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The Green’s function of acoustic or elastic wave propagation can, for loss-less media, be retrieved
by correlating the wave field that is excited by random sources and is recorded at two locations.
Here the generalization of this idea to attenuating acoustic waves in an inhomogeneous medium is
addressed, and it is shown that the Green’s function can be retrieved from waves that are excited
throughout the volume by spatially uncorrelated injection sources with a power spectrum that is
proportional to the local dissipation rate. For a finite volume, one needs both volume sources and
sources at the bounding surface for the extraction of the Green’s functions. For the special case of
a homogeneous attenuating medium defined over a finite volume, the phase and geometrical
spreading of the Green’s function is correctly retrieved when the volume sources are ignored, but the
attenuation is not. © 2007 Acoustical Society of America. �DOI: 10.1121/1.2713673�
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I. INTRODUCTION

The extraction of the Green’s function by correlating
waves excited by random sources that are recorded at two
locations has recently received much attention. There are nu-
merous derivations of this principle that are valid for closed
systems1 and for open systems �e.g., Refs. 2–4�. Formula-
tions of this principle are based either on random sources
placed throughout a volume1,5 or on sources that are located
at a surface.6–8 The extraction of the Green’s function using
random wave fields has been applied to ultrasound,9–12 in
seismic exploration,13–15 in crustal seismology,16–19 in ocean
acoustics,20–22 to buildings,23,24 and in helioseismology.25–27

The recent supplement of seismic interferometry28 in Geo-
physics gives an overview of this field of research. Phrases
that include passive imaging, correlation of ambient noise,
extraction of the Green’s function, and seismic interferom-
etry have been proposed for this line of research. Recently
the theory has been developed for the extraction of the
Green’s function for more general linear systems than acous-
tic or elastic waves.29,30

Many derivations of this principle are valid for systems
that are invariant under time reversal. Several derivations
invoke time-reversal invariance explicitly.2,3,13 For acoustics
waves in a flowing medium the time-reversal invariance is
broken by the flow; this broken symmetry has been incorpo-
rated in the theory for the extraction of the Green’s
function.31,32 Attenuation also breaks the invariance for time
reversal. For homogeneous acoustic media5,33 and for a ho-
mogeneous oceanic waveguide21 attenuation has been incor-
porated into the theory for the extraction of the Green’s func-
tion. Weaver and Lobkis4 use complex frequency as a tool to
force convergence on an integral over all sources.

Here I derive the principle of seismic interferometry for
general attenuating, acoustic media, and extend earlier for-
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mulations for homogeneous media to include arbitrary het-
erogeneity in density, compressibility, and intrinsic attenua-
tion. Section II introduces the basic equations and rederives a
representation theorem of the correlation type for attenuating
media. Section III shows that for an unbounded volume, or
for a volume that is bounded by a surface where the pressure
or normal component of the velocity vanishes, the Green’s
function can be extracted from waves excited by uncorre-
lated volume sources with a source strength that is propor-
tional to the local dissipation rate. Section IV shows that for
a bounded volume one needs, in general, both volume
sources and surface sources in order to retrieve the correct
Green’s function. Section V illustrates the relative roles of
the volume sources and surface sources by analyzing the
special case of a homogeneous, attenuating medium, with a
single reflector. In this special case, when volume sources are
ignored, the phase and geometrical spreading of the Green’s
function are correctly reproduced by seismic interferometry,
but the attenuation is not.

II. BASIC EQUATION FOR ACOUSTIC WAVES

Using the Fourier convention f�t�=�f��� exp�−i�t�d�,
the pressure p and particle velocity v for acoustic waves
satisfy, in the frequency domain, the following coupled equa-
tions:

�p − i��v = 0, �1�

�� · v� − i��p = q . �2�

In these expressions � is the angular frequency, � the mass
density, and � the compressibility. All expressions in this
work are given in the frequency domain; for brevity this
frequency-dependence is not denoted explicitly. It is assumed
that only injection sources q are present. Body forces would
render the right-hand side of expression �1� nonzero. For

attenuating media, the compressibility � is complex, this
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quantity can be decomposed in a real and imaginary part:

� = �r�r,�� + i�i�r,�� . �3�

Because of the Kramers-Kronig relation �e.g., Refs. 34 and
35�, the real and imaginary parts of the compressibility de-
pend on frequency. In contrast to the treatment of de Hoop,36

it is presumed that the mass density is real. In this general
derivation the density and compressibility can be arbitrary
functions of location and frequency.

Following de Hoop37 and Fokkema and van den Berg,38

expressions �1� and �2� can be used to derive a representation
theorem of the correlation type. The treatment given here
generalizes earlier descriptions of the extraction of the
Green’s function7,32 to include dissipation. Two wave states,
labeled A and B, are considered that both satisfy expressions
�1� and �2�, and that are excited by forcing functions qA and
qB, respectively. The subscripts A and B indicate the state for
each quantity. A representation theorem of the correlation
type is obtained by integrating the combination �1�A ·vB

*

+ �1�B
* ·vA+ �2�ApB

* + �2�B
* pA over volume, and applying Gauss’

theorem. �The asterisk denotes complex conjugation, and
�1�B

* stands, for example, for the complex conjugate of ex-
pression �1� for state B.� This gives

� �pAvB
* + pB

*vA� · dS =� �qB
* pA + qApB

*�dV − i�

�� ��* − ��pApB
*dV , �4�

where ��¯� ·dS denotes the surface integral over the surface
that bounds the volume. Note that the last term is due to the
attenuation; for loss-less media � is real, and �*−�=0. The
relative roles of the surface integral on the left-hand side and
the volume integral in the last term play a crucial role in the
following treatment. In the following the “surface” refers to
the surface that bounds the volume. In the presence of cavi-
ties this surface may consist of disconnected pieces.

These representation theorems can be used to derive
several properties of the Green’s function G�r ,r0� that is the
pressure response to an injection source q�r�=��r−r0�. Set-
ting

qA,B�r� = ��r − rA,B� �5�

implies that the corresponding pressure states are given by

pA,B�r� = G�r,rA,B� , �6�

respectively.
Inserting the excitations �5� into expression �4�, and us-

ing Eq. �1� to eliminate the velocity, one obtains

G*�rA,rB� + G�rB,rA�

= 2�� �i�r,��G�r,rA�G*�r,rB�dV

+ � 1

i��
�G*�r,rB� � G�r,rA�

− G�r,rA� � G*�r,rB�� · dS . �7�
For brevity the frequency-dependence of G is suppressed. In
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the presence of intrinsic attenuation, reciprocity of acoustic
waves still holds, hence

G�rA,rB� = G�rB,rA� . �8�

Expression �7� can therefore be written as

G*�rB,rA� + G�rB,rA�

= 2�� �i�r,��G�rA,r�G*�rB,r�dV

+ � 1

i��
�G*�rB,r� � G�rA,r�

− G�rA,r� � G*�rB,r�� · dS . �9�

Note that for loss-less media, because of the complex conju-
gates, the surface integral does not vanish when the system
satisfies radiation boundary conditions at the surface. A simi-
lar relation has been derived for electromagnetic fields in
conducting media.39

The left-hand side of expression �9� is the sum of the
causal and acausal Green’s functions. Wapenaar et al.7 use
this expression for loss-less media ��i=0� to show that the
sum of the causal and acausal Green’s function can be ob-
tained by cross-correlating the pressure fields that are due to
uncorrelated random sources at the surface. The pressure
field caused by these sources is transmitted to the points rA

and rB in the interior by the Green’s functions in the surface
integral in Eq. �9�. For attenuating media ��i�r��0�, this
analysis is complicated by the presence of the volume inte-
gral in this expression.

III. INTERFEROMETRY WHEN THE SURFACE
INTEGRAL VANISHES

This section analyzes the special case where the surface
integral in expression �9� vanishes. This is the case when one
of the following conditions is satisfied:

C1: The volume integration is over all space. For attenuat-
ing media the wave field vanishes exponentially at infinity,
and the surface integral vanishes.
C2: The pressure vanishes at the surface �G=0�.
C3: The normal component of the velocity perpendicular to
the surface vanishes at the surface. Because of expression
�1� this implies that �G ·dS=0.

When one of the conditions C1–C3 is satisfied, the pres-
sure is related to the excitation by

p�r0� =� G�r0,r�q�r�dV �10�

and the representation theorem of the correlation type �9�

reduces to
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G*�rB,rA� + G�rB,rA� = 2�� �i�r,��G�rA,r�G*�rB,r�dV .

�11�

Consider the situation where random pressure sources are
present throughout the volume, and that these sources at dif-
ferent locations are uncorrelated:

q�r1,��q*�r2,�� = �i�r1,����r1 − r2�	S���	2, �12�

where 	S���	2 denotes the power spectrum of the random
excitation. The excitation �12� is proportional to �i�r ,��, the
imaginary part of the compressibility, which in turn is pro-
portional to the local attenuation. This means that the exci-
tation �12� supplies a random excitation of the pressure field
that locally compensates for the attenuation. Multiplying ex-
pression �11� with 	S���	2 gives

�G*�rB,rA� + G�rB,rA��	S���	2

= 2�� �i�r,��	S���	2G�rA,r�G*�rB,r�dV

= 2�� � �i�r1,����r1 − r2�

�	S���	2G�rA,r1�G*�rB,r2�dV1dV2

= 2�� G�rA,r1�q�r1�dV1
� G�rB,r2�q�r2�dV2�*

= 2�p�rA�p*�rB� . �13�

Expression �12� is used for the third identity, above, and
expression �10� for the last one. The sum of the causal and
acausal Green’s function thus follows from correlating the
pressure fields caused by the random volume sources:

G*�rB,rA� + G�rB,rA� =
2�

	S���	2
p�rA�p*�rB� . �14�

As in seismic interferometry for loss-less media,1,4,7 one
needs to divide by the power spectrum of the excitation to
remove the imprint of this excitation on the recorded pres-
sure p�rA� and p�rB�.

IV. WHEN THE SURFACE INTEGRAL IS NONZERO

In practical applications, none of the conditions C1–C3
might be satisfied. This is, in fact, the case in formulations of
seismic interferometry where the Green’s function is ex-
tracted by correlating pressure fields that are excited by un-
correlated sources at the surface that bounds the volume
�e.g., Ref. 7�. This section investigates the relative roles of
the surface and volume integrals in expression �9�. For sim-
plicity, I use, following Wapenaar et al.,7 that the surface is
far from the region of interest and that �G�r ,r0� ·dS
= ikG�r ,r0�dS= �i� /c�G�r ,r0�dS. Inserting this in Eq. �9�
gives

G*�rB,rA� + G�rB,rA� = IV�rB,rA� + IS�rB,rA� , �15�
where the volume integral IV�rB ,rA� is given by
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IV�rB,rA� = 2�� �i�r,��G�rA,r�G*�rB,r�dV , �16�

and the surface integral IS�rB ,rA� by

IS�rB,rA� = 2� 1

�c
G�rA,r�G*�rB,r�dS . �17�

In many applications, the attenuation is weak ��i��r�,
and one might think that the volume integral is small com-
pared to the surface integral. This, however, is not the case.
Because of the attenuation, the surface integral decreases ex-
ponentially with increasing surface area, and goes to zero
while the volume integral is finite. According to expression
�15� the sum of the volume integral and the surface integral
is independent of the size of the volume. This implies that
the volume integral and the surface integral are, in general,
both needed for the extraction of the Green’s function. The
stationary phase analysis of Sec. V shows that, for the special
case of a homogeneous medium, this is indeed the case.

V. STATIONARY PHASE ANALYSIS OF THE SURFACE
INTEGRAL AND VOLUME INTEGRAL

To better understand the relative roles of the volume and
surface integrals of expressions �16� and �17�, the special
case of a homogeneous, attenuating medium is analyzed in
this section, and the volume and surface integrals are solved
in the stationary phase approximation. For a homogeneous
medium, Eqs. �1� and �2� can be combined to give

�2p + �2��p = i��q . �18�

The wave number is therefore given by

k = ���� . �19�

Weak attenuation is considered; in this case the wave num-
ber is to first order in �i /�r given by

k = ���r�
1 +
i�i

2�r
� . �20�

The phase velocity thus is given by

c =
�

kr
= 1/��r� , �21�

and the imaginary component of the wave number by

ki = ��i�c/2. �22�

The Green’s function solution for expression �18� is equal to

G�R� = − i�� exp�− kiR�
eikR

4�R
. �23�

The geometry for the stationary phase analysis is shown
in Fig. 1. A coordinate system is used whose origin is at the
midpoint of the receiver positions rA and rB and whose z axis
points along the receiver line. The distance between these
points is denoted by R; hence rA= �0,0 ,−R /2�, and rB

= �0,0 ,R /2�. A volume that is bounded by a surface at dis-
tance L from the origin is considered. The stationary phase
analysis follows the treatment of Ref. 5. The stationary phase

point of the integrals in expressions �16� and �17� is located
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on the z axis �x=y=0�. Following Ref. 5, the points to the
right of rB �for which z�R /2� give the causal Green’s func-
tion G�rB ,rA�, while the points to the left of rA �for which
z	−R /2� give the acausal Green’s function G*�rB ,rA�. In
the following only the contribution of integration points for
which z�R /2 is treated; this gives only the causal Green’s
function. Because of this limitation, the corresponding sur-
face and volume integrals are denoted with the superscript
�+�.

Both the surface and volume integrals contain a double
integration over the transverse x and y coordinates. As shown
in the Appendix, the stationary phase approximation of the
surface and volume integrals gives

IV
�+��rB,rA� = − i���exp�− kiR� − exp�− 2kiL��

eikR

4�R
, �24�

and

IS
�+��rB,rA� = − i�� exp�− 2kiL�

eikR

4�R
. �25�

The sum of the surface and volume integrals indeed gives the
causal Green’s function:

IS
�+��rB,rA� + IV

�+��rB,rA� = − i�� exp�− kiR�
eikR

4�R

= G�rB,rA� . �26�

Expressions �24� and �25� show that neither the volume
integral nor the surface integral gives the Green’s function,
but that the sum does. Equation �16� suggests that for weak
attenuation the volume integral can be ignored, because this
integral is proportional to �i��r. Expressions �24� and �25�
show, however, for the special case of a homogeneous me-

FIG. 1. Definition of geometric variables for the stationary phase evaluation
of integrals IV�rB ,rA� and IS�rB ,rA�. The volume is bounded by a sphere
with radius L, as denoted by the dotted line.
dium that as long as kiL=O�1�, the volume integral and the
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surface integral in general have comparable strength. �As
shown in expression �A5�, the volume integral IV

�+� is propor-
tional to �i /ki, which according to expression �22� has a
finite value as �i→0.� The relative contribution of the sur-
face integral and the volume integral is weighted by
exp�−2kiL�. As the volume occupies all space �L→ 
 �, the
surface integral vanishes �IS

�+�→0� and the volume integral is
given by IV

�+��rB ,rA�=−i�� exp�−kiR�eikR /4�R=G�rB ,rA�.
This is the special case treated in Sec. III because in this
limit the surface integral vanishes because of the large dis-
tance L traversed by the attenuating waves that are corre-
lated.

Equation �26� shows that in the frequency domain the
Green’s function can be retrieved from the cross correlation
of waves excited by a combination of volume sources and
surface sources. A similar result was obtained in the fre-
quency domain in expression �10� of Ref. 5 where an infinite
volume is needed. Expression �26� of Ref. 33 gives a time-
domain formulation of the retrieval of the Green’s function.
In the latter studies sources in a homogeneous attenuating
medium were integrated over an infinite volume. Because of
the infinite integration region, the surface integral �25� did
not contribute in those studies. The relative role of the sur-
face integral and the volume integral is important because in
some applications sources are present only on a finite surface
�e.g., Ref. 14�.

In this example, only the direct wave arrives, and ignor-
ing the volume integral leads to an overall amplitude error.
Next, the example of interferometry for both the direct wave
and a reflected wave is considered. Sources are placed on the
acquisition surface shown in Fig. 2. Both the direct wave and
a reflected wave propagate to receivers indicated with open
squares. The points SPdir and SPrefl shown in Fig. 2 indicate
the stationary phase source locations for the direct and re-
flected waves, respectively.8

The direct wave contains contributions exp�−kiLdir�
�exp�−ki�Ldir+R�� from the attenuation at the stationary
points. Following the stationary phase analysis of Ref. 8, and
taking the attenuation terms into account gives a contribution

FIG. 2. Two receivers �open squares� that are located between the acquisi-
tion surface and a reflector, and the stationary phase points SPdir and SPrefl of
the direct and reflected waves, respectively.
of the surface integral to the direct wave that is given by
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udir � e−2kiLdire−kiR
eikR

R
. �27�

The reflected waves have a contribution at the stationary
phase point from the attenuation exp�−kiLrefl�exp�−ki�Lrefl

+R1+R2��, the reflected wave obtained from the surface
integral satisfies in the stationary phase approximation8

urefl � e−2kiLreflre−ki�R1+R2�e
ik�R1+R2�

R1 + R2
, �28�

where r is the reflection coefficient of the interface. Both the
direct and reflected waves thus obtained have the correct
phase and geometrical spreading, but both contain an ampli-
tude term �exp�−2kiLdir� and exp�−2kiLrefl�, respectively�
that is due to neglecting the volume integrals. Since these
amplitude terms are different for the direct wave and the
reflected waves, neglecting the contribution of the volume
integrals disrupts the relative amplitude of the different
arrivals.

It is interesting to compare this result with expressions
�1� and �18� of Sabra et al.,21 who show that for a homoge-
neous attenuating oceanic wave guide with source placed at a
surface of constant depth that the phase of the different ar-
rivals is correctly produced by the cross correlation, but the
amplitude is not in the presence of attenuation. Expressions
�27� and �28� presented here describe what happens when the
sources are placed on a surface only. It is the absence of
volume sources in Ref. 21 that leads to an incorrect estimate
attenuation in the Green’s function estimated from cross cor-
relation.

VI. DISCUSSION

The derivation in this work shows that the Green’s func-
tion of attenuating acoustic waves in a heterogeneous me-
dium can be extracted by cross-correlating measurements of
the pressure that is excited by random sources. As shown in
Secs. III and IV, the Green’s function can, however, be com-
puted from the cross correlation when the random pressure
field is excited by sources that are distributed throughout the
volume, and that have a source strength that is proportional
to the local dissipation rate �which is proportional to �i�.
Volume sources are also required for the extraction of the
Green’s function of the diffusion equation,40 which is another
example of a system that is not invariant for time-reversal.

The physical reason that the excitation must be propor-
tional to the local dissipation rate is that the extraction of the
Green’s function is based on the equilibration of energy. This
condition is necessary for the fluctuation-dissipation theo-
rem, which relates the response of a dissipative system �the
Green’s function� to the fluctuations of that system around
the equilibrium state.41,42 Acoustic, dissipative, waves can be
in equilibrium only when the excitation of the waves
matches the local dissipation rate. If this were not the case,
there would be a net energy flow, and the system would not
be in equilibrium. The equilibrium of energy,43 also referred
to as equipartitioning, has been shown to be essential for the
accurate reconstruction of the Green’s function �e.g., Refs.

11, 30, and 44�.
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When none of the conditions C1–C3 of Sec. III is satis-
fied, the sum of the causal and acausal Green’s function is,
according to expression �15� given by the sum of the volume
integral and a surface integral. The physical reason is that in
equilibrium, the sources at the surface must be supplemented
with sources within the volume that are proportional to the
local dissipation rate if the system is to be in equilibrium. In
some applications this condition can be realized. For ex-
ample, Weaver and Lobkis9 extract the Green’s function
from the wave field that is excited by thermal fluctuations
throughout the volume of their sample. The need to have
sources throughout the volume in addition to sources at the
surface is impractical in applications where one seeks to ex-
tract the Green’s function for two points in the interior by
placing sources at the bounding surface only �e.g., Refs. 13
and 14�.

Roux et al.33 show that for a homogeneous infinite
acoustic medium one needs to correct for a factor �−1. They
note that this term is due to their assumed attenuation mecha-
nism �Im�c�=constant�. In the formulation of this work, such
a correction term is hidden in condition �12� which states
that the power of the sources is proportional to the local
attenuation rate. In this work, �i�r ,�� can be an arbitrary
function of position and frequency, but, as long as condition
�12� is satisfied the Green’s function can be extracted by
cross correlation. In practical applications the source spec-
trum may not satisfy this condition. In that case there is no
energy balance, and the Green’s function is not correctly
retrieved. This may be an important limitation in practical
applications.

In practical situations, attenuation is present, and the
contribution of the volume integral is often ignored, yet seis-
mic interferometry seems to be able to retrieve the Green’s
function well �e.g., Refs. 13 and 14�. For the special case of
a homogeneous medium, the contribution of the surface in-
tegral to the Green’s function is given by expression �25�.
This contribution has the correct phase and geometrical
spreading �exp�ikrR� /R�, but incorrect attenuation �exp
�−2kiL� instead of exp�−kiR��. This suggests that when seis-
mic interferometry for attenuating systems is used by sum-
ming over sources at the surface only, the correct phase and
geometrical spreading are recovered, but that the attenuation
is not. According to expressions �15�–�17� one needs for a
general inhomogeneous attenating medium both volume
sources and surface sources for the extraction of the Green’s
function. It is known that multiple scattering by a boundary45

or by internal scatterers46 can compensate for a deficit of
sources needed for focusing by time-reversal. This raises the
unsolved question to what extent multiple scattering can
compensate for the lack of volume sources.
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APPENDIX: STATIONARY PHASE ANALYSIS OF THE
INTEGRATION OVER THE TRANSVERSE
COORDINATES

The integrals IV�rB ,rA� and IS�rB ,rA� of expressions �16�
and �17� contain, in the geometry of Fig. 1, an integration
over the x and y coordinates. This Appendix considers the
contribution from integration points z�R /2. These points
lead to the causal Green’s function. The contribution from
integration points z	−R /2 leads to the acausal Green’s
function, which can be obtained by complex conjugation of
the results derived here.

For the Green’s function of the homogeneous medium of
expression �23�,

G�rA,r�G*�rB,r� = 
��

4�
�2

e−ki�LA+LB�e
ikr�LA+LB�

LALB
, �A1�

where LA,B= 	r−rA,B	, as shown in Fig. 1. The phase term
exp�ikr�LA+LB�� of expression �A1� is oscillatory as a
function of the transverse coordinates x and y. The phase
is stationary along the z axis �x=y=0�. For fixed z, near
the stationary phase point, the lengths LA and LB are, to
second order in x and y, given by

LA = �x2 + y2 + �z + R/2�2 
 �z + R/2� +
1

2

x2 + y2

�z + R/2�
,

�A2�

and

LB = �x2 + y2 + �z − R/2�2 
 �z − R/2� +
1

2

x2 + y2

�z − R/2�
.

�A3�

These expressions are valid for integration points z�R /2. In
the stationary phase approximation47 of the integration of
expression �A1� over x and y, these approximations for LA

and LB are used in the phase term exp�ikr�LA+LB��. In the
stationary phase approximation, the attenuation and geo-
metrical spreading terms exp�−ki�LA+LB�� /LALB are evalu-
ated at the stationary phase point x=y=0, where LA,B

=z±R /2. The integral of expression �A1� over the trans-
verse coordinates is, in the stationary phase approxima-
tion, given by47

� � G�rA,r�G*�rB,r�dxdy

= 
��

4�
� e−2kiz

z2 − R2/4
eikrR� � exp
−

ikr

2

 R

z2 − R2/4
�

��x2 + y2��dxdy

= 
��� e−2kiz

2 2 eikrR
e−i�/4�2��z2 − R2/4��2
4� z − R /4 krR
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= −
i�2�c

8�
e−2kiz

eikrR

R
. �A4�

Inserting this result in Eq. �17�, and setting z=L, gives
expression �25� for the contribution of the surface z=L to the
surface integral IS�rB ,rA�. In order to obtain the contribution
of the region R /2	z	L to the volume integral of expres-
sion �16�, one needs to integrate Eq. �A4� over z:
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Using Eq. �22� to eliminate �i /ki gives expression �24�.
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