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1. Introduction, complex wave propagation in the earth

Media can be complex in at least two different ways. The first kind of
complexity is that a medium has small-scale inhomogeneities that allow
waves to travel along a multitude of paths. For such a medium geometrical
optics cannot be used to account for the wave propagation. The second
kind of complexity is that the inhomogeneities are so strong that multiple
scattering effects are operative. In this work the effects of both small-scale
perturbations of the medium are treated (section 3), as well as the effects
of multiple scattering (section 4). Imaging of wave-fields is very different in
complex media than in simple media. The effects of complex wave propa-
gation on imaging techniques is discussed in the sections 2 and 5.

One does not have to look far for a complex medium, because the prop-
agation of elastic waves through the earth can be extremely complex. As
an example, consider the top panel of figure 1 in which the ground motion
recorded by a seismic station in the Netherlands after an earthquake in
Greece is shown. The signal has a very complex appearance. The frequency
spectrum of the recorded signal is shown in figure 2. At a frequency of
around 0.2H z (corresponding to a period of 5s) the spectrum shows a pro-
nounced peak. This peak is also present in the absence of waves generated
by earthquakes. Instead of the earth response to the earthquake, this peak is
due to seismic noise that is generated at the oceans when water waves with

°Reprinted from “Diffuse waves in complex media”, p. 405-454, Ed. J.P. Fouque,
Kluwer, Dordrecht, 1999.
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Figure 1.  Vertical ground motion recorded in the Netherlands after an earthquake

in Greece (top panel). Also shown are the band-passed filtered seismogram containing
frequencies from 0.7 Hz to 3 Hz (middle panel) and the low-passed filtered seismogram
with frequencies less than 0.1 Hz (bottom panel).

near-opposite wavenumber interact [Longuet-Higgins, 1950; Webb, 1998]. It
turns out that the seismic signal at frequencies greater than the frequency
of the microseismic noise is of a completely different character than the
signal at lower frequencies.

This can be seen by comparing the seismic signal that contains only
frequency components between 0.7 and 3.0 Hz in the middle panel of fig-
ure 1 with the low-pass filtered seismogram in the bottom panel of figure
1 that contains only frequencies lower than 0.1 Hz. The high-frequency
signal shown in the middle panel starts with an impulsive arrival that di-
rectly merges is a long wave-train that consists of multiple scattered waves,
this wave-train is called the coda.! The high-frequency signal shown in
the middle panel in figure 1 is of a completely different nature from the
low-frequency components shown in the bottom panel. The low-frequency
signal does not show a strong coda after the first arriving wave around

!The term coda comes from music, where it refers to the closing part of a piece of
music.
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Figure 2. The amplitude spectrum of the seismogram in the top panel of the previous
figure.

90s. The main features in this signal are distinct arrivals that correspond
to the longitudinal and transverse waves that propagate through an elastic
medium. These arrivals are labelled with “P” and “S” according to the
common seismological nomenclature of P(rimary)- and S(econdary)-waves.
The other main arrival is the surface wave that arrives around 640s after
the earthquake, this wave is denoted by the label “R.”

It is striking that the frequency-band of the microseismic noise sep-
arates for this epicentral distance a wave regime that is dominated by
strong scattering (the middle panel) from a regime (in the lower panel)
where there is little scattering and where one essentially only observes the
direct waves that are explained well by geometrical optics. The waves in
both frequency bands travelled through the same medium, the earth. The
lesson to be learned from this is that one cannot simply speak of complex
media or simple media, because depending on the frequency, the waves
may interact in very different ways with the medium. This is due to the
frequency-dependence of the relevant scattering and mode-conversion coeffi-
cients for body waves [Aki and Richards, 1980], surface waves [Snieder, 1986;
Snieder and Nolet, 1987] and for normal modes [ Woodhouse and Dahlen,
1978; Snieder and Romanowicz, 1988]. The name complex media is there-
fore is misnomer, because depending on the frequency the wave propagation
in a medium can either be very simple or extremely complex.

On a smaller scale, the material comprising the earth’s crust can lead to
very complex wave propagation. This is beautifully illustrated by the labo-
ratory measurements made by Nishizawa et al. [1997]. Using a laser-doppler
interferometer they measured elastic waves that propagate through samples
made of granite and of steel. Cross-sections of the three granites that were
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Figure 8. Cross section through the granite samples used for the wavefield measurements
shown in the next figures. (Courtesy of Osamu Nishizaza)
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Figure 4. Wavefield that have propagated through a steel block and the Westerley
granite sample of the previous figure. (Courtesy of Osamu Nishizawa.)

used are shown in figure 3. The waves that have propagated through these
granite samples are shown in the figures 4 and 5. As a reference, the waves
that propagated through a steel block is shown in figure 4; the steel block
can be considered to be a nearly homogeneous medium. Note that in the
steel sample (figure 4) the wave-field is dominated by coherent arrivals that
are the P- and S-waves that propagate through the sample and are reflected
and converted at the boundaries of the sample. In the most homogeneous
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Figure 5. Wavefield that have propagated through the Oshima and Inada granite sam-
ples. (Courtesy of Osamu Nishizawa.)

granite sample, the Westerey granite, one can still observe the direct P- and
S-waves. However, in the more inhomogeneous granite, notably the Inada
granite in figure 5, one cannot identify these direct wave arrivals anymore,
and the wave-field makes an incoherent and noisy impression. In this sam-
ple the wave scattering is so strong that the direct ballistic arrivals have
disappeared.

It is tempting to speak of “noisy signals.” However, one should be care-
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Figure 6. Wave-field recorded by an array in California after two nearby earthquakes
(top panel and bottom panel respectively). Note the extreme resemblance of each trace
in the top panel with the corresponding trace in the bottom panel. (Courtesy of Peggy

Hellweg.)
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ful of using the phrase “noise” when referring to wave-fields that appear
to show little organisation [Scales and Snieder, 1998]. This is illustrated
by the recordings of the ground motion of an array in California that is
shown in the top panel of figure 6. This ground motion was excited by a
weak local earthquake, and the wave propagated mainly through the earth’s
crust. Note that the wave-field is extremely complex and makes a “noisy”
impression because there is little coherence between the signals recorded
at different stations. By a stroke of luck, a second very similar earthquake
occurred at almost the same location of the first earthquake, the ground
motion for this second event recorded by the same array is shown in the
bottom panel of figure 6. Note that the signals shown in the panels in figure
6 are virtually identical. The waveforms for these two earthquakes can be
matched “wiggle by wiggle.” This means that the signals shown in figure 6
are definitely not noise. Instead these signals represent an extremely repro-
ducible earth-response. That these signals are not due to ambient random
noise can be seen by considering the signal before the first arriving wave.
This part of the recordings is extremely weak; this indicates that the true
noise level is extremely low. The noisy looking signals shown in figure 6
therefore should not be labelled as noise but rather as deterministic earth
response.

2. Imaging with complex waves?

The wave-fields shown in figure 6 consist to a large extent of multiple scat-
tered waves. In addition to pure wave scattering, the conversion between
P-waves, S-waves and surface waves is an additional physical effect that is
responsible for generating the waveforms that are recorded. The question
then arises: to what extent can these complex waves be used for imaging
the earth’s interior? Within the seismological community one tends to avoid
these complex waveforms when one wants to make images of the earth’s
interior. The standard approach to seismic prospecting includes a number
of processing steps of the data that are aimed at suppressing the multiple
scattered waves. The most important example of techniques used for mul-
tiple suppression is the normal move out (NMO) correction plus stack [e.g.
Claerbout, 1985; Yilmaz, 1987]. In global seismology one often low-pass fil-
ters the data in order to remove the multiple scattered waves. The example
of figure 1 shows how effective this approach can be. However, the elimina-
tion of the multiple scattered waves by preprocessing of the data entails a
loss of information.

The main motivation for accepting this loss of information is that the
retrieval of earth structure from multiple scattered waves is assumed to
be an inherently unstable process so that random noise or unwarranted
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assumptions used in the imaging process magnify under the nonlinear in-
version steps needed to map the multiple reflected waves onto a model for
the earth’s interior. It is for these reasons that Claerbout [1985] notes on
p- 363 that:

“Multiple reflections is a good subject for nuclear physicists, astrophysi-
cists and mathematicians who enter our field. Those who are willing
to take up the challenge of trying to carry theory through to industrial
practice are rewarded by some humility.”

At this point it is not known whether this pessimistic conclusion about the
possibility to use strongly scattered waves is justified.

Recorded wavefield

Multiple scattered waves

0.0 5.0 10.0 15.0
Time (s)

Figure 7. Wave-field at one of the two receivers in the 1D numerical experiment.

In any case, this conclusion appears to be add odds with the experiments
of Derode et al. [1995] who used a Time Reversal Mirror (TRM) to image
acoustic waves that have been strongly scattered back onto the source po-
sition. In their experiment, waves emitted by a source propagate through a
dense assemblage of 2000 metal rods that strongly scatter acoustic waves.
The waves are digitally recorded at an array of 128 receivers. The recorded
waves are time-reversed (i.e. the time ¢ is replaced by —t) and these time-
reversed waves are send back from the receivers into the medium. Since the
equation for the propagation of acoustic waves is invariant for time-reversal,
the waves should revert along their original path and at time ¢ = 0 focus
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on the source that originally excited the waves at ¢ = 0. The surprise of the
experiment of Derode et al. [1995] is not that the system exhibits invariance
for time reversal, but the surprise is that this time-reversed imaging works
even when the employed waves are strongly scattered and when the waves
that are send back into the medium are contaminated with errors due to
discretization and instrumental effects. The stability of the time-reversed
imaging of Derode et al. [1995] seems to be at odds with the pessimistic
conclusions of Claerbout [1985]. So who is right, Claerbout [1985] or Derode
et al. [1995]7 Or in other words, can one use multiple scattered waves for
imaging purposes or is it impossible to do this in a robust fashion?

Backpropagating wavefield

Imaged section t=0
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Figure 8. Wave-field after time reversal at different times.

In order to resolve this paradox an example from Scales and Snieder
[1997] is shown that is based on the multiple scattering theory for isotropic
point scatterers that is described in section 4.1. At this point the details
of this scattering theory are not yet important, it suffices to note that the
full multiple scattering response is used in the numerical simulation. The
examples shown are for wave propagation in one dimension, i.e. the waves



415

Backpropagating wavefield
20% Noise added
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Figure 9. Time-reversed wave-field when 20% noise has been added to the signals that
are emitted from the receivers.

propagate along a line. The source is located at + = 0, on each side of
the source two strong scatterers are positioned within a distance of 500m.
Two receivers located at +6000m record the wave-field. The wave-field
recorded by one of the receivers is shown in figure 7. After time-reversal
the waves recorded at the two receivers are sent back from the receivers
into the medium (which includes the scatterers). In figure 8 one can see
how the waves propagate through the medium. Note that the wave-field
is confined to a “light-cone” with the source at + = 0 and ¢ = 0 as apex.
As a consequence of the time-reversal invariance of the underlying wave
equation, the wave field collapses at ¢ = 0 onto the source at = 0.

The time-reversed wave-field for data that are contaminated with 20%
noise is shown in figure 9. Despite the background noise in the back-
propagating waves, the wave-field still collapses well at ¢ = 0 onto the
source at « = (0. This implies that the back-propagation is fairly stable for
the addition of random noise, despite the fact that the waves propagate
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Backpropagating wavefield
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Figure 10. Time-reversed wavefield when the scatterers are perturbed.

through a strongly scattering medium.

Figure 10 shows the time-reversed wave-field propagating through the
medium, but now the position of the scatterers have been randomly per-
turbed with an rms perturbation of about 25m. (This is 1/4 of the dominant
wavelength.) Note that now the waves poorly focus at ¢ = 0 onto the source
at £ = 0 and that energy leaks out off the “light-cone”, notably near ¢t = 0.
The small perturbation in the location of the scatterers has destroyed the
delicate interference process that produces the focusing of the wave-field
onto the source, which suggests that focusing through multiple scattering
media is an inherently unstable process.

Let us now return to the issue: is Claerbout [1985] right in his statement
about the futility of using multiple scattering data for imaging the earth’s
interior, or are Derode et al. [1995] right with their apparently stable time-
reversed experiments? The answer is: both are right! We are considering two
different kind of instabilities. In the physical experiment of Derode et al.
[1995], the time-reversed wave-field is slightly in error because of the 8-bit
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digitization that they used. However, the time-reversed wave-field acts as
a linear boundary condition on the complete wave-field. This implies that
since the medium used by Derode et al.[1995] for the forward and reverse
propagation is identical, their experiments are not prone to any nonlinear
error magnification process. In contrast, Claerbout [1985] refers to the fact
that imaging is extremely difficult in a strongly scattering medium which is
known with only a limited accuracy. His pessimistic conclusion is supported
by the example shown in figure 10.

The upshot of this issue is: when one discusses instability of multiple
scattering processes one should carefully state whether one refers to (i)
instability of the wave-field to perturbations of the boundary conditions,
(ii) instability of the wave-field to perturbations of the medium, or (iii)
instability of the inverse problem to perturbations of the data. These are
different issues that should not be confused.

Note that we have not fully addressed the problem whether imaging
of structures is possible on the basis of strongly scattered waves. In fact,
this is still an open question. However, strong scattering is not the only
complexity seismologists have to deal with. The presence of small-scale
structure in the earth imposes an important restriction on the way wave
propagation in the earth should be described. The imprint on small-scale
variations of the medium on wave propagation is the subject of the next
chapter.

3. Averaging in complex media

3.1. RAY THEORY AS WORKHORSE

As shown in the lower panel of figure 1, the elastic response of the earth is
for low frequencies characterized by a limited number of wave arrivals. This
does not imply that the interior of the earth is a smooth quasi-homogeneous
medium. In fact, the coda waves for the high-frequency waves shown in the
middle panel of figure 1 show that the interior of the earth is not sim-
ple and smooth at all depths. In general, seismologists have followed the
strategy to pre-process the data such that the complex wave propagation
phenomena are suppressed. The seismic industry relies almost exclusively
on single scattered waves for imaging oil reservoirs. Within global seismol-
ogy, virtually all tomographic models are based on transmission data. Both
in seismic imaging and in global seismology one usually employs geometric
ray theory to account for wave propagation in the earth. In this sense ray
theory can be called the workhorse of seismology.

Ray theory is an approximate theory that is valid when the length-scale
a of the inhomogeneity is much larger than:

[1] The wavelength X of the waves: a > A
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L

Figure 11. Geometry for the calculation of the Fresnel zone in a homogeneous medium.

[2] The width of the Fresnel zone: a > Lp

A detailed discussion of these requirements is given by Kravtsov [1988].
The definition of the Fresnel zone warrants some further discussion.
The (first) Fresnel zone is defined as the region of space that when a wave
is scattered once at a point within the Fresnel zone the scattered wave
arrives almost in phase with the direct wave. This idea can be based in a
more rigorous analysis on Kirchhoff integrals [Kravtsov, 1988]. As a first
example, consider a homogeneous medium. In such a medium the ray is a
straight line. Consider a ray of length L as shown in figure 11, and consider
the wave that is scattered once at a point at a distance z from the ray. Let
us for simplicity consider a scattering point at the middle of the ray. For
small values of x the detour of the scattered wave compared to the direct

wave is given by 2 (L/2)2 + 22 — L ~ 22?/L. When this detour is equal
to a quarter of a wavelength one is at the edge of the Fresnel zone. The
width of the Fresnel zone is for a homogeneous medium thus given by:

Lp =42 (1)

One should note that for a fixed wavelength the width of the Fresnel zone
grows without limit with the path length L. This means that for a fixed
wavelength A\ and scale-length a of the heterogeneity the second criterion
will always be violated when the path length is of the order of 8a2/\.

Let us now consider whether the requirements for the validity of ray
theory are satisfied for wave propagation in the earth. As a first example
let us consider a P-wave of a period of 1s that travels over a teleseismic
distance, say 10*%km. With a P-velocity of 8km/s this leads to a Fresnel
zone with a width of Ly = 100km. Note that this is really the half-width
if the Fresnel zone so that the total width of the Fresnel zone is 200km.
This is about one third of the thickness of the upper mantle, and one may
question whether the earth has little variations on that scale.

As a next example consider the Fresnel zone for a PP-wave at the earth’s
surface that is shown in figure 12. In this example the period of the wave is
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Figure 12. Horizontal cross-section through the Fresnel zone of a PP wave at the bounce
point at the Earth’s surface for a epicentral distance of 107 degrees and a period of 20s.

20s. A PP-wave travels downward from a source, is bend towards the earth’s
surface, reflects at the earth’s surface and then travels to the receiving point.
Note that the Fresnel zone for this wave does not have an ellipsoidal cross-
section. This is due to the fact that this wave is a minimax phase [Choy
and Richards, 1975]; this is a different way of saying that the travel time is
not a minimum along the ray but that the travel-time surface is a saddle-
point surface. However, the important point is not the shape of the Fresnel
zone but the size; the total width of the Fresnel zone is about 20 degrees,
or about 2000km. It is not likely that the earth is smooth on this length
scale. Other examples of exotic Fresnel zone are shown by Marquering et
al. [1998].

Fresnel zones can not only be defined for travelling body waves, but
also for the normal modes of the earth. Just as an atom with spherical
symmetry, a spherically symmetric earth model has normal modes whose
horizontal dependence are described by spherical harmonics Y, (6, ). The
normal modes with the same order [ but different degree m are degenerate
and have the same eigen-frequency [Aki and Richards, 1980]. One thus has
multiplets of normal modes that have a (2[ + 1) -fold degeneracy. Horizontal
variations in the earth structure lead to line splitting, and one can show
that the centroid-frequency shift dw; of a split multiplet observed at a given
station for a given earthquake can be written as an integral of the local
perturbation dm of the earth’s structure [Tanimoto, 1984; Snieder, 1993;
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Dahlen and Tromp, 1998]:

ur = [[ K(0.0)m6, )0 2
where the integration [[ (---)d€ is over the unit sphere. For the mode
0S20 with [ = 20 the weight function K (6, ) is shown in figure 13 for an
earthquake in Indonesia that is recorded in Western Europe. Positive values

are grey, negative values are white. For reference, the great circle joining
source and receiver is indicated by a thick line.
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Figure 18. Contour diagram of the sensitivity function K(f,¢) for mode 0S20 for an
earthquake in Indonesia that is recorded in Europe for mode . Positive values are shown
in grey, negative values in white.

Away from the great circle the weight function is oscillatory and changes
sign. When the earth structure is smooth on the scale of these oscillations
the contribution of this region integrates to zero. The only net contribution
then comes from the grey region that straddles the great circle. This region
can be seen as the Fresnel zone for this normal mode frequency shift. Note
that the width of the Fresnel zone is about 6000km; the Fresnel zone extends
from the north of Tibet to the spreading ridge in the Indian Ocean. It is
hard to sustain that the earth structure is smooth on that length scale.

The discussion up to this point assumed that there was a characteris-
tic length-scale of the velocity perturbations in the earth. It is debatable
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whether such a length scale indeed exists. In-situ measurements taken in
boreholes provide evidence that the structure of the earth’s crust is self-
similar [Dolan et al., 1998; Herrmann, 1997]. Such a medium has pertur-
bations on every length scale, and the criteria for the validity of ray theory
are thus surely violated.

The same argument can be used for the propagation of waves through a
turbulent medium. Turbulence is characterized by a coupling of the differ-
ent length-scales of the heterogeneity within the medium by the nonlinear
terms in the equation of motion. A turbulent gas or fluid thus displays per-
turbations on every length scale. This means that ray theory should strictly
speaking not be used to describe wave propagation in turbulent media such
as the ocean (as used in ocean tomography) or the atmosphere (as used in
ionospheric tomography).

It is interesting to consider how we deal with the propagation of light
in the atmosphere. We explain the twinkling of the stars using ray theory
by stating that thermal fluctuations lead to focussing and defocussing of
light that is perceived as twinkling. The argument is ray-geometric. In fact,
geometrical optics was originally developed to describe the propagation of
light. However, we explain the fact that the sky is blue using scattering
theory. In both problems we are considering light of the same wavelength
propagating through the same medium but apparently:

At night we believe in ray theory while during the day we believe in
scattering theory.

The examples of this section indicate that one often uses ray theory
rather carelessly. It is of interest to study the propagation of waves when
the requirements for the validity of ray theory are violated. For the moment
we will consider media that are complex because they have perturbations on
small-scales that violate the requirements for the validity of theory. How-
ever, it is assumed in this chapter that the perturbations are weak. For
many practical applications such as mantle tomography or light propaga-
tion in the atmosphere, this condition is justified. We will return to the
issue of wave complexity by multiple scattering by strong perturbations of
the medium in section 4.

3.2. PERTURBATIONS OF A HOMOGENEOUS MEDIUM

For simplicity we consider the Helmholtz equation

w?

)

The velocity v(r)is a reference velocity that is assumed to be so smooth
that ray theory can be used to account for wave propagation through this

Vu +

(1+n(x)u=0. (3)
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medium. The unperturbed wave-field that propagates through this medium
is denoted by ug(r). The velocity is perturbed by the quantity n(r), this
quantity is not necessarily smooth. The first order perturbation of the phase
of the wave-field follows from the Rytov approximation [Rytov et al., 1989]
and is given by

o =m (22) (4)
U
with up given by

2

up(r) = — / %G(r,r')n(r')uo(r')dw, (5)

details can be found in Snieder and Lomaz [1996]. In this expression G (r,r’)
is the Green’s fucntion for the reference medium v(r).

X — axis

Figure 14. Definition of the geometric variables for a plane incident wave in a homoge-
neous reference medium.

Let us specialize to the special case of a homogeneous medium in two
dimensions with an incoming plane wave that propagates in the z-direction,
see figure 14. The wavenumber is given by k£ = w/v. The Green’s function
G(r,r') in (5) is equal to (—i/4) Hél)(k |v —1t'|) [Morse and Ingard, 1968].
Using the far-field approximation for the Hankel function one can rewrite
the phase shift from expressions (4) and (5) as:

E2eim/4 n(rl)eikD(r’)
5 _ d / d / . 6
(p(I‘) Sm ( \/871'—]{2 { \/m €T z ( )
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In this expression D is the detour of the scattered wave compared to the
direct wave, in the notation of figure 14:

D(ry=L-1L'. (7)

If the perturbation n(r’) would be sufficiently smooth, one could use
a stationary phase evaluation of the z'-integral in (6) [Bleistein, 1984].
This would lead to the ray-geometric solution [Snieder, 1987]. However, the
perturbation is not assumed to be smooth, hence the z’-integral cannot be
solved with a stationary phase evaluation. Instead, consider the stationary
phase integral without the perturbation n(r’) and without the geometrical

spreading /|r — r'|:

o / ]
/€ZkD(r)d.’,El _ 27T|Zk Z| em/4 ) (8)

Next, divide the z-integral in (6) by the left hand side of this expression
and multiply with the right hand side of (6), and ignoring the variation of
the geometrical spreading of |r — r'| with ', the result can be written as:

sz (II’
o ( / I esz . dz'>. (9)

This is an interesting expression because the z’-integration can be seen
as a weigthed average of the perturbation n(r’) with a weight function
exp (ikD). This weight function allows for the relative timing of the scat-
tered waves compared to the direct wave.

When one changes the geometry of the problem the unperturbed wave
ug changes, and when one considers the problem in 3 dimensions the Green’s
function changes. This means that for a different geometry the integral (6)
has a different form. However, as shown by Snieder and Lomaz [1996] the
averaging integral (9) holds in both 2 and 3 dimensions as well as for a point
source instead of a plane incoming wave. The only difference is that in 3
dimensions one needs to integrate over two transverse coordinates x and
y. For this reason expression (9) is more general than the original integral

(6).

3.3. PERTURBATIONS OF AN INHOMOGENEOUS MEDIUM

The derivation for a homogeneous medium can be generalized for a back-
ground medium that is inhomogeneous with velocity variations that are so
smooth that it is justified to use ray theory. Perturbations of this medium
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are denoted by n(r), these perturbations can have any scale. The corre-
sponding derivation is given by Snieder and Lomaz [1996] with some cor-
rections in Snieder and Chapman [1998]. For such an inhomogeneous ref-
erence medium the detour D needs to be replaced by the delay time T of a
scattered wave compared to the unperturbed wave. Using ray-centered co-
ordinates [Cerveny and Hron, 1980] the phase shift can for such a medium
be written as

_ v 1 [ n(r)e™Th(s, qi, g2)dq1dgy
do = 2§Re (/ dsv(s) T T dgrdas . (10)

In this expression s is the integration variable along the reference ray
while ¢iand g2 denote the coordinates perpendicular to the reference ray.
The Jacobian of the transformation to ray-centered coordinates is given
by h(s,q1,q2) = 1+ (1/v) (q-Vv). The derivation of (10) is much more
complex than the equivalent expression (9) for a homogeneous reference
medium because in an inhomogeneous medium the relation between geo-
metrical spreading and wave-front curvature is nontrivial, and one needs to
invoke the equations of dynamic ray tracing to derive (10).

However, this expression has a similar interpretation as an averaging
integral as (9). The quantity that is averaged in (10) is effectively given by
wn(r)/2v(r), and the weight function for the function is given by exp (iwT').
It follows from the Helmholtz equation (3) that the local wavenumber is
given by k?(r) = (w?/v*(r)) (1+n(r)). To first order in n(r) the local
perturbation of the wavenumber is thus given by

w wn(r)

5k (r) :@{ L+ () — 1} ~ (11)

This means that according to (10) for a general variable reference medium
the phase shift is given by a weighted average of the local wavenumber as
defined in (11) with a weight function exp (iwT).

3.4. THE SIGNIFICANCE OF WAVE-FIELD AVERAGING

The equations (9) and (10) state that the perturbation of the phase shift is
a weighted average of the slowness perturbation over the Fresnel zone. This
implies that the continuity of the wave-field smooths out the perturbations
of the medium in the sense that small-scale perturbations of the medium
only affect in an average sense the properties of the transmitted wave. As
shown in Snieder and Lomaz [1996] a similar result can be derived for the
amplitude of the transmitted wave.

This averaging property plays a crucial role in seismic tomography. As
argued in section 3.1 the requirements for the validity of ray theory are
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not very justifiable for the earth. Nevertheless, the majority of techniques
for seismic tomography are based on ray theory [e.g. Iyer and Hirahara,
1993]. Let us now divide the perturbations of the medium in small-scale
perturbations that violate the requirements for the validity of ray theory,
and large-scale perturbations for which ray theory is valid. The averaging
integrals (9) or (10) imply that the small-scale perturbations are averaged
out. In contrast, the large-scale perturbations lead to a change in the phase
that is identical to the phase shift predicted by ray theory. This means that
a tomographic inversion for the large-scale perturbations is not affected by
the presence of small-scale perturbations. Only when one aims at resolving
features that are smaller than the width of the Fresnel zone, one needs to
replace ray theory by the averaging integrals (9) or (10).

Of course, the theory of this chapter is only applicable for perturbations
that are so weak that the relation between the perturbation of the phase
and the perturbation of the medium can be linearized. However, virtually all
schemes for seismic tomography are based on such a linearization, hence this
is no additional complexity as far as the application in seismic tomography
is concerned.

3.5. FOR THOSE WHO DON’T LIKE THE RYTOV APPROXIMATION

Readers may not feel comfortable with the use of the Rytov approxima-
tion. The validity of the Rytov approximation is a topic of heated debate
for at least 30 years. An important restriction of the Rytov approximation
is that there is no known generalization to vector waves. The results ob-
tained in section 3.2 can, however, also be obtained in a completely different
way by making a coordinate transformation as shown in figure 15 from the
Cartesian coordinates (z,y, z) to a new coordinate system (z,y, Z) where
the lines of constant values of the new Z-coordinate coincide with the per-
turbed wavefronts [Snieder, 1998]. One can view this technique as a higher-
dimensional version of the method of strained coordinates [Nayfeh, 1973]
Solving the wave equation in this new coordinate system using a parabolic
approximation leads to the same averaging integral (9) as was obtained
from the Rytov approximation.

4. Multiple scattering by isotropic point scatterers

As argued in section 1, complex variations in the structure of the earth
can give rise to very complex waveforms through the process of multiple
scattering, see the examples in the middle panel of figure 1 and in the
figures 6. Formulating a multiple scattering theory for the general elastic
problem is a task of formidable proportions. However, for the special case of



426

X = constant X = constant

/

z = constant Z = constant

Figure 15. Definition of the coordinate systems (z,y, z) and (z,y, Z) where the planes
z = const, coincide with the unperturbed wavefront (left panel) and where the planes
Z = const, coincide with the perturbed wavefront (right panel).

isotropic point scatterers the multiple scattering problem has a very simple
and elegant solution.

4.1. DERIVATION OF THE THEORY

Let us consider a system with point scatterers at locations r;. The complex
scattering coeflicient of scatterer j is denoted by Aj;. This coeflicient con-
tains the full nonlinear interaction of the wave that is incident on the scat-
terer and the scattered wave. It is shown in appendix A that this scattering
coefficient contains the superposition of all consecutive multiple scattering
interactions with the same scatterer. Let the total wave-field that is incident
on scatterer j be denoted by u;. The wave that is scattered by this scat-
terer is then given by G(r,r;)Aju;, where G(r,r') is the Green’s function
for the medium in which the scatterers are embedded. Since the scattering
is assumed to be isotropic, there is no dependence on the scattering angle.
The total wave-field can be written as the superposition of the unperturbed
wave 4% (r) and the waves emanating from all the scatterers:

u(r) =u® (r)+ Z G(r,r;)Aju; . (12)
J

The wave-field that is incident on scatterer 4 follows from this expression
by setting r = r;, and by omitting the term j = 7 from the sum in (12)
because the wave incident wave on scatterer ¢ only has contributions from
the unperturbed wave u(?) (r) and from the waves coming from the other
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scatterers:
ui=u (1)) + > G(ri,rj)Aju; . (13)
J#L
This is all that is needed to solve the scattering problem. Equation (13)
constitutes a linear system of equations for the complex coefficients wu;.
This system can be solved numerically. Once the u; are determined one can
compute the wave-field at any location r by inserting the u; in expression
(12).
For convenience the system of equations (13) can also be written in
vector form:
I—-S)u=u" (14)

where u is the vector with u; as the j-th component and the vector u®

has u(o)(rj) as the j-th component. The identity matrix is denoted by I
and the components of the matrix S are given by:

[0 fori=7
Sis _{ G(rirj)A; fori#j (15)

When energy is conserved, the optical theorem imposes a constraint
on the imaginary component of the forward scattering amplitude and the
scattered power averaged over all directions [van der Hulst, 1949; Ishimaru,
1997]. The generalization of the optical theorem for elastic surface wave
modes is given by Snieder [1988]. For isotropic scatterers the optical theo-
rem imposes the following constraint on the scattering coefficient in different
dimensions:

1
[ op AP 1D
1
Im(A) =< — 1 |A>  in2D (16)
k
- |A|* in 3D
\ T

Note that the scattering formalism can be applied to any number of di-
mensions and that the numerical implementation is very similar in different
number of dimensions.

4.2. THE FEYNMAN PATH SUMMATION

The scattering equations of the previous section can be rewritten in a dif-
ferent form that is useful for a number of applications. The linear system of
equations (14) can be solved by matrix inversion: u = (I —S) ' u(®). Using
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an expansion of the inverse (I — S)_1 this can also be written as:

Inserting this expression in (12) and using the definition (15) for S, the
total wave-field is given by

u(r) =u® (r)+ ZG(r,ri) ) (r; —|—ZZG ) AiG (ri,T;)Aj O (r rj)+...
i i#] J
(18)
This result can be seen as the Neumann series solution of the scattering
problem. The series does have a clear physical meaning. The first term de-
notes the arrival of the unperturbed wave. The second term consists of all
the single scattered waves. The second term contains all the waves that are
scattered twice by different scatterers. The series (18) can thus be seen as
a summation of waves that have travelled along all possible paths between
scatterers, but that never visit the same scatterers on two consecutive scat-
tering events. One can therefore view expression (18) as a discrete version
of the Feynman path integral [Feynman and Hibbs, 1965] where the total
wave-field is expressed as a path-integral over all possible trajectories. Since
(18) is the discrete equivalent of the Feynman path integral it will be called
the “Feynman path summation.” Note that no approximations have been
made in the deriving the Feynman path summation.
With a slight change of notation one can write the Feynman path sum-
mation also as

r) =Y e*lr (o) o . (19)
P

In this expression the sum ) p denotes a sum over all paths starting from
the source and travelling along all possible combinations of scatterers with
the same scatterer not encountered on consecutive scattering events. The
path length for path P is denoted by Lp. The term (IIC') gives the prod-
uct of scattering coefficients for that path and the geometrical spreading
and other constants that appear in the Green’s function. Note that for 2
dimensions, one can only split-off the term exp (ikLp) when the distance
between the scatterers is much larger than a wavelength so that the far-field
approximation for the Hankel function can be used.

4.3. THE EFFECTIVE WAVENUMBER FOR AN ENSEMBLE OF
SCATTERERS

Let us consider a medium of isotropic point scatterers as described in sec-
tion 4.1. The scatterers have three effects: (1) the ballistic wave that travels
through the medium will experience a phase shift, (2) the ballistic wave will
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be reduced in amplitude due to scattering losses and (3) a coda of scattered
waves is generated. In this section we will not account for the last effect. The
first two effects can be described by introducing an effective local wavenum-
ber ks for the medium with the scatterers. This effective wavenumber was
derived by Groenenboom and Snieder [1995] using an approximate invariant
embedding technique. In this section the effective wavenumber is derived
using the averaging integral that is derived in section 3.2.

As a starting point consider the Helmholtz equation (3) for the special
case that the reference medium is homogeneous:

VZu(r) +k* (1 +n(r))u(r) = 0. (20)

In order to relate this equation to the scattering theory of section 4.1
we need to establish the connection between the perturbation n(r) and
the scattering coefficients A; in (12). This can be achieved by letting
the operator (V2 + k?) act on (12). Using the fact that the unperturbed
wave satisfies (V2 4 k?) u(® (r) = 0 and that the Green’s function satisfies
(V2 + k%) G(r,r") = §(r — r') one finds that

(V2 +82) u(r) = 3 o(r — xj)Aju, . (21)
J
Comparing this with (20) one readily finds that
1
n(r) = — o) Z d(r—rj)A; . (22)
j

In order to obtain an effective wavenumber, let us write the phase change
due to the perturbation in equation (9) as dp = [0k dz, where Jk is the
perturbation in the wavenumber. Inserting (22) in the averaging integral (9)
and using the above expression for 0k one obtains the following expression
for the wavenumber perturbation:

5k = %k (n)p = — % <§]: 5(r — rj)Aj> . (23)

F

The brackets (---), do not denote an ensemble average, but a weighted
average over the Fresnel zone:

f ( . ) etk D(r') 1!
(o p ikD(r") Jo!
[ etkD() dy;

(24)

Note that we have tacitly removed the operation of taking the real part
of (23). Since the scattering coefficients A; are complex, the wavenumber
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perturbation is also complex. This describes the amplitude decay of the bal-
listic wave due to scattering losses. One can derive this rigorously by using
that the logarithmic perturbation of the amplitude is the imaginary part
of the averaging integral in (9), see Snieder and Lomaz [1996] for details.
Adding the wavenumber perturbation ¢k to the unperturbed wavenumber
k one obtains the complex effective wavenumber:

keff:k‘— i<26(r—rj)Aj> (25)
J

F

Let us now consider the special case that the scatterers have an iden-
tical scattering coefficient A and that the weight function in the averag-
ing integral is replaced by its value on the reference ray: exp (ikD) — 1.
Under these assumptions the wavenumber perturbation integrated in the
z-direction can be rewritten in the following way:

I <zj 5(r — rj)Aj>F dz =Af <zj 5(r — rj)>F dz

4 Number of scatterers in Fresnel zone

Volume of Fresnel zone

= A(N)
(26)
where (V) is the number of scatterers per unit volume area over the Fresnel
zone. The corresponding effective wavenumber is then given by

keff:k—% (27)

This expression agrees with the effective wavenumber that is derived using
other techniques [Laz, 1951; Waterman and Truell, 1961].

4.4. A NUMERICAL EXAMPLE

As an illustration of the theory of this chapter a numerical example of wave
propagation in two dimensions is presented. The geometry of the problem
is shown in figure 16. An isotropic source (shown by a square) is placed in
the middle of 12 receivers (shown by triangles) that are located on a circle.
Between the source and the receivers point scatterers are present, these are
indicated by dots. Details on the parameters used in the simulation can be
found in Groenenboom and Snieder [1995].

The wave-field in the absence of scatterers is indicated by the dashed
line in figure 17. Since the source is isotropic and the reference medium is
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Figure 16. Geometry of the scattering experiment with a source (square) surrounded
by 12 receivers (triangles) and scatterers (dots).

homogeneous the unperturbed wave is identical for all the receivers. The
exact scattering response is indicated by the thin solid line in figure 17.
This response was computed using the expressions (12) and (13) in the
frequency domain and by carrying out a Fourier transform. Note that the
amplitude of the ballistic wave has been reduced severely (about a factor 3)
due to scattering losses. This strong scattering loss is consistent with the
presence of strong scattered waves after the arrival of the ballistic wave.
This means that in this problem strong multiple scattering is operative.

The thick solid line in figure 17 gives the wave-field computed with the
effective wavenumber given in expression (27). For every source-receiver
pair this quantity was computed by counting the number of scatterers
within the Fresnel zone for that source-receiver pair. Note the good agree-
ment between the ballistic wave in the exact response and the wave-field
computed with the effective wavenumber (27). The scattered waves arriv-
ing after the ballistic wave are not reproduced in the wave-forms computed
with the effective wavenumber technique. This is due to the fact that in this
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Figure 17. Waves at the 12 receivers of the previous figure. The clock indicates the
receiver position. Shown is the wave-field in the absence of scatterers(dashed line), the
complete wavefield in the presence of scatterers (thin solid line) and the wavefield com-
puted with the effective wavenumber technique (thick solid line).

approach only the scatterers within the Fresnel are accounted for, whereas
the coda is generated by the scatterers outside the Fresnel zone as well.

The ballistic wave varies considerably for the different receivers due the
variations in the scatterer density. Notice that the waveforms computed
with the effective wavenumber technique follow this variability quite well.
It can be seen that the waveforms in the presence of scatterers exhibit a
pronounced dispersion that is reproduced well with the effective wavenum-
ber approach. This example shows that the effective wavenumber can be a
powerful tool for describing the effects of scattering on the ballistic wave,
even in the case when this wave is strongly perturbed.
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5. Imaging waves or particles in strongly scattering media

In this section we return to the issue to what extent imaging in strongly
scattering media is possible. It was shown in section 2 that the random
addition of noise enters only the linear boundary conditions of the prob-
lem, hence it does not need to be considered as a source of instability
due to nonlinear effects. In classical mechanics, the instability of trajecto-
ries of particles to perturbations of the initial conditions is the signature
of chaotic behavior [e.g. Tabor, 1989]. In order to use waves for imaging
purposes, the temporal evolution of the wave-field may or may not be un-
stable for perturbations of the location of the source of the wave-field or
for perturbations of the medium. In this sense one may wonder how the
wave-field in a strongly scattering system behaves when it is known that
particles propagating through the same system exhibit chaotic behavior.
The imprint of chaos on wave systems is usually studied in the context of
quantum chaos [e.g. Tabor, 1989; Gutzwiller, 1990]. However, in that field
of research the attention usually is focused on the spectral properties of a
closed wave-system rather than the stability of the temporal evolution of
the wave-field.

The issue of the stability of the temporal evolution of wave or particle
propagation can be studied using a Time-Reversal-Mirror. This device has
been used in laboratory experiments [Derode et al., 1995; Fink, 1997]. In
this technique wave propagate through a medium and are recorded at re-
ceivers. The recorded wave-field is reversed in time, which is equivalent by
replacing ¢ by —t, and this time-reversed wave-field is send back into the
medium. Since the system is invariant for time reversal, the wave propa-
gate back along their original path and focus back on the original source
position at ¢ = 0. Since the waves are imaged in this method on the original
source position this technique will be referred to as Time-Reversed-Imaging
(TRI). This principle can obviously also be applied to particles. Whether
the waves (or particles) really return to the original source position when
the system is perturbed depends on the stability properties of the wave or
particle propagation.

The system used here is similar to the one used by Derode et al. [1995]
and is shown in figure 18. The numerical experiments shown in this section
are from Snieder and Scales [1998]. Particles or waves are emitted from
a source and propagate through a system of 200 strong isotropic point
scatterers. For the waves, 96 receivers are located on the line indicated in
figure 18. The recorded wave-forms are time-reversed and then send back
into the medium from the receivers that now act as sources. A particle is
recorded for the time-reversed imaging when it traverses the receiver line
in figure 18 at a certain time ¢. TRI of the particle is realized by reversing
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Figure 18. Geometry of the numerical experiment with TRI. The scatterers are shown
by thick dots.

the velocity of the particle v.— —v and by sending the particle back into
the medium at time —t.

When comparing the stability of wave or particle propagation, one can
either specify the medium (e.g. a quantum mechanical potential) or the
scattering properties of the waves and particles. Here the latter approach is
taken by using isotropic point scatterers for both waves and particles. This
choice ensures that the only difference between the waves and particles lies
in the dynamics of propagation, rather than in a different interaction with
the scatterers.

5.1. SCATTERING OF PARTICLES AND WAVES

Isotropic scattering of particles that is invariant under time reversal is en-
sured by requiring that both the velocity v (=1500 m/s) and the impact
parameter b of the particles are conserved during scattering and that (in
two dimensions) the scattering angle © is linear in the impact parameter:

@:w<“;2b) for bl <o/2, (28)

where ¢ is the scattering cross-section. See figure 19 for the definition of
variables. For larger values of the impact parameter the particle is not
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Figure 19. Definition of the impact parameter b and the scattering angle ©.

scattered (i.e. ® = 0). Table 1 shows the values of the relevant length

TABLE 1. Numerical values of parameters in the
numerical experiment.

Symbol Property Value
o Scattering cross section  1.592 mm
l Mean free path 15.56 mm
A Dominant wavelength 2.5 mm

scales in the numerical experiment. Figure 20 shows the mean number of
encounters n with scatterers for the particles that cross the receiver line
as a function of time ¢. A least-squares fit of the line in figure 20 gives the
mean time between consecutive encounters with scatterers, this can be used
to infer that the mean free path [ is given by [ = 15.56mm. This quantity
is much less than the size of the scattering region (80mm), which implies
that the particles are strongly scattered.

For the scattering of waves, the scattering theory for isotropic point
scatterers of section 4.1 is used. The wave-field for both the forward and
reverse propagation is computed with equations (12) and (13). The wave
propagation can only be invariant for time-reversal when energy is con-
served. It is thus crucial that the scattering coeflicients satisfy the optical
theorem given in equation (16). The wavefield recorded by a receiver in the
middle of the receiver array is shown in figure 21. The wave-field has the
same character as the seismogram shown in the middle panel of figure 1; the
direct wave merges with a coda of strongly scattered waves. This reflects
the fact that for the employed parameter setting strong multiple scattering
is operative.
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Figure 20. Mean number of scatterers encountered by particles as a function of the
arrival time at the receiver line.
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Figure 21. Wave-field at a receiver located in the middle of the receiver array.
TRI of the waves is carried out by recording the wave-field at 96 equidis-

tant receivers on the receiver line, and by using the complex conjugate of
the wave-field in the frequency domain as source signals that are emitted
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from the receivers that now act as sources. An example of the wave-field af-
ter TRI is shown by the thick solid line in figure 22 where the time-reversed
wave-field at time ¢ = 0 is shown along the line = 0. In the ideal case
the wave-field focusses on the source at location z = 0. Due to the limited
aperture of the receiver array and the finite bandwidth of the waves the
focussing peak has a finite width and has sidelobes. For the TRI only the
waves arriving between 0.25s and 0.30s have been used. It can be seen in
figure 21 that this time window only contains multiple scattered waves in
the coda.
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Figure 22. Time reversed wavefield at time ¢ = 0 along the line £ = 0. The source
location is at z = 0. The thick solid lines is for TRI with the unperturbed receiver
positions. The thin solid lines are for the wavefield after TRI with perturbed receiver
positions. The numbers denote the rms value of the perturbation as a fraction of the
dominant wavelength.

5.2. STABILITY ANALYSIS FOR SCATTERED PARTICLES

Consider the trajectories of a particle that is scattered with impact param-
eter b and with a perturbed impact parameter b+ A. The divergence of the
trajectories is shown in figure 23. It follows from this figure and expression
(28) that the divergence of the trajectories is given by |rpia(t) — rp(t)| =
vt (O©(b+ A) — ©(b)) = 2wvtA/o. This implies that the error Ay, at time ¢
since the scattering is related to the initial error A, by Agye = 27 (vt/o) Ay,
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Figure 23. Divergence of the trajectories of the particles with impact parameter b and
b+ 0b.

On average, vt is the mean-free path [, hence

Apyr =21 (1)) Ny (29)
When a wave is scattered n times, the error A, follows by recursion:

A, = (2nl/o)" Ay . (30)

The number of scatterers encountered is on average given by n = wvt/I,
hence the Lyapunov exponent p associated with the exponential divergence
of trajectories is given by

p=In2xl/c) v/l . (31)

Equation (30) gives the error in the trajectory after n scattering en-
counters. The error  in the TRI is given by § = D (A®) = D(dO/db)A,,
where the distance D is defined in figure 18. Hence with (30) it follows that

5= 2P (2—”1> Ay . (32)

o o

When the error in the trajectory is of the order of /2 the trajectory will
be completely different because the particle then encounters different scat-
terers. The associated critical perturbation d. follows from (30):

5, = (%)n % . (33)

Using expression (31) for the Lyapunov exponent and using the relation
n = vt/l to eliminate n one finds that this critical length scale decreases
exponentially with time:

5. = % et (34)
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For the numerical experiments the critical length scale is shown in table
2. Also indicated is the precision with which the numerical simulations
have been carried out. (All calculations were done in 64 bit arithmetic on
an SGI Power Challenge.) Since the mean free path [ is much larger than
the scattering cross-section o (table 1) the critical length scale decreases
dramatically with the number of scattering encounters.

TABLE 2. Critical error §. for dif-
ferent numbers of scattering encoun-
ters. Also indicated is the employed
machine precision.

n dc(mm)
1 0.0129
2 2.11 x 1074
3 3.43 x 107
4 5.60 x 107°
5 9.11 x 101
6 1.48 x 107!
7 2.41 x 107123
8 3.93 x 10715
Machine precision  0.22 x 10 1°
9 6.41 x 1077

The previous analysis applies for a perturbation of the starting point of
a particle. When the scatterer locations are perturbed over a distance d, a
term § should be added to the right-hand side of (29). The error after n
scattering encounters is then given by

()"

A
()

However, given the high numerical value of 27l/o (= 61) in the numerical
experiments this result is similar to (30) for the perturbation of initial
conditions. The associated critical length scale is shown in table 3.

It follows that for the particles the critical length scale depends on the
scattering cross section and the mean free path, and that this quantity
depends exponentially on the number of scattering encounters (and thus
on time). Due to this dependence the critical length scale §, is dramatically
smaller than the scattering cross section o.

A, = Ay . (35)
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TABLE 3. Critical length scales d. for different perturbations.

Scatterer location Source location

()
Particles L [ A %(L) o

2 ( 2l ) ntl 1 2l

o
Ballistic wave # é
12(n +1) 4
1 X A
Coda wave — =
V2n 4 4

5.3. STABILITY ANALYSIS FOR SCATTERED WAVES

A fundamental difference between time reversed imaging of waves and par-
ticles is that TRI of particles occurs because a trajectory returns to the
source at ¢ = 0 whereas for waves TRI is achieved because the waves in-
terfere at ¢ = 0 constructively only near the source. The Feynman path
summation given in expression (19) provides the basis for quantifying when
the interference process that leads to TRI of waves is destroyed by the per-
turbations. When either the sources or the scatterers are perturbed for the
waves, the dominant effect on the wave-field is the perturbation of the path
length Lp in (19). When the variance o, of the path length is of the or-
der of a quarter wavelength the resulting interference pattern is destroyed.
Hence TRI of waves will break down when o7, = \/4.

The effect of the perturbation in the ¢-th component of the position
vector of scatterer j on the path length Lp follows from the derivative

OLp 29 _ :ch(-j_l) LIt ()

9 e —cG D] [0t — )] (36)

which implies that

ARG @) — G- [[rGFD — £0)]

=2(1—cos9;) ,

(37)
where ©; is the scattering angle at scatterer j. This angle is related to the
angle ¢; in figure 30 by the relation ©; = ¢;—¢;_1. When the perturbations
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of the locations of different scatterers are independent, the total variance
in the path length is thus given by

o7 = 2(1—cos©;) 6, (38)
j

where ¢ is the variance in the x and z coordinates of the scatterers.

For the coda the cosine of the scattering angle has zero mean because
all scattering angles are equally likely: (cos ©;) = 0. Using this, it follows
from (38) that the variance in the path length joining n scatterers is given
by

oot = \/on 5 . (39)

TRI of the coda breaks down when this quantity equals A/4. The critical
length scale for perturbations of the scatterer locations is thus given by

oo = A/ (4v2n) (40)

see Table 3. Note that in contrast to the situation for particles this critical
length scale does not depend exponentially on n. Using the fact that the
number of encountered scatterers increases linearly with time (n = vt/I)
one finds that the critical length scale for the coda waves varies with time as
6¢°de ~ 1/+/t. This time-dependence of the critical length scale for the coda
waves is in stark contrast with the exponential decrease of the critical length
scale for the particles with time given in (34). The 1/v/t time-dependence
of the critical length scale was also obtained by Ballentine and Zibin [1996]
who show that for a periodically kicked rotator with a kick-strength that
leads to classical solutions that are chaotic, the critical rotation angle 6, ;

varies with time as 1/+/¢ for large time.

For the ballistic wave (the wave that propagates along the line of sight
from source to receiver) only forward scattering is of relevance. For forward
scattering the term (1 —cos®;) ~ @?/2 is small because the scattering
angle is small. This leads to a reduction of the variance with a factor \/L.
The detailed analysis in appendix B shows that

1
N %\/% 5. (41)

When 0%“” is about a quarter wavelength the interference is destroyed,
hence the critical length scale is given by

8% ~ AL/ /12(n + 1) , (42)

(see Table 3). Note that this length scale is proportional to the width Ly =
VAL/8 of the first Fresnel zone given in equation (1); when a scatterer is
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moved over the width of the Fresnel zone it contributes in a fundamentally
different way to the ballistic wave.

This is consistent with the theory of section 4.3 where it was argued
that only the average scattering properties over the Fresnel zone affect the
ballistic wave. The ballistic wave is only affected by the perturbation when a
scatterer is moved out off the Fresnel zone or when a new scatterer is moved
into the Fresnel zone. The relevant length scale for the ballistic wave thus
is the width of the Fresnel zone rather than the wavelength, see expression
(1).

When the source locations are perturbed over a distance 6 but the scat-
terers remain fixed, only the length of the trajectory to the first scatterer
is perturbed. This means that for this perturbation for both the coda and
the ballistic wave oy, = . Thus, the critical length scale for perturbation
of the source locations for both the coda and the ballistic wave is given by
gsouree = )\ /4, see table 3.

5.4. NUMERICAL SIMULATIONS

In the TRI of particles 20,000 particles are propagated from the source to
the receiver line and after time-reversal back-propagated to the source. For
the case when the receivers and the scatterers are not perturbed, the only
relevant error is the error in the numerical calculations. It follows from ta-
ble 2 that with the employed machine precision particles with more than
8 scattering encounters will not be focused on the source during TRI. The
numerical experiments confirm this conclusion. In the top panel of figure
24 the particles that have had 6 or fewer scatterer encounters are shown
after TRI at time ¢ = 0. In the ideal case all particles should be imaged
at the source at £ = z = 0. This is indeed the case, several thousand par-
ticles are imaged at the source, and only a few particles are far from the
source position. The location of the particles that have had between 7 and
9 scatterer encounters is shown after TRI in the middle panel of figure 24.
One can observe a clustering of particles near the source position, but the
imaging is clearly degraded. The imaging further degrades for the particles
that have encountered 10 or more scatterers, see the bottom panel of figure
24. In that case most particles are far from the source location. figure 24
confirms the analytical estimates of table 2 that with the employed numeri-
cal precision, 8 scatterer encounters mark the transition from accurate TRI
to the loss of accuracy in the propagation of particles.

The quality of the time-reversed-image is quantified by exp (—error/D),
where error denotes the mean distance of the particles to the source at
t = 0. This imaging quality is shown in figure 25 as a function of the error
in the source position for various values of the scattering encounter n. (The
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Figure 24. Locations of the particles (thin dots) at ¢ = 0 after TRI for particles that have
had 6 or less scattering encounters (top panel), between 7 and 9 scattering encounters
(middle panel) and 10 or more scattering encountes (bottom panel). In the top panel
several thousand particles are imaged on the source position at x = z = 0.
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Figure 25. Imaging quality defined as exp(—error/D) as a function of the perturbation
of the initial position of the time reversed particle. The analytical stimates of the the
critical perturbation are indicated by vertical arrows.

source position refers here to the receivers for the forward propagation
that acts as sources for the time-reversed propagation.) The critical length
scale shown in table 2 is indicated with the vertical arrows. The horizontal
scale ends at the left with the machine precision. When the TRI degrades,
the imaging quality decays from unity to zero, it follows from figure 25
that the analytical estimates of section 5.2 agree well with the numerical
results. When the scatterer locations are perturbed rather than the source
locations, the results are virtually the same. This is due to the fact that for
large values of 27l/o the expressions (30) and (35) are almost identical.

TABLE 4. Time windows used in the different numer-
ical experiments with waves and number of scattering

encounters.
Wave Time window (s) Number of encounters
Ballistic 0.11-0.13 2
Coda 1 0.20-0.25 13
Coda 2 0.30-0.35 22

Coda 3 0.40-0.45 32
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For the waves, TRI has been carried out for several time windows, see
table 4. The imaged section along the line z = 0 of figure 18 is shown in
figure 22 by the thick solid line. In this example, a short time window of the
coda from 0.25s to 0.30s has been used. This section compares favorably
with the experimental results of Derode et al. [1995]. The thin lines in
figure 22 give the imaged section for various values of the perturbation in
the position of the receivers that act as sources in the TRI; the number
indicates the variance in the perturbation of the source location measured in
wavelengths. It can be seen that TRI indeed breaks down when the source
locations are perturbed over about a quarter wavelength. The quality of
the TRI can be quantified by computing the ratio of the amplitudes of

the imaging peak of TRI with perturbation to the imaging peaks without
perturbation.

1.0 -
Perturbed source
\
0.8 t \ |
5 ,--% Perturbed
.% \ scatterers
< \ballistic wave
< 0.6 . “ |
o ‘
3 \‘ /,’ \‘
= 04 | EX \ \, \ |
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< coda [N \
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]\.
N
0.0 5 SRS O ————"
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Error in source or scatterer position (mm)

Figure 26. Quality of TRI of waves measured as the ratio of the peak height of the
imaged section for the experiment with perturbed conditions compared to the peak height
for the unperturbed imaged section. The dashed line represents the ballistic wave with
perturbed scatterers. The dotted lines on the left are for the three coda intervals for

peturbed scatterers with the latest coda interval on the left. The critical length scales
from the theory are shown by vertical arrows.

The resulting relative peak heights are shown in figure 26 as a func-
tion of the error in source or scatterer locations for TRI experiments with
the time windows shown in table 4. The critical length scales shown in
table 3 are for each case indicated by vertical arrows. The curves for the
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perturbation of the source position are the four solid lines in the middle.
These curves are identical for the four employed time windows and show a
decay when the perturbation is of the order A\/4 (which has the numerical
value 0.625mm). For the perturbation of scatterers for TRI of the ballistic
wave, the critical length scale is significantly larger, and agrees will with
the critical length scale shown in table 3. For TRI of the waves in the three
coda intervals the critical length scale is appreciably less than a wavelength.
The reason is that the number of scattering encounters is large for these
waves, see table 4. The agreement between numerical simulations and the
estimates shown in table 3 is very good. This confirms the assumption that
the dominant effect of the perturbation of the time reversed imaging of
waves is the perturbation of the path length.

5.5. WHY DO WAVES AND PARTICLES BEHAVE DIFFERENT?

It follows from the TRI of particles and waves that the stability of particle
and wave motion for the perturbation of initial conditions or scatterer lo-
cations is fundamentally different. In the numerical experiments particles
that have encountered 8 or more scatterers do not return to the source after
TRI, whereas waves in the coda that have encountered up to at least 30
scatterers (table 4) focus well on the source after TRI.

The physical reason for this difference is that particles follow a single
trajectory. When the initial condition of a particle or a scatterer along
the trajectory are perturbed, the whole trajectory is perturbed, often in a
dramatic fashion. Because of the chaotic nature of trajectories, the critical
length scale is significantly less than the scattering cross-section by a factor
that depends exponentially on the number of encountered scatterers and
hence ezponentially on time (e=#!). This pertains both to the perturbation
of the source position as well as to the perturbation of the scatterer position.

For the waves when the source or scatterer location is perturbed, the dif-
ferent wave-paths are not perturbed fundamentally; only the length of the
wave-paths is changed. However, this perturbation only leads to apprecia-
ble effects when this perturbation is approximately a quarter-wavelength,
because it is the interference of the waves along all possible wave-paths that
determines the total wave-field. For both the coda and the ballistic wave
the critical perturbation of the source location is a quarter-wavelength. For
the perturbation of the scatterers the critical length-scale for the coda is
proportional to the wavelength, but much smaller with a factor 1/y/2n. In
contrast, the ballistic wave is only sensitive to perturbations of the scatterer
position that are of the order of the width of the Fresnel zone. Since the
number of scatterers encountered increases linearly with time, the critical
length scale varies with time as 1/v/t rather than the exponential time-
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dependence for the ciritical length scale for particles.

This implies that waves and particles react in fundamentally different
ways to perturbations of the initial conditions or of the medium. The reason
for this is that particles “select” a certain trajectory whereas waves travel
along all possible trajectories visiting all the scatterers in all possible com-
binations. It is the “selection process” of a particle trajectory that creates
the fundamentally larger instability of particle propagation than of wave
propagation.

6. Discussion, imaging in complex media?

Imaging can only be carried out when the medium is known reasonably
well because one needs to know the position of the waves in order to de-
termine where the image is created. In general, imaging is achieved by an
interference process. When a medium without scatterers is used as a refer-
ence model for an imaging experiment, then the medium must be known
with such an accuracy that the error in the location of the wavefronts is
less than A/4. A larger error will destroy the interference process through
which the imaging is achieved.

As shown in section 5.3, when multiple scattered waves are used for to
carry out imaging the scatterer locations must be known with an error less
than (\/4) /v/2n, where n is the number of scatterers encountered along
the path. This suggest that multiple scattering does not fundamentally
change the requirements that the medium needs to satisfy for successful
imaging. The only change is the additional factor 1/v/2n in the required
precision, which suggest a quantitative difference in the required accuracy
rather than a qualitative difference. Given the fact that the number of
scatterer encounters n can be quite large this quantitative difference can
be significant.

However, there is a more important qualitative issue at stake. When one
carries out imaging in a medium without scatterers, one needs to know the
location of the wavefronts within an accuracy A/4. As shown in the sections
3.2 and 4.3, the location of the wavefronts depends predominantly on the
average properties of the medium over the Fresnel zone. This means that a
detailed knowledge of the medium is not needed, as long as the properties
averaged over the Fresnel zone are known. In contrast to this, for imaging
with multiple scattered waves the location of the scatterers must be known
with an accuracy (A\/4) /v/2n. It is for this reason that multiple scattered
waves often are not used in imaging experiments where the medium is
known with only limited precision.

However, the requirements for imaging with waves are favorable com-
pared to the requirements for imaging with particles. There are two reasons
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for this:

[1] Waves travel along all possible trajectories, and remain doing this when
the scatterers are perturbed. In contrast to this, particle travel along a
single trajectory. As shown in the sections 5.4 and 5.5 this makes the
propagation of particles fundamentally more sensitive to perturbations
of the scatterers than the propagation of waves.

[2] For the ballistic wave the wave-field depends only on the average prop-
erties of the medium over the Fresnel zone, see the sections 3.2 and
4.3. The averaging carried out by the wave-field obviates the need for
a detailed description of the structure within the Fresnel zone. There
is no counterpart of this averaging property for particles.

Both factors are favorable for the stability of wave propagation compared
to particle propagation in strongly scattering media. This is not only of
importance for the possibility (or impossibility) of imaging experiments, but
this difference should also be a crucial element in the comparison between
classical chaos and quantum chaos.

Acknowledgments: [ thank Peggy Hellweg, Axel Roehm and Osamu
Nishizawa for providing figures. Numerous discussions with John Scales
have been invaluable for the work on wave and particle chaos. Mathias
Fink is thanked for making me aware of the robustness of time-reversed
imaging in the presence of strong scattering.

A. The nonlinear scattering coefficient of a single scatterer

As a simple prototype of a system that exhibits multiple scattering by a
single scatterer consider a delta function scatterer with strength g in one
dimension:

LOu(z) = gé(z)u(z) . (43)

The operator L(®) characterizes the dynamics of the unperturbed system.
For the Schrédinger equation this operator is given by L(®) = V2 4+ k2. Let
the solution in the absence of the scatterer be denoted by u(?). The field
then satisfies the Lippmann-Schwinger equation

u(z) = u0(z) + / G(z,2")gd(z" yu(z")dx" , (44)

which is equivalent to

u(z) = u®(z) + G(2,0)gu(0) . (45)
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This expression appears to be the same as equation (12) for the special case
of a single scatterer. However, one cannot make this comparison because
the wave-field u; in (12) denotes the waves that are incident on the scatterer
while 4(0) denotes the total wave-field at the scatterer.

These equations can be reconciled by setting = 0 in (45), which gives:
u(0) = u(®(0) + G(z,0)gu(0). The wave-field at the scatterer can be ob-
tained from this result and is given by

1

=T500.0) 0)“(0) (0) (46)

u(0)

Inserting »(0) in the right hand side of (45) then gives

u(z) = v (z) + G(a, 0)#&(00)11(0)(0) : (47)

This expression can be compared with equation (12) for the special case of
one scatterer because the incident wave-field is given by u(?). Note that the
scattering coefficient g/ (1 — gG(0,0)) depends nonlinearly on the scatter-
ing strength g.

|
+

Figure 27. Diagrammatic representation of the wave-field v = u(®) + Ggu. The single
line denotes the unperturbed wave u(®) and G, the double line denotes the perturbed
wave u and the open circle denotes the linear scattering coefficient g.

The scattering process can thus be described by the two alternative
representations (45) and (47). These representations are shown graphically
in the figures 27 and 28 respectively. In these figures a single line denotes
the unperturbed wave-field and the double line the perturbed wave-field.
The single scattering interaction g is denoted with an open circle while
the nonlinear scattering coefficient g/ (1 — ¢gG(0,0)) is shown with a black
circle.
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+ @

Figure 28. Alternative diagrammatic representation of the wave-field
u = u® 4+ G(1 — gG) 'gu®. The single line denotes the unperturbed wave u(® and
G, the black circle denotes the nonlinear scattering coefficient (1 — gG)™'g.

It is instructive to consider the following expansion of the nonlinear
scattering coefficient:

ﬁznggvaLgGgvaL--- (48)
This expression is graphically represented in figure 29. The series expresses
the full nonlinear scattering coefficient as a single scattering interaction,
plus a repeated double scattering interaction at the same scatterer plus all
higher order repeated scattering interactions with the same scatterer. The
nonlinear scattering coefficient thus accounts for all consecutive scattering
encounter with the same scatterer.

‘ — O -+ -+ G ruena

Figure 29. Diagrammatic representation of the nonlinear scattering coefficient. The
single line denotes the unperturbed Green’s function G(0, 0). The open circle denotes the
scattering g and the black circle stands for the nonlinear scattering coefficient.

The equations shown here break down for wave-propagation problems
in more dimensions because the Green’s function G(0,0) is singular in that
case. This complication can, however, be remedied [Nieuwenhuizen et al.,
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J=n+1

=0

Figure 30. Geometry of the path of the scattered ballistic wave.

1992; de Vries et al., 1998]. However, for any linear system in any dimension,
the scattered waves are related linearly to the incident wave-field. This is
the only condition that is used in expression (12). The scattering coefficient
are in general related in a nonlinear way to the perturbation that causes
the scattering.

As an example one can consider scattering of acoustic waves by a spher-
ical scatterer with a perturbed bulk modulus with a radius much smaller
than a wavelength. As shown in Morse and Ingard [1968] the scattering is
isotropic and the scattered waves depend linearly on the incident waves.
Thus the conditions required for equation (12) are satisfied for this system.

B. The variance in the path length for the ballistic wave

For small scattering angles ©; the variance in the path length given in (38)

reduces to
n

2 2\ 2
=1
As a simplified model for the ballistic wave we assume that n scatterers
are separated with the same spacing A along the source-receiver path, this
separation is given by
L
A= —" 50
(n+1)’ (50)

see figure 30. The fixed positions of the source and receiver are denoted by
(z0,20) and (Zp41,2n11) respectively, hence xg = 2,11 = 0. The positions
of the scatterers are prescribed by the distance x; from the source-receiver
line, the angle between the path from scatterer j to scatterer j+1 is denoted
by ;. Since this angle is small ¢; = (z;4+1 — ;) /A, so that the scattering
angle is given by

@j =@; —Pj-1= ((IIj.H — 2(1,‘]' -|-(L‘j_1) /A . (51)

The variance in the path length follows by inserting (51) in (49). The
cross-terms that appear vanish on average because the positions of the
scatterers are independent: (zj;12;) = 0. When all the scatterers have
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the same rms distance (z2) to the source-receiver line (with the exception
of the terms j = 0 and 57 = n + 1 for which zy = z,4+1 = 0) it follows
that 02 = (6n — 2) (z2) 0%/ A. Given the crudeness of the scattering model,
the factor —2 in this expression is ignored so that the scattering angle is

approximately equal to

642
2 _ b~ 2

oL = 7" <$ > (52)
The rms distance <(II2> is at this point unknown, this quantity follows
from the requirement that the scatterers are located within the first Fresnel
zone. The length L; of the path from scatterer j to scatterer j + 1 is given

by L; = \/A2 + (zj41 — :ch)2 ~ A+ (Tj1 — xj)2 /2A. The detour d of the
scattered wave compared to the direct wave is thus given by:

1 n
d:ZLﬂ'_L:ﬂZ(%H_%)Z (53)
j=0

Using the fact that the scatterer positions are uncorrelated one finds with
9 = Zp+1 = 0 that on average

() =" (54

The scatterers contribute to the ballistic wave when the detour is less than
a quarter wavelength. Assuming that this corresponds to a mean detour
(d) of \/8 one finds the corresponding variance (x?) from (54):

AA
n <$2> =5 - (55)

Using this in (52) and using (50) to eliminate A then gives the variance of
the path length of the ballistic wave:

bl | 3(n+1)

A
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