=1

∣∣Rj exp (2ikdj )
∣∣2 . (21)

Now, inside the summation the exponential does not con-
tribute to the magnitude; therefore,

R̃(k) = 2k2h2

L

N∑
j=1

|Rj |2 = 2k2h2

L
N
〈|Rj |2

〉
, (22)

where 〈|Rj|2〉 is the mean square of the interface reflection co-
efficients.

Returning to equation 16, to prove that radiative transfer
and the O’Doherty–Anstey formula predict the same expo-
nential decay for the transmitted wave, we set equation 22 to

B

2�s
= 1

L
2k2h2N

〈|Rj |2
〉
. (23)

For Rayleigh scatterers in one dimension, the radiation is
isotropic (Sheng, 1995). Hence, B = 1/2. Rearranging equa-
tion 23,

�s = 1
8k2h2

〈|Rj |2
〉
N
L

. (24)

The quantity N/L is the number density of the thin beds
ρ. In the limit of weak scatterers (such that Rj � 1), 8k2h2

〈|Rj |2〉 = σ s, the scattering cross-section (see Appendix B).
The presence of weak reflection coefficients is also an underly-
ing assumption in the statistical derivation of the O’Doherty–
Anstey formula from mean field considerations (Banik et al.,
1985). Equation 24 can now be rewritten in a familiar form:

�s = 1
ρσs

. (25)

This is recognized as equation 5, the independent scattering
approximation. Previously, we stated that for this relation to
hold, the scatterers (thin beds) had to be separated by at least
a wavelength. Hence, in this model no reflections from below
the recording depth interfere with the transmitted wave. All
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of the interference resulting in the exponential decay of the
direct wave originates from peg-leg multiples within the thin
beds, not between them (Figure 1). Equation 25 demonstrates
that, for this model, the exponential decay of the transmit-
ted wave from the O’Doherty–Anstey formula is equivalent
to that predicted by radiative transfer.

We show a conceptual diagram of this equivalence in
Figure 2. From mean field theory, both the phase and the am-
plitude of the transmitted (coherent) wave can be obtained.
However, for the incoherent energy, the mean is zero by def-
inition. Radiative transfer can address the amplitude of the
transmitted wave and the behavior of the incoherent inten-
sity, but phase information is lost. Both theories agree in their
region of overlap, as demonstrated by the case of random lay-
ering we consider here.

THE DIFFUSION APPROXIMATION

From Figure 2, one can see that the strength of radiative
transfer lies in its ability to retain and describe incoherent
wave energy. When attempting to separate scattering and ab-
sorption attenuation, it is critical to account for the incoher-
ent energy (Wu and Aki, 1988; Margerin et al., 1999). In this
section, we show that the equation describing the incoherent
intensity becomes the diffusion equation at late times, and
we solve the diffusion equation for the case of a finite ran-
dom medium. Inferences on the statistical properties of the
medium are often based on the late-time diffusive behavior
(Boas et al., 1995)—especially in optics, where it is difficult to
obtain phase information.

By subtracting equations 11 and 12 and neglecting absorp-
tion (τ a → ∞), we obtain an expression in terms of In = Id −
Iu, the net downgoing intensity, and It = Id + Iu, the total in-
tensity:

∂In

∂t
+ 2B

τs
In = −v

∂It

∂z
. (26)

Similarly, by adding equations 11 and 12 and neglecting ab-
sorption (τ a → ∞), we arrive at

∂It

∂t
+ v

∂In

∂z
= 0. (27)

Figure 2. The overlap of O’Doherty–Anstey, which coin-
cides with mean field theory at low frequencies (Shapiro and
Hubral, 1999), and radiative transfer for the amplitude of a
wave transmitted through a medium such as that depicted in
Figure 1.

In the diffusive regime, the net energy flux is nearly stationary
(Morse and Feshbach, 1953) and

2B
τs

In � ∂In

∂t
. (28)

Under this condition, equation 26 becomes

2B
τs

In = −v
∂It

∂z
. (29)

Substituting equation 29 into equation 27 for In yields

∂It

∂t
+ v

∂

∂z

[
−τsv

2B
∂It

∂z

]
= 0. (30)

Under the assumption that v and τ s do not depend on posi-
tion, equation 30 takes the form

∂It

∂t
= v

(
�s

2B

)
∂2It

∂z2
, (31)

which we recognize as the 1D diffusion equation with the dif-
fusion constant D = v(�s/2B). This implies that the movement
of energy at late times has an effective mean free path that dif-
fers from �s. The effective mean free path is called the trans-
port mean free path, �tr = �s/2B; hence, D = v�tr. From equa-
tion 13, we stated that the length scale of the exponential de-
cay of the coherent wave attributable to scattering also differs
from �s; it is �s/B or, in terms of the transport mean free path,
2�tr.

To support the fact that �tr = �s/2B, we note that it is com-
mon (Hendrich et al., 1994) to relate �tr and �s via

�tr = �s

1 − 〈cos θ〉 , (32)

where 〈cos θ〉 represents the cosine of a direction weighted by
the average scattered energy in that direction. For isotropic
scattering, 〈cos θ〉 = 0 and the two mean free paths �tr and �s

are identical. However, using the general relation 〈cos θ〉 =
F − B (Hendrich et al., 1994) and the fact that F + B = 1,
equation 32 can be rewritten

�tr = �s

1 − F + B
= �s

2B
, (33)

which is exactly the relationship we derive from the diffusion
approximation.

Now assume the thin beds extend over a limited depth
range, from z = 0 to z = L, within an infinite homogeneous
background medium (see Figure 3). For a source within the
depth range of the thin beds, no intensity comes into the scat-
tering region, i.e., the downgoing intensity is zero at z = 0 and
the upgoing intensity is zero at z = L. We can express the
downgoing intensity as the sum of the total intensity and the
net downgoing intensity (flux) and set it to zero at z = 0:

Id = 1
2
It + 1

2
In = 0. (34)

Using the approximation derived in equation 29, the In-term
can be replaced by a spatial derivative of It:

1
2
It + 1

2

(
− �s

2B
∂It

∂z

)
= 0. (35)
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Equation 35 can be rewritten using the definition of the trans-
port mean free path:

It − �tr
∂It

∂z
= 0. (36)

This shows there is a mixed boundary condition at z = 0. At z
= L, there is another boundary condition of the mixed type:

It + �tr
∂It

∂z
= 0. (37)

To summarize, the total intensity for a finite random
medium extending from z = 0 to z = L obeys the following
boundary value problem at late times:

∂It

∂t
= D

∂2It

∂z2
+ δ(z − z′)δ(t)

It − �tr
∂It

∂z
= 0 at z = 0,

It + �tr
∂It

∂z
= 0 at z = L, (38)

where D = v�tr. Unfortunately, equation 38 cannot be solved
analytically; enforcing the mixed boundary conditions leads to
a transcendental equation. A well-known method to obtain a
closed-form solution (Morse and Feshbach, 1953) is to trans-
form the mixed boundary conditions into approximate Dirich-
let boundary conditions:

∂It

∂t
= D

∂2It

∂z2
+ δ(z − z′)δ(t)

It = 0 at z = −�tr ,

It = 0 at z = L + �tr . (39)

These approximate boundary conditions are linear extrapo-
lations of the mixed boundary conditions in equation 38. As
discussed in Morse and Feshbach (1953), the approximate
boundary conditions in equation 39 work quite well, and this
type of formulation is commonly used in the study of multi-
ple wave scattering (Sheng, 1995). The approximate Dirichlet
boundary conditions should not be interpreted physically; the

Figure 3. The geometry of the 1D numerical scattering exper-
iments. The source is at the center of a region with thin ran-
dom layers; a receiver is positioned above the layers for each
experiment. The size L of the scattering region for different
experiments has the values 80, 120, 160, 200, and 240 m, or, in
terms of the dominant wavelength of the source, L/λ is 20, 30,
40, 50, and 60.

total intensity It does not actually go to zero at a distance �tr

outside the scattering region. The solution of equation 39 at
the edge of the scattering region (z = 0 or z = L) holds for a
receiver outside of the scattering region, with a time delay ap-
plied to allow the intensity to propagate through the homoge-
neous background medium to the receiver. In one dimension,
equation 39 can be solved by expanding over the modes of the
Laplacian,

It(z, z′, t) = 2
L + 2�tr

∞∑
m=1

exp
(

− m2π2Dt

(L + 2�tr)2

)

× sin
(
mπ(z + �tr)
L + 2�tr

)
sin
(
mπ(z′ + �tr)
L + 2�tr

)
.

(40)

The partial differential equation could have been solved
equivalently by the method of images (Zauderer, 1989).

NUMERICAL SIMULATIONS

We tested the late-time solution 40 for the average total
intensity with finite-difference simulations of the scalar wave
equation in the presence of random discrete scatterers. We
chose the finite-difference method since, in one dimension,
perfectly absorbing boundary conditions can be applied (see
Appendix C for details of the numerical implementation).
This is especially important for studying the late-time behav-
ior of a wave field when reflections from the edge of the nu-
merical grid can overwhelm the multiply scattered waves.

The set-up of the numerical experiment is shown in
Figure 3. A plane (1D) source S is excited in the center
of a finite 1D random medium, of size L, containing iden-
tical but randomly spaced low-velocity (1 km/s) thin beds.
By thin in this experiment, we mean their thickness is ap-
proximately one-tenth of the dominant wavelength. The high-
velocity background medium in which they are embedded has
a velocity of 2 km/s. We use the first derivative of a Gaussian,
with a dominant wavelength of 4 m, as the source waveform.
A receiver R is placed outside the scattering region. The ex-
periment is repeated for five sizes of the scattering region, L =
80, 120, 160, 200, and 240 m. We refer to these as experiments
1, 2, 3, 4, and 5, respectively. For each of the experiments, we
obtain the average intensity by performing each experiment
for 20 realizations of the randomness, squaring each of the 20
wavefields, and adding them.

To keep the statistical properties of the random medium
the same, the number of scatterers per unit length is constant
for experiments 1–5. We set the average number of scatterers
per dominant wavelength to one so the independent scattering
approximation holds in the simulations. The interfaces of the
thin beds are in welded contact, which can be accomplished
efficiently in a finite-difference scheme (Boore, 1970). Finally,
we do not simulate any viscoelasticity; there is no intrinsic ab-
sorption (τ a → ∞).

The average intensities for experiments 1–5 are plotted in
Figure 4. For each of the average intensities, a high-amplitude
pulse arrives first. This is the coherent intensity, or mean
field. Following the coherent intensity is the incoherent mul-
tiply scattered energy. If, during the averaging process, the
wavefields for the different realizations were added (stacked)
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before they were squared, the incoherent energy would cancel
and leave only the coherent intensity. From the moveout of
the high-amplitude pulse, we find that the group velocity en-
tering the radiative transfer equation v is approximately the
velocity of the background medium (2 km/s).

To characterize the scattering in the radiative transfer
model, the length scale of the exponential decay of the co-
herent wave, �s/B, must also be measured. The decay is de-
picted in Figure 5. A linear regression on a logarithmic scale
estimates the characteristic distance over which the coher-
ent wave decays exponentially. For our numerical simulations,
�s/B = 46 ± 2 m. In the previous section, we showed that
�s/B = 2�tr. Therefore, �tr = 23 ± 1 m. To arrive at an estimate
of �s, the scattering mean free path, we would require knowl-
edge of B, or the degree of back-scattering from an individual
thin layer (van Wijk et al., 2004).

Figure 4. The average intensity measured as a function of time
for the five experiments. The direct wave decays exponentially
with increasing source–receiver offset because of scattering.

Figure 5. The maximum of the high-amplitude pulse (coherent
intensity) from Figure 4 as a function of offset for experiments
1–5. A linear fit to the data in this log–linear plot gives the
characteristic exponential decay caused by scattering, �s/B.
We estimate �s/B = 46 ± 2 m.

With v and ltr estimated directly from the numerical results,
the theoretical prediction of equation 40 can be compared
with the simulated total intensities. In Figure 6, the solution of
the diffusion equation asymptotically approaches, with time,
the numerical intensities of the experiment. Note that the ap-
proximation fails for early times since it is acausal. The late-
time exponential decay is correctly predicted by the diffusion
approximation and is largely governed by the fundamental dif-
fusion mode (m = 1) in equation 40 with decay time:

τdecay = (L + 2�tr)2

π2D
. (41)

Such behavior verifies the radiative transfer model for late
times.

DISCUSSION

In higher dimensions, the radiative transfer equation be-
comes considerably more complicated than in one dimen-
sion since the number of directions to scatter into is infinite
(Paasschens, 1997). Even in one dimension, however, the rich
character of radiative transfer is evident: exponential decay
of the coherent wave can be caused by both scattering and
absorption, and aspects of both wave and diffusive behavior
emerge in the average total intensity.

The theory of radiative transfer has its limitations, the most
severe being that it does not include interference terms. For
this reason, conventional wisdom is that radiative transfer is
useless in the case of 1D random media (Papanicolaou, 1998).
However, we have shown numerical evidence that the late-
time approximation of radiative transfer, or diffusion, quan-
titatively describes the average intensity leaking out of a 1D
randomly layered structure. These differing points of view
can be reconciled. For in-situ detectors inside a 1D random

Figure 6. Logarithmic plot of the total intensity of experiment
4 (thin line) at a source–receiver offset of 100 m, compared
with the diffusion approximation, equation 40. Note that the
maximum of the total intensity has been normalized to unity.
At early times, the analytic solution to the diffusion equation
(thick line) differs from the numerical observations because
the diffusion solution is acausal and does not account for the
coherent field.
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medium, radiative transfer and diffusion do not correctly de-
scribe the decay of the average intensity. We find agreement
between our numerical experiments and radiative transfer
because our receivers are always situated outside the ran-
dom medium. Within the random medium, local interference,
which has been studied by Spencer et al. (1982) and is not ac-
counted for in radiative transfer, dominates the total intensity.
Banik et al. (1985) discuss a way to suppress local interfer-
ence since it contributes large fluctuations that can obscure
the mean field behavior.

Inside a 1D random medium and at late times, the average
intensity is dominated by local interference to such an extent
that it does not obey diffusion (equation 40). As a function of
distance from the source position, the average intensity goes
down exponentially at late times instead of nonexponentially
as predicted by equation 40. This behavior, inside a 1D ran-
dom medium, is termed localization since the bulk of the in-
coherent wave field intensity is, on average, trapped locally at
the source. Outside a 1D random medium, the local interfer-
ence vanishes and the diffusive behavior is evident. For higher
dimensional disorder, the influence of local interference is
considerably less pronounced. Indeed, the observation of lo-
calization in 3D random media is disputed (Wiersma et al.,
1997; Scheffold et al., 1999). Our definition of localization, de-
scribing the spatial distribution of late-time incoherent wave
energy, is not the only definition of localization within the field
of waves in random media (Shapiro and Hubral, 1999).

We have further demonstrated the validity of radiative
transfer in layered media by linking its description of the
decay experienced by the coherent wave to the O’Doherty–
Anstey formula. We believe the link can be extended beyond
the 1D Rayleigh-scatterer approximation made in this paper.
To do so implies moving into the more complicated Mie scat-
tering regime, where the wavelength is on the order of the size
of the scatterer (tuning thickness). Additionally, we have con-
sidered a specific type of reflection coefficient series for which
radiative transfer and scattering theory are designed. It re-
mains to be seen what radiative transfer can do for other types
of reflection coefficient series, especially for those in which in-
terfaces cannot be grouped into pairs that define scatterers.

Recently, we performed experiments to study multiply scat-
tered Rayleigh waves on a disordered surface (van Wijk et al.,
2004). We utilized radiative transfer theory to isolate the ef-
fects of scattering and absorption in our laboratory model.
Separating these two mechanisms should have applicability in
discerning saturated zones sampled by full-waveform well-log
data (van Wijk, 2003).

CONCLUSION

Throughout our exploration of the different aspects of ra-
diative transfer, we have made the connection with concepts
familiar to seismologists, such as reflection/transmission coef-
ficients, thin beds, and the O’Doherty–Anstey formula. In the
process, new features have emerged, such as the diffusion ap-
proximation and incoherent wavefield intensity. A quantita-
tive understanding of the incoherent wavefield intensity has
important implications for seismology—specifically, for the is-
sue of separating scattering from intrinsic attenuation. In ex-
amining the outcomes of radiative transfer theory, our pur-
pose extends beyond promoting the use of this specific theory;

we cite radiative transfer as a starting point for the eventual
inclusion of multiply scattered waves, especially the incoher-
ent wavefield, into the standard geophysical toolbox used to
make inferences about the subsurface.
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APPENDIX A

THE GREEN’S FUNCTION FOR
THE DIRECTIONAL INTENSITIES

Expressions 11 and 12 show that the 1D radiative transfer
equation is actually a system of two partial differential equa-
tions in terms of the up- and downgoing intensities. In this
paper, we study the sum of the up- and downgoing intensi-
ties, or the total intensity, since measuring either the up- or
downgoing intensity entails splitting the wavefield into up- and
downgoing waves. Such a decomposition requires dense spa-
tial sampling to perform the type of filtering routinely done in
vertical seismic profiling (VSP). Here, we solve equations 11
and 12 for the individual up- and downgoing intensities and,
as a result, back out the total intensity by summing the 2D
intensities.

To begin, we write equations 11 and 12 in matrix form:

∂ 	I
∂t

+ M
∂ 	I
∂z

= N 	I + 	S, (A-1)

where

	I =
[
Id

Iu

]
,

M =
[
v 0

0 −v

]
,

N =




−B

τs
− 1

τa

B

τs

B

τs
−B

τs
− 1

τa


 ,

	S =
[
Sd

Su

]
. (A-2)

We solve the system by Fourier transforming equation A-1
over space, solving the resulting system of ordinary differen-
tial equations, and inverse Fourier transforming back to spa-
tial coordinates. With the Fourier conventions

Ĩ (k) = 1
2π

∫ ∞

−∞
	I (z) exp(ikz)dz,
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and

	I (z) =
∫ ∞

−∞
Ĩ (k) exp(−ikz)dk (A-3)

equation A-1 becomes a system of two ODEs:

∂Ĩ

∂t
= (N + ikM)Ĩ + S̃. (A-4)

For the source function, we again take a general directional
point source with up- and downgoing components Su and Sd.
When we allow the parameter c to govern the directivity of
the source as we did previously, the source vector is

	S =
[

1 + c

1 − c

]
δ(z)δ(t)

2
. (A-5)

The solution of the system of ODEs follows that given in
standard texts on differential equations (Boyce and DiPrima,
1997). Here, we give the solution in the k-domain:

Id(k, t) = 1
4π

exp
(

−Bvt

�s

)
exp

(
−vt

�a

)

×



(

(1 − c)
B

τs
+ i(1 + c)kv

) sinh

(
t

√
B2

τ 2
s

− k2v2

)
√

B2

τ 2
s

− k2v2

+ (1 + c) cosh


t

√
B2

τ 2
s

− k2v2




 . (A-6)

Iu(k, t) = 1
4π

exp
(

−Bvt

�s

)
exp

(
−vt

�a

)

×



(

(1 + c)
B

τs
− i(1 − c)kv

) sinh

(
t

√
B2

τ 2
s

− k2v2

)
√

B2

τ 2
s

− k2v2

+ (1 − c) cosh

(
t

√
B2

τ 2
s

− k2v2

)

 . (A-7)

To get the directional intensities in the spatial domain, we
must inverse Fourier transform equations A-6 and A-7. Two
identities are needed for this inversion:

iz

∫ ∞

−∞
Ĩ (k) exp(−ikz)dk =

∫ ∞

−∞

∂Ĩ (k)
∂k

exp(−ikz)dk

(A-8)

and, from the theory of Bessel functions (Hemmer, 1961),

∫ ∞

−∞
cos(kz)

sin

(
t

√
k2v2 − B2

τ 2
s

)
√

k2v2 − B2

τ 2
s

dk

= π

v
I0

[
B

�s

√
v2t2 − z2

]
H (vt − |z|), (A-9)

where I0 is the modified Bessel function of zeroth order and H
is the Heaviside step function.

After inverting the Fourier transform, we obtain for the
downgoing intensity

Id(z, t) = 1
4

exp
(
−Bvt

�s

)
exp

(
−vt

�a

)[
2(1 + c)δ(vt − z)

+ B

�s
H (vt − |z|)

[
(1 − c)I0

(
B

�s

√
v2t2 − z2

)

+ (1 + c)

√
vt + z

vt − z
I1

(
B

�s

√
v2t2 − z2

)]]

(A-10)

and, for the upgoing intensity,

Iu(z, t) = 1
4

exp
(
−Bvt

�s

)
exp

(
−vt

�a

)[
2(1 − c)δ(vt + z)

+ B

�s
H (vt − |z|)

[
(1 + c)I0

(
B

�s

√
v2t2 − z2

)

+ (1 − c)

√
vt − z

vt + z
I1

(
B

�s

√
v2t2 − z2

)]]
,

(A-11)

where I1 is the modified Bessel function of the first order.
The modified Bessel functions I0 and I1 should not be con-
fused with the symbols used for the various intensities (It, Id,
Iu, and In). Equations A-10 and A-11 show that the two mod-
ified Bessel functions that make up the incoherent intensity
are sensitive to different aspects of the source radiation pat-
tern. For instance, if the source were unidirectional (c = −1
or c = 1), the zeroth-order modified Bessel function would
come from one direction and the first-order modified Bessel
from the other. In the absence of phase information, perhaps
the directional intensities can yield information about spatial
variations in the material properties. Adding equations A-10
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and A-11 gives the total intensity:

It(z, t) = 1
2

exp
(

−Bvt

�s
exp

vt

�a

)[
(1 − c)δ(vt + z)

+ (1 + c)δ(vt − z) + B

�s
H (vt − |z|)

×
[
I0

(
B

�s

√
v2t2 − z2

)
+ vt + cz√

v2t2 − z2

× I1

(
B

�s

√
v2t2 − z2

)]]
. (A-12)

The result by Hemmer (1961) is obtained from equation A-12
for the case of an isotropic source (c = 0) and isotropic scat-
tering (B = 1/2).

APPENDIX B

THE SCATTERING CROSS-SECTION IN
THE LIMIT OF WEAK SCATTERING

The scattering cross-section for a thin bed is (Sheng, 1995)

σs(k0) = 1
2
k2

0h
2

[
1 −

(
v

v0

)2
]2

, (B-1)

where k0 is the wavenumber in the background medium, h is
the thickness of the thin bed, v is the velocity of the thin bed,
and v0 is the velocity of the background medium. The k0

2 de-
pendence of σ s is the hallmark of Rayleigh scattering in one
dimension. Equation B-1 is the first term of a power series in
k0h and can be derived from the 1D scalar wave equation by
requiring that the displacement and its spatial derivative be
continuous at both boundaries of a 1D scatterer, or thin bed.
These same boundary conditions at an interface yield the re-
flection and transmission coefficients:

R = v − v0

v + v0
and T = 2v

v + v0
. (B-2)

These reflection and transmission coefficients for scalar waves
are equivalent to those for constant-density acoustic media.

Assume that the velocity of the thin bed can be expressed
as v = v0 (1 + α), with α � 1. This is the case of a small reflec-
tion coefficient. For an assemblage of thin beds with varying
velocities, α represents the rms perturbation from the back-
ground velocity. Substituting this relation for v into equation
B-1 gives

σs(k0) = 1
2
k2

0h
2[1 − (1 + α)2]2. (B-3)

Keeping the lowest order term in α,

σs(k0) ≈ 2k2
0h

2α2. (B-4)

To satisfy equation 16, we need to show that the scatter-
ing cross-section in the weak scattering limit, equation B-4, is
equal to 8k0

2h2R2. From equation B-2,

8k2
0h

2R2 = 8k2
0h

2
(
v − v0

v + v0

)2

. (B-5)

Substituting v = v0(1 + α) into equation B-5 gives

8k2
0h

2R2 = 8k2
0h

2
(

α

2 + α

)2

. (B-6)

Again, keeping the lowest order term in α, we obtain that the
right-hand side of equation B-6 equals 2k2

0h2α2, identical to
equation B-4. Hence, in the weak scattering limit for thin beds,
8k2

0h2R2 = σ s.

APPENDIX C

DETAILS ON THE NUMERICAL SIMULATIONS

Our numerical approach uses the centered-difference ap-
proximation to the second spatial and temporal derivatives in
the 1D scalar wave equation:

u(z, t + 0t) − 2u(z, t) + u(z, t − 0t)
0t2

= v2(z)
u(z + h, t) − 2u(z, t) + u(z − h, t)

h2
+ S(z, t),

(C-1)

where u(z, t) is the displacement field as a function of depth
and time, 0t is the time increment, h is the spatial discretiza-
tion length, v(z) is the background velocity, and S(z, t) is the
source. Performing a harmonic analysis of the above differ-
ence equation yields both the dispersion and stability prop-
erties of our numerical scheme (Alterman and Loewenthal,
1970). The resulting stability condition requires that

v(z)0t ≤ h. (C-2)

In addition, the numerical dispersion relation can be ex-
pressed as

cosω0t = 1 − 20t2v2(z)
h2

sin2
(
kh

2

)
, (C-3)

where ω is the angular frequency and k is the wavenumber. If
ω0t and kh are small parameters (� 1), equation C-3 sim-
plifies to ω2 = v2(z) k2. In other words, the numerical dis-
persion vanishes as the waves are better sampled in time and
space. For our simulations, we set the number of gridpoints
per dominant wavelength to 30, ensuring that numerical dis-
persion posed no problem.

We have equipped the finite-difference stencil of equa-
tion C-1 with absorbing boundary conditions at the edges
of the numerical grid. For this simple 1D case, Clayton–
Enquist boundary conditions (or radiation boundary condi-
tions) can be constructed that perfectly absorb any outgoing
waves (Clayton and Enquist, 1977). In higher dimensions, this
approach fails and other techniques, most notably the per-
fectly matched layer (PML) method, must be used (Chew and
Liu, 1996). When we take the numerical domain to extend
from z = −α to z = L + α, a discrete one-way wave equation
at the boundary z = −α is

u(−α, t) − u(−α, t − 0t)
0t

= v
u(−α + h, t − 0t) − u(−α, t − 0t)

h
. (C-4)
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We require that the velocity be constant, v(z) = v, for the
boundary point and the nearest interior gridpoint. Equation
C-4 can be rearranged to solve for u(−α, t), the displace-
ment on the boundary, as a function of the displacement at
the boundary at the previous time step, u(−α, t−0t), and the
displacement at the nearest interior gridpoint at the previous
time step, u(−α + h, t − 0t). Hence, the absorbing boundary
condition is explicit in time.

Because of the approximation of the derivatives in equa-
tion C-4, the boundary condition does not perfectly absorb
in general. Interpolation errors arising from the approximate
derivatives cause sizable reflections from the boundary. The
exception is when v0t/h = 1. In that case, the absorbing
boundary condition becomes

u(−α, t) = u(−α + h, t − 0t). (C-5)

This boundary condition assigns the value of displacement
at the nearest gridpoint from the previous time step to the
boundary point, u(−α, t), thereby mimicking 1D propagation
when the time step, grid spacing, and velocity are chosen to
obey h/0 t = v. In other words, for this choice, there are no
interpolation errors. From equation C-2, this combination cor-
responds to the equality and still allows for a stable numerical
scheme.
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