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In time reversed imaging a pulse is propagated through a medium, the signal is recorded, and then
the time reversed signal is back-propagated through the same medium to refocus the energy at the
original location of the source. The refocusing is independent of the medium if the medium is the
same during back-propagation. If the speed of back-propagation differs from the speed of forward
propagation, the waves refocus at a different location. For a single source and single receiver, the
shift is proportional to the distance between the source and the receiver and the speed difference. If
several receivers are placed along a circle to form an aperture angle, the shift in the location of the
refocused pulse increases with increasing aperture angle for a given source-receiver distance and
speed difference. If we analyze the problem using ray theory, an increase in the aperture angle would
result in a decrease in the shift of the refocused pulse. The explanation for the shift of the refocused
pulse with aperture angle is simple from a wave-front point of view. © 2006 American Association of
Physics Teachers.
�DOI: 10.1119/1.2166365�
I. TIME REVERSED IMAGING

In time reversed imaging a pulse is propagated through a
medium, the signal is recorded, and then the time reversed
signal is back-propagated through the same medium to refo-
cus the energy at the original source location. The refocusing
takes place in time and space and occurs in homogeneous as
well as heterogeneous media. The refocused pulse is inde-
pendent of the characteristics of the medium if the same
medium is used for the forward- and the back-propagation.1

A heterogeneous medium enhances the degree of
refocusing.2 Back-propagation is equivalent to a convolution
of the time reversed signal with the impulse response of the
medium. The only difference between the theoretical expres-
sions for convolution and correlation is that in the latter both
functions have the same sign for the time variable, and in
convolution the time of one of the functions is reversed.
Hence, back-propagation is equivalent to the correlation of
the recorded signal and the impulse response of the medium.
Parvulescu3 has shown that this similarity between convolu-
tion and correlation can be be exploited by using a matched
filter4,5 in which the medium’s impulse response is the time
reverse of one of the correlands.

Time reversed imaging has been applied in several areas
of science and engineering. For example, the technique has
been used as a noninvasive method to refocus energy on
kidney stones. The kidney stone receives a signal and scat-
ters it in all directions. A mirror array picks up the scattered
signal, amplifies it, and sends the signal back to refocus the
energy at the source of the scattered waves, that is, the kid-
ney stone. Another medical application of time reversed im-
aging is acoustically induced hyperthermia for tumor
treatment.6 Time reversed imaging is also used to detect de-
fects in metals, to detect mines in the ocean,7 and for secure
communication.3,8–10

The back-propagation of a signal is mathematically the
same as the process of migration in geophysics.11 In a stan-
dard geophysical experiment, sources are placed on the
earth’s surface. These sources generate waves that physically
propagate into the subsurface. The subsurface �earth’s inte-

rior� is heterogeneous in terms of the velocity of propagation
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of the waves. Because of the velocity contrast, some of the
waves are reflected back to the surface. These reflected
waves are recorded using receivers on the surface. These
recorded waves comprise the data for geophysicists, and this
data acquisition process represents the forward-propagation,
input to time reversed imaging. In time reversed imaging the
signal recorded at the receiver array is back-propagated
physically through the same medium to refocus energy at the
source location. An analogy between geophysical migration
and time reversed imaging can be stated as follows. The
waves reflected from the subsurface are recorded on the sur-
face and migrated �mathematically same as back-propagated�
using an estimate of the velocity of the subsurface �also
called the estimated velocity model�. An estimated velocity
model is used because in the process of migration, we do not
back-propagate the recorded signal physically into the sub-
surface. Rather, the recorded wave-field is migrated using
computer simulation, thus helping us estimate the image of
the earth’s subsurface. Because the estimated velocity model
does not include the precise variations in the actual velocity
structure of the earth’s subsurface �also called the true veloc-
ity model�, if we migrate the recorded wave-field with this
estimate of the velocity model, the resulting image will be
inaccurate. These inaccuracies translate into discrepancies in
the locations where the waves focus. The discrepancy in the
focusing depends on the difference between the true and the
estimated velocity models. A process called migration veloc-
ity analysis12 is used to iterate toward the best estimate of the
velocity model by minimizing the focusing discrepancies.

When the same medium is used for forward- and
backward-propagation, the refocusing of the energy occurs at
the location of the original source. However, when the back-
propagation speed differs from the forward-propagation
speed, the waves refocus at other locations. The difference in
the forward and backward speeds can be determined from
the shift of the refocused pulse compared to the original
source location.

In coda wave interferometry a single source and a receiver
are used to study velocity differences.13,14 The changes are
monitored by the correlation of the coda waves recorded in

the unperturbed and perturbed medium, respectively. This
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technique is based on the high sensitivity of multiple scat-
tered waves to small changes in a medium and can be used to
monitor changes in volcanic interiors.15,16 For a single re-
ceiver, time reversed imaging at the source location is the
same as convolution with the time-reversed signal, which is
the same as correlation with the originally recorded signal.
The shift in the location of the refocused pulse for a per-
turbed medium is related to the deviation of the correlation
peak from the origin, which gives a measure of the velocity
change. Hence for a single source and receiver, time reversed
imaging is identical to coda wave interferometry.

If we have an array of receivers, the shift in the location of
the refocused pulse depends on the aperture angle, the dis-
tance between the source and receiver, and the velocity
change. In Sec. II we derive the shift in the location of the
refocused pulse, followed by a simulation to validate the
result.

II. LOCATION OF THE REFOCUSED PULSE

We start with a simple model to study the effect of a
velocity change on the location of the refocused pulse. The
model is acoustic, two-dimensional, and homogeneous. We
allow a source pulse to propagate through the homogeneous
medium using the 2D wave equation and record the field at a
distance R with an array of receivers. The wave-field re-
corded at the receivers is then time reversed and back-
propagated through the same medium to refocus the energy
at the source location.

Let the source be a symmetric pulse such as a Ricker
wavelet S�t� given by17

S�t� =
�2

�t2 �exp�− �2t2/2�� . �1�

Figure 1 shows the shape of the Ricker wavelet. The Ricker
wavelet is zero-phase in the language of geophysics and sig-
nal processing. We propagate this pulse over a distance R
and record the wave-field at a circular array of receivers. The
receivers are placed along a circle of radius R with the source
at the center and a fixed aperture angle ±� as shown in Fig.
2. The far wave-field can be represented in the frequency
domain as a product of the source term and the solution to
the Helmholtz equation in polar coordinates using the 2D

18–20

Fig. 1. The shape of the Ricker wavelet with �=10.
asymptotic behavior of the Hankel function:
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u��,R� =
exp�i�kR − �/4��

�8�kR
S��� , �2�

where k is the wavenumber. This form of u is the same as the
convolution of the time-domain source wavelet with an im-
pulse response. When this wave-field is reversed in time, it
acts as a new source signal.

The reversal of time in the time domain is equivalent to
complex conjugation in the frequency domain. If S�t� is the
time-dependent part of the wave-field, it can be represented
in the frequency domain using the Fourier transform,

S��� = �
−�

�

S�t�ei�t dt ⇔ S�t� =
1

2�
�

−�

�

S���e−i�t d� . �3�

The time reversed wave-field is

S�− t� =
1

2�
�

−�

�

S���e+i�t d� =
1

2�
�

−�

�

S�− ��e−i�t d� .

�4�

For a real signal, S�−�� equals the complex conjugate S*���,

S�− t� =
1

2�
�

−�

�

S*���e−i�t d� . �5�

Equation �5� shows that the time reversed signal in the time
domain is equivalent to complex conjugation in the fre-
quency domain. Hence, the wave-field recorded by the array
of receivers shown in Fig. 2 is equivalent to complex conju-
gation of Eq. �2� when reversed in time:

u*��,R� =
exp�− i�kR − �/4��

�8�kR
S*��� . �6�

If we back-propagate this wave-field with the same speed
as the forward propagating speed, we refocus the waves at
the original source location. When we back-propagate with a
different speed, the energy will refocus at a location other
than at the original source. Let us see what information this
shift in the location of the refocused pulse gives about the
change in the speed. The back-propagated wave-field radi-
ated by each of the receivers is obtained by the convolution
of the time reversed signal with the impulse response �also
known as the Green’s function18,20�. This convolution gives
the back-propagated wave-field recorded at the source loca-

Fig. 2. The source and an array of receivers placed at a distance R for an
aperture angle �.
tion due to each receiver. To calculate the total back-
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propagated wave-field, we need to sum over all receivers that
have recorded the forward-propagating wave. If we assume
that the receivers in the receiver array are closely spaced, we
may approximate the sum all the receivers by integration
over the aperture angle �. Hence, in the frequency domain
the back-propagated wave-field at location r corresponds to

P�r,�� = �
−�

�

G�r,rr����u*��,R�d� �7a�

=S*����
−�

� exp�i�k��r − rr� − �/4 − kR + �/4��
�8�k��r − rr��8�kR

d� , �7b�

where rr is the receiver location and k and k� are the wave-
numbers associated with forward- and back-propagation, re-
spectively.

We are interested in the refocusing point close to the origi-
nal source location. Further analysis near the refocusing
point requires that R�r and hence the term �r−rr� in Eq.
�7b� can be approximated to second-order accuracy in r /R as

�r − rr� = R�1 − 	 r

R

cos�� − �� + 	 r2

2R2
sin2�� − ��� ,

�8�

where the angle � is defined in Fig. 2. We ignore the depen-
dence of �r−rr� on r /R in the denominator of Eq. �7b� and
approximate it by R. This approximation results in an error
of order r /R, which can be ignored because R�r. In the
numerator, the term �r−rr� is multiplied by the wavenumber
k in the argument of an exponent. If we ignore the �r /R� and
�r /R�2 terms in the numerator of Eq. �7�, the errors would be
the order of �r /	� and �r2 /	R�, respectively, which may be
significant, where 	 is the wavelength of the pulse. We there-
fore express �r−rr� in the exponent of Eq. �7b� using Eq. �8�.
With this simplification, the denominator becomes a constant
scaling factor except for ��� which comes from the product
of the terms �k and �k� in the denominator. If we omit this
scaling factor, the back-propagated wave-field becomes the
following integral over all the receivers:

P�r,�� =
S*���

��� �−�

�

exp�− i�k�r cos�� − ��

−
1

2
	 k�r2

R

sin2�� − �� − R�k� − k�
�d� . �9�

We let k=� /c and k�=� /c� and rewrite the back-propagated
wave-field as

P�r,�� =
S*���

��� �−�

�

exp�− i��	 r

c�

cos�� − ��

−
1

2
	 r2

Rc�

sin2�� − �� − R	 1

c�
−

1

c

�
d� ,

�10�

where c is the forward-propagation speed of the and c� is the
back-propagation speed.

To represent the refocused energy in the time domain we
integrate over all frequencies.21 The wave-field can be repre-

sented in the time domain in terms of the function f as
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P�r,t� = �
−�

�

f�t + 	 r

c�

cos�� − ��

−
1

2
	 r2

Rc�

sin2�� − �� − R	 1

c�
−

1

c

�d� , �11�

where f is defined as

f�t� = �
−�

� S*���
���

e−i�t d� . �12�

The function f is a function of time and space and can be
expressed in terms of x and z as

f�t + 	 r

c�

cos�� − �� −

1

2
	 r2

Rc�

sin2�� − ��

− R	 1

c�
−

1

c

�

= f�t + 	 z

c�

cos � + 	 x

c�

sin �

− 	 1

2c�R

�x cos � − z sin ��2 − R	− 
c

cc�

� , �13�

where

z = r cos � , �14a�

x = r sin � , �14b�


c � c� − c . �14c�

The function f can be approximated using a Taylor’s series
expansion to second order in �, where

� = 	 z

c�

cos � + 	 x

c�

sin � − 	 1

2c�R

�x cos �

− z sin ��2 − R	− 
c

cc�

 . �15�

If we insert this representation into Eq. �11� and integrate
over �, we obtain an expression for the back-propagated
wave-field at an arbitrary location �x ,z� close to the source
location.

We are interested in the location of the refocused pulse,
which we define as the maximum value of this wave-field at
time t=0. Because the medium is homogeneous and the ac-
quisition geometry is symmetric with respect to x=0, the
peak is located on the x-axis; hence we set x=0 in the wave-
field representation. The resultant wave-field representation
involves terms in z and t only. The shift in the location of the
refocused pulse in the z-direction can be calculated in two
steps. The first step involves evaluating the wave-field at t
=0. This wave-field is then solved for its maximum as a
function of z. The resultant shift in the location of the refo-
cused pulse is


z �
− 2��sin ��/��R�
c/c�

1 + �sin 2��/2�
. �16�

A derivation of this result is given in the Appendix.
Equation �16� for the shift in the location of the refocused

pulse holds for any source pulse that is symmetric at t=0 �as

shown in Fig. 1�. When the forward- and backward-
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propagating velocities are the same �
c=0�, the location of
the refocused pulse is the same as that of the source pulse
�
z=0�, as shown in Eq. �16�. For a small aperture angle,
sin � /� and sin 2� /2�→1; hence �→0, and the shift of
the refocused pulse is a function of just the distance R and
the velocity change 
c:

lim
�→0


z = − R	
c

c

 . �17�

Let us consider the case of small � or equivalently only a
single receiver �see Fig. 3�. Suppose we excite the source
pulse and record the signal at a distance R using a single
receiver. If this recorded signal is back-propagated with the
same speed, then the back-propagated wave-field refocuses
at the original source location. If, instead, the back-
propagation speed is different from the forward-propagation
speed �
c�0�, the back-propagated waves travel over a dis-
tance,

Rback = c�t = �c + 
c�t = ct + t
c = R − �− R	
c

c

� . �18�

Hence, the relative shift in the location of the refocused pulse
is −R�
c /c�, which agrees with Eq. �17�, suggesting that our
expression in Eq. �16� also holds for aperture angles of 0°,
that is, just a single receiver.

III. ILLUSTRATION USING NUMERICAL
SIMULATION

Equation �16� gives the location of the refocused pulse.
Let us compare the results obtained from this expression
with a simulation. The simulation uses a finite-difference

Fig. 4. Initial conditions of the simulation showing a source pulse at the
origin with an array of receivers forming an aperture angle � at a distance

Fig. 3. The shift in the location of the refocused pulse when the wave-field
is recorded by a single receiver and back-propagated with a higher velocity
�based on ray theory�.
R.
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scheme for the 2D wave equation with absorbing boundary
conditions.22 The geometry of the simulation is shown in Fig.
4. Because the medium is homogeneous, we specify a con-
stant speed for forward propagation. The source radiation
pattern is isotropic as illustrated by the arrows. The receiver
array at the distance R=20	, where 	 is the wavelength of
the pulse, records the wave field. The aperture angle �
=35° for this example. When this wave-field is time-reversed
and back-propagated using the same speed as for forward
propagation, the waves refocus at the original source location
as shown in Fig. 5. We also see some low amplitude numeri-
cal noise near the sides, which is caused by reflection from
the imperfectly absorbing boundaries.

Even though its location is preserved, the shape of the
refocused pulse differs from that of the original pulse in Fig.
4. One reason for this distortion is that the receiver array has
a finite aperture �=35°. During forward propagation, the
source propagates in all possible directions, while in back-
propagation the energy propagates only from a certain slice
of directions. In addition, according to Eq. �9�, the refocused
pulse is proportional to S*��� / ��� for a given source spec-
trum S���. This distortion can be seen more clearly in Fig. 6
which is a detailed view of Fig. 5.

Fig. 5. Energy refocusing at the source location �along with some low
amplitude noise caused by imperfect absorbing boundary conditions� ob-
tained after the wave-field recorded by the receivers is back-propagated
using the correct back-propagating velocity.

Fig. 6. A detailed view of the refocused pulse obtained by back-propagating
the wave-field using the correct velocity. Even though the pulse is focused at

the correct location, there is distortion in the shape of the refocused pulse.
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Let us see what happens when we back-propagate with a
different speed. Suppose the back-propagating speed c� is
small compared to the speed c for the forward propagation.
When the back-propagating speed is lower than the forward-
propagating speed, the refocusing occurs at a location closer
to the receiver array compared to the original source loca-
tion, which is indicated by a circle in Fig. 7. Because the
shape of the refocused pulse is similar to a frown, this shape
is commonly referred to as a frown in seismic migration.12

Figure 8 shows the refocused pulse when the back-
propagating speed is higher than the speed of forward-
propagation. The refocusing in this case occurs at a location
farther from the receiver array and the shape of the refocused
pulse resembles a smile.12

Table I shows the agreement between the shift in the lo-
cation of the refocused pulse obtained from Eq. �16� and the
simulation for various velocity changes at the aperture angle
of 35°. This result holds for any aperture angle ranging from
as small as 5°, which mimics the case of a single receiver, up
to 90°. Apart from the distortion in the shape of the refo-
cused pulse, the shift in its location obtained from the simu-
lation agrees with Eq. �16�.

The change in the location of the refocused pulse with a
change in the velocity for two extreme cases ��=5° and 90°�
is demonstrated in Fig. 9. The solid line shows the shift in
the location of the refocused pulse as given by Eq. �16� and

Fig. 7. The refocused pulse obtained when the recorded wave-field is back-
propagated using a lower velocity than for forward-propagation.

Fig. 8. The refocused pulse obtained when the recorded wave-field is back-

propagated using a higher velocity than for forward-propagation.
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the points show the shift obtained from the simulations. The
latter agree with Eq. �16� for small velocity differences with
an accuracy of �0.044−0.042� / �0.042�=5%. As we increase
the velocity difference for larger aperture angles, Eq. �16�
becomes less accurate and begins to deviate from the simu-
lation results. As we increase the velocity difference, the
second-order approximation in � �Eq. �15�� used in the Tay-
lor’s expansion of the function f and the expansion of �r
−rr� in Eq. �8� become inaccurate, thus leading to the devia-
tion.

IV. WHY DO RAYS MISGUIDE US?

In high-quality migration velocity analysis, the 5% accu-
racy of Eq. �16� discussed in Sec. III is typical and becomes
worse as we consider more complex media. Equation �16� is
accurate �up to 5%� under certain conditions which include a
bound on the relative velocity difference of �±5%. The ac-
curacy also depends on the normalized distance �R /	� be-
tween the source and the receivers and, more importantly, the
aperture angle �. The angle � is a crucial parameter in de-
termining the shift in the location of the refocused pulse.

We start by analyzing the influence of the aperture angle
on the refocused pulse in terms of ray theory. Consider a
very small aperture or equivalently a single receiver. Equa-
tion �17� shows that for a very small aperture angle, the
velocity change for back-propagation results in a relative
shift in the location of the refocused pulse of R�
c /c�. Figure
3 gives a representation of this case. If we back-propagate
with speed c��c, the shift in the location of the refocused
pulse depends on the product of the distance R and the dif-
ference 
c as shown in the derivation of Eq. �18�.

Table I. Comparison of theoretical and numerical results showing the rela-
tive shift in the location of the refocused pulse for different relative velocity
changes. The aperture angle is 35°.


c /c −
z /R �theoretical� −
z /R �numerical�

−0.04 −0.042 −0.044
−0.02 −0.021 −0.021
0.00 0 0
0.02 0.021 0.021
0.04 0.042 0.044

Fig. 9. The relative shift in the location of the refocused pulse as a function
of the relative change in the back-propagating velocity. The relative shift
obtained from the simulation is denoted by diamonds for �=90° and by

circles for �=5°.
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A more complicated case involves an array of receivers
that form a finite aperture angle instead of a single receiver
�see Fig. 10�. We have seen that if we have only one receiver
B, then the shift in the location of the refocused pulse is
R�
c /c� indicated by B�. Let us start by examining the con-
tribution of the receivers A and C at the two ends of the
receiver array. The rays coming from A and C also travel a
distance of R�
c /c�, indicated by A� and C�, respectively.
The detailed view �in Fig. 10� shows the source S and the
shift in the location of the refocused pulse for the three re-
ceivers A, B, and C. This shift is shown by the three rays in
thick arrows each having the same length R�
c /c�. Even
though the rays have the same length, the component of the
rays S−A� and S−C� in the direction of S−B� extends only
up to a distance R�=R�
c /c�cos���
R�
c /c�, suggesting
that for only two receivers at the two ends of the receiver
array, the shift in the location of the refocused pulse is
smaller than that of a single receiver.

Suppose that for a finite aperture angle several receivers
are placed between A and C along the circular boundary.
Rays coming from all the receivers travel a distance of
R�
c /c�, but the contribution to the shift in the direction of
S−B� from each of the receivers is R�
c /c� cos �, where the
angle � depends on the receiver location. This distance is
always less than R�
c /c�. Hence, ray theory suggests that as
we increase the aperture angle formed by the array of receiv-
ers, the shift in the location of the refocused pulse decreases.

Let us see if our results agree with this explanation. The
slope of the two lines in Fig. 9 represents the ratio
�−
z� / �R�
c /c��. According to the ray theory explanation,
the shift in the location of the refocused pulse decreases as
we increase the aperture angle; hence, the slope of the line
should decrease. Instead, the slope in Fig. 9 increases with

Fig. 10. The shift in the location of the refocused pulse when the wave-field
is recorded by an array of receivers and back-propagated using a higher
velocity �based on ray theory�.
increasing aperture angles ��=90° �.
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Let us consider the expression for the position of the re-
focused pulse, Eq. �16�, which can be rewritten as

G��� �
− 
z

R�
c/c�
= 2

�sin ��/�
1 + �sin 2��/2�

. �19�

G���=1 for �=0. Figure 11 shows the plot of G��� as a
function of �. It shows that G���=1 for �=0 and it in-
creases with increase in �, indicating that as � increases, the
distance of the refocused pulse from the original pulse in-
creases. This observation is supported in Fig. 9 which also
shows an increase in the slope �of the line connecting the
observation points� with an increase in � from 5° to 90°.
This increase is contradicted by the reasoning based on the
ray theory.

We now consider the explanation in terms of wave-front
propagation. For the single receiver �see Fig. 12�, the expla-
nation remains the same as the ray theory and hence the shift
in the location of the refocused pulse is R�
c /c�. The sce-
nario is different when we consider more receivers and a
larger aperture as shown in Fig. 13. Again consider just two
receivers A and C placed at the ends. The detailed view in
Fig. 13 shows the wave-fronts coming from receivers A, B,
and C. The source is indicated by S and the dotted wave-
fronts indicate no velocity difference. The solid wave-fronts
A�−A�, B�−B�, and C�−C� are the three wavefronts from

Fig. 11. The relative shift in the location of the refocused pulse normalized
by the relative velocity change as a function of the angle �.

Fig. 12. The shift in the location of the refocused pulse when the wave-field
is recorded by a single receiver and back-propagated using a higher velocity

�based on wave theory�.
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A, B, and C, respectively. All three wave-fronts are displaced
by a distance of R�
c /c� in their respective directions of
propagation. It is the interference of the three wave-fronts
that contributes to the refocused pulse. The wavefront propa-
gating from the receiver A, A�−A�, has a displacement in the
direction of B�−B� given by R�= �R�
c /c� / cos����
�R�
c /c�. A similar explanation holds for the wave-front
C�−C�; hence we have constructive interference at a dis-
tance R� from the source, yielding the refocusing. The dis-
tance R� is an apparent displacement. Hence for a larger
aperture, the refocused pulse is shifted by a distance greater
than R�
c /c�. This explanation is consistent with Eqs. �16�
and �17� and supports the results shown in Figs. 9 and 11.
When we consider the entire receiver array, the wave-fronts
coming from all the receivers will be displaced by a distance
of R�
c /c� in their direction of propagation resulting in
constructive interference at an effective distance
�R�
c /c� / cos ��, with the angle � varying with the aperture
of the receiver array. This distance may be less than or equal
to R�, but will definitely be greater than R�
c /c�. Thus, if we
consider the wave-fronts coming from the entire receiver ar-
ray, the shift in the location of the refocused pulse will in-
crease with increasing aperture angle. Hence, the results ob-
tained from the theory and numerical simulation agree with
the explanation based on wave-front propagation.

V. CONCLUSION

The principle idea of time reversed imaging is the refocus-
ing of the energy at the same location as the source when the
forwards- and back-propagating media are the same. Based
on this idea, we have obtained an expression for the shift in
the location of the refocused pulse caused by a velocity
change during back-propagation. The shift depends mainly

Fig. 13. The shift in the location of the refocused pulse when the wave-field
is recorded by an array of receivers and back-propagated using a higher
velocity �based on wave theory�.
on the distance between the source and the receivers, the
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aperture angle formed by the receiver array, and the velocity
change. For a single source-receiver pair, the shift is propor-
tional to the velocity change and the source-receiver separa-
tion only. For more receivers the aperture angle plays an
important role in determining the shift in the location of the
refocused pulse. As we increase the aperture angle for the
same source-receiver distance and velocity change, the shift
in the location of the refocused pulse increases. An explana-
tion based on the ray theory yields an underestimate of the
shift because it is limited to approximating the wave-field
with a few ray paths and this approximation does not com-
pletely take into account the effect of constructive interfer-
ence of the wave-fronts giving the refocused pulse. The
variation in the shift of the refocused pulse with a change in
aperture angle is explained in terms of the constructive inter-
ference of wavefronts, which does include all the ray paths.
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APPENDIX: DERIVATION OF THE SHIFT IN THE
LOCATION OF THE REFOCUSED PULSE

The wave-field in the time domain is given by Eq. �11�.
When the function f is represented by a second-order Taylor
series in r /R and integrated over all the receivers, we obtain
the following expression for the back-propagated wave-field:

P�r,t� = 2�f�t� + ḟ�t�I1 + 1
2 f̈�t�I2, �A1�

where I1 and I2 are functions of r. We need to calculate this
wave-field at time t=0. We know that because of the sym-
metry of the receiver positions with respect to x=0, the peak
location will occur at x=0. Hence, we can set x=0 in Eq.
�A1�. The integrals I1 and I2 are given by

I1 = �
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. �A3�

In I2 we consider only terms up to second order in z. If we
insert these expressions for I1 and I2 in Eq. �A1� and set t
=0, we obtain the wave-field as a quadratic function of z:

P�z,t� = A + Bz + Dz2, �A4�
where
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A = ��2f�0� + 2Rḟ�0�	 
c

cc�

 − R2 f̈�0�	 
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cc�

2� , �A5a�
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sin 2�
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Because the source pulse is symmetric with respect to the

origin, its first derivative vanishes at time t=0; hence ḟ�0�
=0. The maximum value of the wave-field P�z , t� at t=0 can
be found by equating its first z-derivative to zero. The solu-
tion for z gives the shift in the location of the refocused
pulse. This shift is 
z=−B /2D where the values of B and D
at t=0 are given by

B = f̈�0��2 sin �

c�
�R	 
c

cc�

 , �A7�

D = f̈�0��	 �

2c�2
K1� . �A8�

The corresponding value of 
z is


z =
− 2��sin ��/��R�
c/c�

�1 + �sin 2��/2�� − �
c/c��1 − �sin 2��/2��
. �A9�

The term f̈�0� drops out in the expression for 
z, which
indicates that the shift in the location of the refocused pulse
is independent of frequency. For small values of �
c /c�, we
can ignore the second term in the denominator and hence


z �
− 2��sin ��/��R�
c/c�

�1 + �sin 2��/2��
. �A10�
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