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ABSTRACT

We study the appraisal problem for the joint inversion of seismic and controlled
source electro-magnetic (CSEM) data and utilize rock-physics models to integrate
these two disparate data sets. The appraisal problem is solved by adopting a Bayesian
model and we incorporate four representative sources of uncertainty. These are un-
certainties in 1) seismic wave velocity, 2) electric conductivity, 3) seismic data and 4)
CSEM data. The uncertainties in porosity and water saturation are quantified by a
posterior random sampling in the model space of porosity and water saturation in a
marine one-dimensional structure. We study the relative contributions from the four
individual sources of uncertainty by performing several statistical experiments. The
uncertainties in the seismic wave velocity and electric conductivity play a more sig-
nificant role on the variation of posterior uncertainty than do the seismic and CSEM
data noise. The numerical simulations also show that the uncertainty in porosity is
most affected by the uncertainty in the seismic wave velocity and that the uncertainty
in water saturation is most influenced by the uncertainty in electric conductivity.
The framework of the uncertainty analysis presented in this study can be utilized to
effectively reduce the uncertainty of the porosity and water saturation derived from
the integration of seismic and CSEM data.

Key words: Controlled source electro-magnetic, Metropolis-Hastings algorithm,

Uncertainty analysis.

INTRODUCTION an effective complementary tool when combined with seismic

exploration.

The controlled source electro-magnetic (CSEM) method has
been studied for the last few decades (Chave and Cox 1982;
Cox et al. 1986) and its application for the delineation of a
hydrocarbon reservoir has recently been discussed (Constable
and Srnka 2007). Currently, there is an increasing interest in
the integration of the seismic and CSEM methods in deep ma-
rine exploration (Harris and MacGregor 2006). Although the
CSEM method has less resolution than the seismic method, it
provides extra information about, for example, electric con-
ductivity. This property is important for the economic evalua-
tion of reservoirs. Therefore, the CSEM method is considered
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The seismic and CSEM methods are disparate exploration
techniques that are sensitive to different medium properties:
the seismic method is sensitive to density and seismic wave
velocity and the CSEM method to electric conductivity. There
have been several approaches for joint inversion that integrate
disparate data sets. Some of them assume a common structure
(Musil, Maurer and Green 2003) or similar structural vari-
ations of different medium properties (Gallardo and Meju
2004; Hu, Abubakar and Habashy 2009). More recently, the
application of rock-physics models for joint inversion has been
studied (Hoversten et al. 2006). Rock-physics models enable
us to interrelate seismic wave velocity and electric conduc-
tivity with the reservoir parameters such as porosity, wa-
ter saturation, or permeability. The main advantage of the
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approach is that these reservoir parameters have great eco-
nomic importance. The application of a rock-physics model is
limited, however, by the fact that such a model is site-specific
and there are not yet any universal solutions to the inverse
problem. Furthermore, even for a particular area of interest,
any rock-physics model is generally described as a cloud of
samples. These limitations imply that joint inversion via a
rock-physics model intrinsically necessitates a stochastic ap-
proach. Stochastic inversion has recently been studied for seis-
mic inversion (Spikes et al. 2007) and joint inversion of seismic
and CSEM data (Chen et al. 2007). The contributions of rock-
physics model uncertainties are also being studied (Chen and
Dickens 2009). Generally, the accuracy of joint inversion of
seismic and CSEM data via rock-physics models is limited by
the uncertainty of the rock-physics model as well as by data
noise. The contribution of seismic and CSEM data noise on
the joint inversion via rock-physics models, however, has not
yet been studied. Moreover, it is not yet understood whether
rock-physics model uncertainties play a more significant role
than data noise on the joint inversion process.

We aim to investigate the relative contribution of different
sources of overall uncertainty that arise when we use rock-
physics models for joint inversion. These include seismic data
noise, CSEM data noise and uncertainties of rock-physics
models. We implement several numerical experiments that
reflect scenarios we may encounter in practice and compare
the uncertainties in the inferred parameters. The comparison
reveals the relative contributions of different sources of un-
certainty and we can utilize the procedure to more effectively
reduce the uncertainty, depending on whether our interests

focus on porosity or water saturation.

METHODOLOGY

The goal of geophysical inversion is to make quantitative in-
ferences about the earth from noisy data. There are mainly
two different approaches for attaining this goal: in one, the
unknown models are assumed to be deterministic and one uses
inversion methods such as Tikhonov regularization (Tikhonov
and Arsenin 1977; Aster, Borchers and Thurber 2005); in the
other, all the unknowns are random and one uses Bayesian
methods (Bayes 1763; Ulrych, Sacchi and Woodbury 2001;
Tarantola 2005). The object of this project is to provide a
framework for Bayesian joint inversion that leads to model
estimates and their uncertainties.

The connection between geophysical data d and model m is

written as

d=L[m]+e (1

where L denotes a linear or non-linear operator that maps
the model into the data and e represents data measurement
error. The details of the operator are presented in the mod-
elling procedure section. Bayes’ theorem relates conditional
and marginal probabilities of data d and model m as follows
(Tarantola 2005):
_ w(m) f(djm)
7(d)

where 7(m) is a prior probability in the sense that it does

m(m|d) o 7r(m) f(d|m), (2)

not take into account any information about data d; f(d|m)
is likelihood of data d, given model m; and 7 (m|d) is the
posterior probability density that we are inferring.

Hierarchical Bayesian model

The P-wave velocity and electric conductivity are derived
from two reservoir parameters: porosity and water saturation.
These reservoir parameters are the target model parameters in
this project. There are two layers of likelihood probabilities
that have hierarchical dependency. The variables and their hi-
erarchical dependencies are displayed in Fig. 1. The uppermost
row represents prior probabilities of the reservoir parameters:
the porosity (my) and water saturation (mg,). The middle
row denotes the likelihoods of the P-wave velocity (dy,) and
logarithm of electric conductivity (d,,). Finally, the lower-
most row represents the likelihoods of seismic (d;) and CSEM
data (d.).

Within the Bayesian framework, the prior probabilities
of the reservoir parameters are expressed as T po (M)
and 7 (mg, ). Likewise, four possible likelihoods are
expressed as follows: the likelihoods of the P-wave ve-
locity  f(dv,|mg, mg,), logarithm of electric conductivity
f(ds,Imy, mg,), seismic data f(d|dy,) and CSEM data
f(d.lds,). Therefore, the posterior probabilities (7 ,0s) of the
porosity and water saturation are derived from the prior
(7 prior) and likelihood (f) probabilities as follows:

ﬂpost(m(ba mg, |de7 dUg’ ds7 de)
X ”prior(mtb)nprior(mSw) f(de |m¢, mSw)
x f(ds, Imy, mg,) f(ds|dvy) f(de|do, ). (3)

Equation (3) indicates that the posterior probability is pro-
portional to the product of individual priors and likelihoods.

In statistics, the central limit theorem states that the sum
of a sufficiently large number of identically distributed inde-
pendent random variables follows a normal distribution. This
implies that the normal distribution is a reasonable choice for
describing probability. Therefore, throughout this project, we
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Figure 1 A hierarchical dependency structure represented by a di-
rected graph. The nodes represent stochastic variables, the dashed
arrows represent probability dependencies and the solid arrows rep-

resent deterministic relationships. 1 and ¥ denote expectation vec-
tors and covariance matrices, respectively. my and mg, represent two
reservoir parameters: medium porosity and water saturation. dy, and
d,, denote the P-wave velocity and logarithm of electric conductivity,
respectively. ds and d, represent two different data sets: seismic and
CSEM data.

assume that the priors and likelihoods generally follow mul-
tivariate Gaussian distribution with expectation vector u and
covariance matrix X, such that

1

fx) = (27 )rdet(z)

exp [—%(x — TR - m] "
where x denotes data or model and 7 denotes the dimension
of x. Equation (4) expresses the general form of the probabil-
ity function used in this project and the covariance matrices
for individual prior and likelihoods are discussed later. Note
that since the forward operations in this project (solid arrows
in Fig. 1) are non-linear, the posterior distributions are not
necessarily Gaussian.

Prior and likelihood model

In the Bayesian context, there are several approaches to rep-
resent prior information (Scales and Tenorio 2001). The prior
model encompasses all the information we have before the

data sets are acquired. In practice, the prior information in-
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cludes the definition of the model parameters, geologic in-
formation about the investigation area and preliminary in-
vestigation results. Therefore, the prior model is the starting
point of a Bayesian approach and we expect to have a pos-
terior probability distribution with less uncertainty than the
prior probability. The prior model plays an important role in
Bayesian inversion by eliminating unreasonable models that
also fit the data (Tenorio 2001). Obvious prior information
we have is the definition of the porosity and water satura-
tion, such that 0 <my, < 1and 0 < ms,, < 1. This definition
implies that the prior distributions of the porosity and water
saturation are intrinsically non-Gaussian. Furthermore, there
can be several fluid phases within the pore space, and the prob-
ability distribution of each fluid saturation can be described by
a different distribution such as Dirichlet distribution (Gelman
et al. 2003). In this study, we consider two fluid phases (gas
and water) and assume that the variance of the water satura-
tion is sufficiently small to warrant the assumption of Gaus-
sian a priori probability density functions. We aim to assess
the porosity and water saturation of the subsurface medium
that has several layers. Generally, these reservoir parameters
of each layer are correlated and have different variances. The
assessment of the correlation and variance requires detailed
analysis of geology and well logging data. In this study, we
focus our study on the formulation of Bayesian joint inversion
and, as a starting point, regard that the reservoir parameters
of each layer are uncorrelated and have identical variance.
In other words, we assume that the covariance matrices X
and X5, (Fig. 1) are diagonal and that the diagonal elements
within each covariance matrix are identical.

For the hierarchical Bayesian model shown in Fig. 1, there
are four elementary likelihoods. Each of these likelihoods de-
scribes how well any rock-physics model or geophysical for-
ward modeling fits with the rock-physics experiment results or
the noisy observations. The details of the likelihood modelling
are covered in the modelling procedure section.

Markov-Chain Monte Carlo sampling

The assessment of the posterior probability requires great
computational resources and, in most cases, is still imprac-
tical for 3D inverse problems. Pioneering studies about the
assessment were performed for 1D seismic waveform inver-
sion (Mosegaard et al. 1997; Gouveia and Scales 1998). The
posterior model space of this project encompasses porosity
and water saturation of several layers. We use a Markov-
Chain Monte Carlo sampling method to indirectly estimate
the posterior probability distribution of the porosity and water
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saturation. In this project, the goal of the Markov-Chain
Monte Carlo sampling method is to retrieve a set of samples,
such that the sample distribution describes the joint poste-
rior probability of equation (3). The Markov-Chain Monte
Carlo sampling method is a useful tool to explore the space
of feasible solutions and to investigate the resolution or un-
certainty of the solution (Mosegaard and Sambridge 2002;
Sambridge et al. 2006). The Metropolis-Hastings algorithm
(Metropolis et al. 1953; Hastings 1970) and Gibbs sampler
(Geman and Geman 1984) are the most widely used samplers
for this purpose. We apply the Metropolis-Hastings algorithm
for the assessment of posterior probability. The details of the
Metropolis-Hastings algorithm are presented in Appendix A.

MODELLING PROCEDURES

The marine 1D model used in this research is shown in Fig. 2.
The target layer, a gas saturated sandstone layer, is located
between shale layers. The soft shale layer is modelled to have
the highest clay content and the gas saturated sandstone layer
to have the lowest clay content. The modelled values of the
porosities ¢, water saturations S,,, P-wave velocities V,, and
electric conductivities o, are summarized in Table 1. The mean
prior porosity s and water saturation pg, values are assumed

to be the modelled values.

Rock-physics likelihood modelling

Rock-physics models play a central role in the joint inver-
sion presented here. However, in many cases the rock-physics
models are site-specific and complicated functions of many

air

x 7

seismic source & receiver
sea Z= 1.5km

-] (@)
CSEM source & receiver

soft shale 2z=0.5km
gas saturated sandstone 2z =0.1km

hard shale

Figure 2 The employed marine 1D model. Seismic source and receiver
are located 10 m below the sea-surface. The CSEM source is located 1
m above the sea-bottom and the receiver is on the bottom. The earth is
modelled as four homogeneous isotropic layers: seawater, soft shale,
gas saturated sandstone and hard shale. The air and hard shale layer
are two infinite half-spaces. The thicknesses (z) of the layers between
the two half-spaces are fixed.

Table 1 The modelled values of porosity ¢, water saturation S, P-
wave velocities V), and electric conductivities o, of the 1D model
shown in Fig. 2. ¢, is the critical porosity. K4, Ko and Ky denote
the bulk modulus of the dry rock, mineral material and pore fluid,
respectively. wo is the shear modulus of the mineral material and
pw and pg are the density of the water phase and mineral material,
respectively. o, denotes the electric conductivity of the water phase
and 7 and 7 are the cementation and saturation exponents. CEC is the
cation exchange capacity. A detailed explanation on the rock-physics
parameters are presented in Appendix B.

Soft shale  Gas saturated sandstone Hard shale
¢ (%) 35 25 10
Sw (%) 90 10 50
V, (kmfs)  2.28 3.56 4.88
o, (S/m) 0.580 0.007 0.044
b (%) 60 40 40
K,, (MPa) 2.2 3.2 4.2
K, (MPa) 0.03 0.03 0.03
Ky (MPa) 16 36 40
o (MPa) 6 24 30
pulglee) 1 1 1
po (g/cc) 2.55 2.65 2.75
o (S/m) 3.33 3.33 3.33
m 2 2 2
n 2 2 2
CEC(C/kg) 10000 2000 6000

variables that include porosity, water saturation and clay con-
tent. Furthermore, there is an additional source of uncertainty
associated with the choice of the rock-physics model. The mo-
tivation of this research is not to develop rock-physics models
that better describe the earth and have smaller uncertainty.
Instead, it is to understand the contribution of rock-physics
model uncertainties on the overall uncertainty of joint inver-
sion. However, by comparing the posterior density functions
from different possible rock-physics models, we can deduce
which rock-physics model better fits the given lithology. In
this study, we utilize several empirical relations that are widely
accepted. The quantitative dependence of the P-wave velocity
and electric conductivity on porosity and water saturation is
presented in Appendix B.

As stated in Appendix B, the distribution of the P-wave
velocity is affected by several rock-physics parameters and,
in the scale of geophysical exploration, there is no statisti-
cal model that universally describes the distribution of the
P-wave velocity. The statistical description of P-wave velocity
is therefore site-specific and involves detailed analysis of well

logging data and laboratory experiments. The rough range
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of the P-wave velocity of the earth minerals is 2-10 km/s
(Mavko, Mukerji and Dvorkin 1998). In this study, we adopt
the Gaussian distribution for the modelling of uncertainty of
P-wave velocity. In contrast, considering that the electric con-
ductivity exhibits exponential variation in most geologic envi-
ronments (Palacky 1987), we assume that the electric conduc-
tivity follows a lognormal distribution. The P-wave velocity
and electric conductivity are derived from empirical relations
and Gaussian and log normal random numbers are thereafter
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added to the P-wave velocity and electric conductivity, re-
spectively, to account for the uncertainty in the rock-physics
model. Figures 3—6 show the simulated rock-physics models,
where the porosity and water saturation samples of each layer
is retrieved from the prior distributions. The distributions
for the P-wave velocity indicate that the velocity is strongly
dependent on the porosity and the contribution of the wa-
ter saturation is less significant. In contrast, the distributions
for the electric conductivity show that both the porosity and
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Figure 3 Simulated rock-physics model between porosity ¢ and P-wave velocity Vj,. Among the three layers, the P-wave velocity depends
least on the porosity in the soft shale layer. The quantitative dependence of the P-wave velocity on porosity is presented in Appendix B and

Table 1.
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Figure 4 Simulated rock-physics model between water saturation S,, and P-wave velocity V. The P-wave velocity depends less on the water

saturation than on the porosity. The quantitative dependence of the P-wave velocity on water saturation is presented in Appendix B and

Table 1.
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Figure 5 Simulated rock-physics model between porosity ¢ and electric conductivity o .. For each layer, increased porosity tends to accompany

larger electric conductivity. The quantitative dependence of the electric conductivity on porosity is presented in Appendix B and Table 1.
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Figure 6 Simulated rock-physics model between water saturation S, and electric conductivity o,. Among the three layers, the dependency of
the electric conductivity on the water saturation is strongest in the sandstone layer. The quantitative dependence of the electric conductivity on

water saturation is presented in Appendix B and Table 1.

water saturation influence the electric conductivity. Note that
the dependencies are different for each layer. The dependency
of the P-wave velocity on the porosity is weakest in the soft
shale layer and the dependency of the electric conductivity
on the water saturation is strongest in the sandstone layer.
These differential dependencies in the different layers play a
significant role in the joint inversion presented for this project.

We assume the likelihoods of the P-wave velocity
f(dv,Img, ms,) and logarithm of electric conductivity
f(ds, |my, mg, ) to follow the multivariate Gaussian distribu-

tion (equation (4)). Generally, the P-wave velocity and log-
arithm of electric conductivity of the layers are correlated
and have different variance. The assessment of the correla-
tion and variance requires a detailed analysis of geology and
well logging data, which are beyond the scope of this study.
For the evaluation of the likelihoods, we assume that the P-
wave velocity and electric conductivity of each layer (Fig. 2)
are independent. We model the covariance matrices Ty, and
X, (Fig. 1) as diagonal matrices whose diagonal elements are
constants.
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Seismic data likelihood modelling

There are many kinds of seismic data we can utilize: reflec-
tion data, traveltime data, amplitude versus offset or angle
data and full waveform data. The full waveform data are the
most general and encapsulate the largest amount of infor-
mation. Seismic migration is the most common approach for
handling full waveform data to reconstruct subsurface geom-
etry. The application of the full waveform inversion is limited
by its poor convergence speed. We use the waveform data
for the joint inversion of seismic and CSEM data because the
Monte Carlo method is effective for the least-squares misfit
optimization for the velocities (Jannane et al. 1989; Snieder
et al. 1989). Seismic waveform data are synthesized by a ray-
tracing algorithm (Docherty 1987) and we model the primary
reflections of the P-wave from the top and bottom bound-
aries of the target sandstone layer. There are many sources of
seismic noise in a marine environment: ambient noise, guided
waves, tail-buoy noise, shrimp noise, and side-scattered noise
(Yilmaz 1987). We model the seismic noise by adding band-
limited noise. The frequency band of the noise is between
10-55 Hz and the central frequency of the source wavelet is
30 Hz.

We assume that the seismic data likelihood probabil-
ity f(ds|dy,) follows the multivariate Gaussian distribution
(equation (4)). For the calculation of the likelihood, it is nec-
essary to evaluate the covariance matrix X (Fig. 1). For band-
limited noise, the covariance matrix follows from the power
spectrum of the bandpass filter and the resulting covariance
matrix is not diagonal; a row of the covariance matrix is a sinc
function. It is possible to derive the inverse covariance matrix
from the above described covariance matrix. However, the in-
verse covariance matrix is generally unstable and we need to
truncate the singular values of the covariance matrix, which
yields an inverse matrix that has no significant improvement
over the inverse of a diagonal matrix. We therefore approx-
imate the covariance matrix of a band-limited noise as the
covariance matrix of white noise. We model the covariance
matrix X (Fig. 1) as a diagonal matrix whose diagonal ele-

ments are constant.

Controlled source electro-magnetic data likelihood modelling

The CSEM signal measured at a receiver location comprises
three components. The first propagates through the solid
earth and contains information on the reservoir properties.
The second propagates through the seawater and attenuates

rapidly. It is therefore only significant near the transmitter.
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The third travels as a wave along the seawater-air interface
(air-wave) and decreases with increasing water depth. In this
project, the depth of the sea is 1.5 km and the air-wave is not
significant.

Even though the deep sub-sea environment has little cultural
noise, the CSEM measurements are not free from noise. These
noise sources include the magneto-telluric signal, streaming
potential and instrument noise. The magneto-telluric signal
is significant at frequencies lower than 1 Hz. The streaming
potential is generated by seawater movement. The natural
background noise at frequencies around 1 Hz is about 1 pV/m
(Chave and Cox 1982) and its influence can be minimized by
using a stronger transmitter. The instrument noise is more
important and mainly comes from the transmitter amplifier
or receiver electrodes. At a lower frequency range, the noise
from the amplifier and electrodes is proportional to 1/f and
1//F, respectively. On the other hand, the instrument noise
is saturated at the higher frequency range, i.e., Johnson noise
limit. Furthermore, the CSEM data quality is influenced by the
positioning or aligning error of the transmitter and receiver
locations/directions.

The CSEM data we utilize consists of the real and imagi-
nary parts of the CSEM signal. We design the CSEM noise
from the amplitude of the CSEM response and then add the
noise to the real and imaginary parts of the response. The
CSEM noise is categorized as systematic and non-systematic
noise as shown in Fig. 7. The systematic noise includes instru-
ment noise and positioning error. We assume the systematic
noise to be proportional to the amplitude of the CSEM sig-
nal whereas the non-systematic noise is independent of the
signal. A realization of noisy CSEM data is shown in Fig. 8,
where the systematic noise is 5% of each noise-free amplitude
and the non-systematic noise is 5 x 10~'* V/m. The CSEM
signal decreases with frequency and the CSEM noise is more
obvious.

We assume the CSEM data likelihood probability f(d.|d,,)
follows the multivariate Gaussian distribution (equation (4)).
For the calculation of the likelihood, we assume that the
CSEM data noise is independent. We model the covariance
matrix ¥, (Fig. 1) as a diagonal matrix. Assuming that the
systematic and non-systematic noise is uncorrelated, the diag-
onal element of the covariance matrix that corresponds to i-th

datum (0?) is derived as
Uil(de) = Uiz(gsys) + Uil(gnonsys)v (5)

where g4y, and &0nsys denote the systematic and non-systematic

noise, respectively. Note that o? (eys) values decrease at
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616 M.]. Kwon and R. Snieder

-13
x 10
4k i
o
E ’
S & 0 0o 0 o
N [AAY g o
R ~ya * !
% :\41 N/ . ,ﬁ\ i—‘*\*'u * *\ ,*\ ,o P [N ° [ria) g g’
5 0 + *\4: \‘/' o ¥ 2 + SN ‘D_+,+~5f Rl <7
5 i o o ¥
=] o
o, o o N
E o
© o
o
4+ i
o
L . . . L
0.1 1 10

frequency (Hz)

Figure 7 Two different types of CSEM noise: systematic noise (open dots) and non-systematic background noise (dashed curve). The systematic
noise decreases with frequency. In contrast, the non-systematic noise is independent of frequency.
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Figure 8 Electric field amplitude and phase response of a noise free (solid and dashed curves) and noise contaminated case (black and open
dots). The exact electric conductivities used for the CSEM data calculation are shown here. The CSEM noise is significant in the high-frequency

range.

the larger frequency whereas 07 (gqonsys) is independent of
frequency.

UNCERTAINTY ANALYSIS
Histogram analysis of posterior distributions

We perform MCMC sampling to describe the posterior prob-
ability distribution (equation (3)). The random sampling is
performed within a six-dimensional model space that accounts

for porosity or water saturation of soft shale, sandstone and
hard shale layers (Fig. 2). The initial sample is drawn from the
prior distribution and subsequent samplings are performed by
the algorithm summarized in Appendix A. An example of the
random sampling is shown in Fig. 9, which shows subsequent
samples of the water saturation of the sandstone layer. In the
given example, the initial sample is far away from the range of
the posterior distribution and the initial movement of random
samples toward posterior distribution, the burn-in stage, is
clearly shown (shaded area). We exclude those samples from
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Figure 9 Samples of the water saturation (S,,) of the sandstone layer for subsequent samples with sampling number 7. In the initial stage of
random sampling (shaded area), the random sample is located away from the modelled value (dashed line) and shows gradual approach toward
the posterior distribution (burn-in process). We discard the burn-in stage from the calculation of the sample variance.
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Figure 10 Convergence of the variance of the water saturation (S,,) as a function of the total number of samples. The burn-in samples are

excluded from the calculation of the sample variance. For a sufficiently large sampling number 7, the variance of the random samples converges

to the posterior variance value (dashed line).

assessing the posterior distribution. For the diagnosis of the
convergence of the random sampling toward the posterior
distribution, we monitor the variance of the random samples
as a function of the total number of samples (Fig. 10). For
sufficiently large sampling number 7, the variance of the ran-
dom samples converges and we use this value for the variance
of the posterior distribution.

The random samples of the porosity and water saturation
are drawn from the posterior probability distribution of three
different cases: using seismic data only, using CSEM data only
and using both seismic and CSEM data. The uncertainty levels

applied to the comparison are summarized as the base state
variances in Table 2. The posterior distributions of the poros-
ity and water saturation of the target sandstone layer are sum-
marized as histograms, as shown in Figs 11 and 12. Note that
for the given uncertainties of the rock-physics model and data
noise levels, the histograms show that the models based on
seismic data or CSEM data alone weakly constrain porosity
and water saturation. However, the histograms from the joint
interpretation exhibit a narrower sample distribution of the
porosity and water saturation. The figures also show that the
seismic data are more sensitive to the porosity than to the wa-
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Table 2 Two representative uncertainty levels used in the project.

Type of uncertainty source

Base state variance

Reduced state variance

Seismic wave velocity (0.1 km/s)? (0.03 km/s)?

Electric conductivity (0.11logqo (S/m))? (0.03 log,q (S/m))?
Seismic noise (30% of max. amplitude)?>  (10% of max. amplitude)?
CSEM noise (systematic) (5% of each amplitude)? (2% of each amplitude)?
CSEM noise (non-systematic) (S x 10714V /m)? (2 x 107 V/m)?

L seismic data |

0 0.2 0.4 0.6

L CSEM data |
P e e e e e e e e e S | 1

0 0.2 0.4 0.6

L seismic + CSEM data |

0 0.2 0.4 0.6

¢

Figure 11 Histograms of posterior porosity (¢) samples of the sandstone layer. Vertical lines indicate the true porosity values.

T
L seismic data |
e e e T e s s e e e S S 1 1
0 0.2 0.4 0.6
T
| CSEM data |
S iy I o e e | |
0 0.2 0.4 0.6
T T
| seismic + CSEM data |
MM I I I
0 0.2 0.4 0.6

Sw

Figure 12 Histograms of posterior water saturation (S,,) samples of the sandstone layer. Vertical lines indicate the true water saturation values.

ter saturation. This is partly due to the rock-physics models in
Figs 3 and 4, which show that the P-wave velocity has weaker
correlation with the water saturation than with porosity. The
relatively poor resolution from the CSEM data is attributed

to the fact that the sandstone layer is electrically shielded by
the more conductive overburden (soft shale layer). These ex-
amples illustrate the strength and limitation of both seismic
and CSEM methods and explain the motivation of the joint
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interpretation of seismic and CSEM data. The histograms of
the joint interpretation show smaller posterior uncertainty
than do the single interpretations. The reduction of uncer-
tainty is more pronounced for water saturation than for
porosity.

Next we compare the histograms that describe the posterior
probabilities of different layers. Figure 13 shows the joint pos-
terior distributions of the porosity of three layers. The poste-
rior distribution for the soft shale layer is less constrained than
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that of the other layers. This is a consequence of the relatively
weak correlation between the porosity and P-wave velocity
of the soft shale layer (Fig. 3). Despite the stronger sensitivity
of the seismic and CSEM methods on the properties of the
uppermost layer, the weaker correlations of the rock-physics
model cause a larger variance of the porosity samples. The
joint posterior distributions of the water saturation (Fig. 14)
also exhibit that the posterior distribution for the soft shale
layer is less constrained than for the sandstone layer and that

T
L soft shale |
| | S e o o i 0 T e |
0 0.2 0.4 0.6
T
L sandstone |
1 __A_FFHM 1 1
0 0.2 0.4 0.6
T
| hard shale |
Ml_l_ﬂ—ﬂ—hﬁﬁ‘x 1 1 1
0 0.2 0.4 0.6

¢

Figure 13 Histograms of posterior porosity (¢) samples of the three layers obtained from joint inversion of seismic and CSEM data (base

uncertainty level). Vertical lines indicate the true porosity values.

L soft shale |
1 1 B S S e e e e e 1 T s o e
0.4 0.6 0.8 1
T
| sandstone |
MM I I I
0 0.2 0.4 0.6
T
| hard shale |
SR DS s S S e S e S S S S S S N S e e S S S e S e e S s e e S S ey S Y
0.2 0.4 0.6 0.8

Sw

Figure 14 Histograms of posterior water saturation (S,,) samples of the three layers obtained from joint inversion of seismic and CSEM data
(base uncertainty level). Vertical lines indicate the true water saturation values.
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the rock-physics model uncertainty has more significance on
constraining the posterior distribution than the resolution of
the seismic and CSEM methods.

Finally, we study two representative uncertainty levels: a
base state and a new state with reduced data uncertainties
(Table 2). Note that the uncertainty of the electric conduc-
tivity is defined on a logarithmic scale. The seismic data un-
certainty is defined as a ratio from the maximum amplitude
value and the CSEM data uncertainty is defined as a sum of
systematic and non-systematic noise. Figures 13 and 14 rep-

resent the posterior probability for the base uncertainty level.

The histograms for the reduced uncertainty level are shown
in Figs 15 and 16. The reduced uncertainty level leads, of
course, to a sharper posterior probability distribution than
the base state and thus increases the accuracy in the estimates
of porosity and water saturation. This stronger constraint is
more obvious for porosity than for water saturation. This is
due to the smaller resolution of the CSEM method compared
to the seismic method.

The correlation of reservoir parameters between differ-
ent layers can be studied by cross-plot analysis. An exam-

ple of a cross-plot analysis is shown in Fig. 17, where the

T
L soft shale |
| | ﬂm |
0 0.2 0.4 0.6
T
L sandstone |
1 1 1 1 1
0 0.2 0.4 0.6
T
| hard shale |
1 1 1 1
0 0.2 0.4 0.6

¢

Figure 15 Histograms of posterior porosity (¢) samples of the three layers obtained from joint inversion of seismic and CSEM data (reduced

uncertainty level). Vertical lines indicate the true porosity values.

L soft shale |
I I I R — e m
0.4 0.6 0.8 1
T
| sandstone |
j"% | 1 1 1
0 0.2 0.4 0.6
T
| hard shale |
! BN o, o s e 1 e S e ST el
0.2 0.4 0.6 0.8

Sw

Figure 16 Histograms of posterior water saturation (S,,) samples of the three layers obtained from joint inversion of seismic and CSEM data

(reduced uncertainty level). Vertical lines indicate the true water saturation values.
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Figure 17 Cross-plot of posterior water saturation samples of the
soft shale and sandstone layers. The histograms of the corresponding
samples are shown in Fig. 16. The vertical and horizontal lines indicate
the true water saturation values. The correlation coefficient between
the two random variables is negative (dashed line).

posterior water saturation samples of the soft shale and sand-
stone layers are cross-plotted. The example demonstrates that
the water saturation of the two layers has a negative corre-
lation, which arises from the weak depth resolution of the
CSEM exploration. Therefore, the correlation between the
two layers becomes weaker as the thickness of the sandstone
layer increases. The weaker correlation of a reservoir param-
eter between different layers generally accompanies reduced
uncertainty of the reservoir parameter. The correlation anal-
ysis can help diagnose the trade-off between different model

parameters.

Different scenarios for uncertainty reduction

In the previous section, we presented histograms that charac-
terize the posterior uncertainty. As stated before, we assume
the multivariate Gaussian distribution (equation (4)) for the
calculation of prior and likelihood. There are however several
factors that make the distribution of the posterior samples
non-Gaussian. First, the porosity or water saturation has val-
ues between 0-1. Second, the porosity sampling is bounded by
the critical porosity ¢.. The critical porosity is the threshold
value between the suspension and the load-bearing domain
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and denotes the upper porosity limit of the range where the
rock-physics model can be applied (Mavko et al. 1998). The
critical porosity values we apply for the soft shale, sandstone
and hard shale layer are 0.6, 0.4, and 0.4, respectively. These
bounds can lead to skewed sample distributions. Furthermore
the posterior distributions do not necessarily follow the Gaus-
sian distribution because of the non-linearity of the forward
models. The posterior uncertainty can generally be assessed by
sample mean and sample variance. For reasons of clarity, we
use the Gaussian curves for the representation of the sample
mean and sample variance.

In this project, we model four factors of uncertainty: rock-
physics model uncertainties of the P-wave velocity and elec-
tric conductivity and noise of the seismic and CSEM data.
We discussed the posterior probabilities of the porosity and
water saturation for the base and reduced uncertainty levels
(Table 2) in the previous section (Figs 13-16). We perform
the following numerical experiments to quantify the contri-
butions of the four possible sources of uncertainty. The initial
simulation is performed based on the base uncertainty level.
For analysis of the contributions of each of the factors on the
posterior uncertainties, six subsequent simulations are per-
formed with reduced uncertainty levels of one or two of the
four factors of uncertainty. We perform the last simulation
based on reduced uncertainty levels of all factors of uncer-
tainty (reduced level). These eight numerical experiments are
summarized in Table 3. We compare the posterior distribu-
tions from different treatments with the base and reduced
levels and deduce how much a treatment contributes to the
overall change of the sample variances. The posterior distri-
butions of the porosity and water saturation are shown in
Figs 18-23.

Table 3 Eight numerical experiments for the analysis of the contribu-
tions of four possible factors of uncertainty. Two states of uncertainty
for the individual factors are listed in Table 2.

Uncertainty of the individual factors

Base level None of the factors are reduced

Treatment-1 Only reducing P-wave velocity uncertainty
Only reducing electric conductivity uncertainty
Only reducing seismic noise level

Only reducing CSEM noise level

Treatment-2

Treatment-3

Treatment-4

Treatment-5 Reducing P-wave velocity uncertainty
and seismic noise level

Treatment-6 Reducing electric conductivity uncertainty
and CSEM noise level

Reduced level Reducing all of the four uncertainty factors
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Figure 18 Posterior probability distributions of porosity ¢ of the
sandstone layer. The distributions from treatments 1 and 2 (Table
3) are compared with those from the base and reduced levels. Vertical
line indicates the true porosity value.
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Figure 19 Posterior probability distributions of water saturation S,,
of the sandstone layer. The distributions from treatments 1 and 2
(Table 3) are compared with those from the base and reduced levels.
Vertical line indicates the true water saturation value.
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Figure 20 Posterior probability distributions of porosity ¢ of the
sandstone layer. The distributions from treatments 3 and 4 (Table
3) are compared with those from the base and reduced levels. Vertical
line indicates the true porosity value.
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Figure 21 Posterior probability distributions of water saturation S,
of the sandstone layer. The distributions from treatments 3 and 4
(Table 3) are compared with those from the base and reduced levels.
Vertical line indicates the true water saturation value.
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Figure 22 Posterior probability distributions of porosity ¢ of the
sandstone layer. The distributions from treatments 5 and 6 (Table
3) are compared with those from the base and reduced levels. Vertical
line indicates the true porosity value.
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Figure 23 Posterior probability distributions of water saturation S,
of the sandstone layer. The distributions from treatments 5 and 6
(Table 3) are compared with those from the base and reduced levels.
Vertical line indicates the true water saturation value.
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Figures 18 and 19 show the posterior probability distribu-
tions acquired after performing the treatments 1 and 2. When
we reduce uncertainty levels of the P-wave velocity or elec-
tric conductivity, the resultant posterior distributions exhibit
smaller sample variances than the base level. Furthermore,
the sample means are generally closer to the modelled values
as we reduce the individual uncertainty levels. The proba-
bility density distribution for the porosity of the sandstone
layer (Fig. 18) reveals that the P-wave velocity uncertainty
plays a significant role on the overall uncertainty reduction
of the porosity and the contribution of the electric conductiv-
ity uncertainty is limited. In contrast, Fig. 19 shows that the
overall uncertainty variation of the water saturation is more
strongly influenced by the uncertainty of the electric conduc-
tivity than by the uncertainty of the P-wave velocity. This is
consistent with the simulated rock-physics models shown in
Figs 3-6. From the rock-physics models, we can deduce that
the porosity strongly influences both the P-wave velocity and
electric conductivity. The rock-physics models also show that
the water saturation strongly influences the electric conduc-
tivity while its influence on the P-wave velocity is limited.

The posterior probability distributions for treatments 3 and
4 are shown in Figs 20 and 21. When we reduce the noise lev-
els of the seismic or CSEM data, the improvements of the
posterior uncertainties of the porosity and water saturation
are much less significant than the improvements due to the re-
duction of rock-physics model uncertainties. This shows that
the overall uncertainty of the porosity and water saturation is
more influenced by the rock-physics model uncertainties than
by the noise of the seismic or CSEM data. The figures also
show that for the given range of data noise, the seismic data
noise reduction yields a more precise estimate than when the
CSEM data noise is reduced.

Figures 22 and 23 show the posterior probability distribu-
tions for treatments 5 and 6. Compared to the single improve-
ment cases, it is clear that the combined improvements give
better assessments about the porosity and water saturation.
The probability density distributions shown in Figs 22 and 23
are similar to the distributions shown in Figs 18 and 19. This
implies that the posterior uncertainty variations from the com-
bined improvements are mainly governed by the improvement
of rock-physics model uncertainties and the contributions of
the seismic and CSEM data noise are less significant.

The posterior probability distributions shown in Figs 18-23
are summarized in Table 4. The comparison of the variance
values clearly show that the reductions of the sample vari-
ances of the porosity and water saturation are most strongly
influenced by the uncertainty of the P-wave velocity and elec-
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Table 4 Sample variances S* of porosity ¢ and
water saturation S, of the sandstone layer. The
details about the treatments are in Table 3.

Sample variance (x 1073) S% () $2 (S.,)
Base level 0.560 1.997
Treatment-1 0.041 1.456
Treatment-2 0.516 0.205
Treatment-3 0.501 1.865
Treatment-4 0.532 1.728
Treatment-5 0.039 1.251
Treatment-6 0.498 0.198
Reduced level 0.038 0.117

tric conductivity, respectively. The contributions of the rock-
physics model uncertainties on the posterior uncertainties are
generally larger than those of the seismic and CSEM data
noise. The numerical experiments suggest different ways of
accomplishing uncertainty reduction depending on whether
our interests focus on the porosity or water saturation. When
porosity is our prime concern, we can effectively accomplish
uncertainty reduction by improving the P-wave velocity model
and by suppressing the seismic data noise. On the other hand,
if we need a more accurate assessment of water saturation, the
acquisition of more detailed electric conductivity information
and the suppression of CSEM data noise are preferred.

Note that the above assessments are based on marginal
analysis of posterior probability, and a possible correlation
between different uncertainty factors is ignored. This can be
misleading in the presence of strong correlation. The correla-
tion between uncertainty factors can be analysed by the full
factorial experiment (Fisher, Bennett and Yates 1990) that re-
quires 2” treatments, where # is the number of uncertainty

factors.

CONCLUSIONS

We have shown that the posterior probability random sam-
pling based on the Metropolis-Hastings algorithm is capable
of assessing the multi-dimensional probability distribution of
porosity and water saturation. We have also shown that the
joint inversion of the seismic and CSEM data can be achieved
by introducing rock-physics models that interconnect the P-
wave velocity and electric conductivity. There are four rep-
resentative sources of uncertainty that influence the posterior
probability density of porosity and water saturation. These

uncertainties are related to seismic wave velocity, electric
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conductivity, seismic data and CSEM data. Even when sin-
gle interpretations poorly constrain the posterior distributions
of porosity and water saturation, the distributions from the
joint interpretation are well constrained and exhibit reduced
uncertainty.

Assuming two levels of overall uncertainty, we study the
relative contributions from the four individual sources of un-
certainty. The numerical simulations show that rock-physics
model uncertainties play a more significant role on the overall
uncertainty variation than do seismic and CSEM data noise.
The numerical experiment also suggests different ways of
accomplishing uncertainty reduction depending on whether
our interests focus on porosity or on water saturation. When
porosity is our prime concern, we can effectively accomplish
uncertainty reduction by acquiring more precise P-wave ve-
locity information and suppressing the seismic data noise. On
the other hand, if we need a more accurate assessment of water
saturation, the acquisition of more detailed electric conduc-
tivity information and the suppression of CSEM data noise
are desirable.

We emphasize that the conclusions explained above depend
on the parameters chosen in this project. Furthermore, there
are many sources of uncertainty that we do not take into
account such as lithological variations, variation of miner-
alogical composition of clay and depth of layers. If we include
more of the data uncertainties, the balance between the un-
certainties in the seismic wave velocity or electric conductivity
and seismic or CSEM data noise can, therefore, be changed.
The methodology of the uncertainty analysis presented in this
project can, however, be extended to include those parameters
and their uncertainties. The employed method can be used for
experimental design and for targeting the source of the error
that contributes most to the posterior uncertainty.
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APPENDIX A: METROPOLIS-HASTINGS
ALGORITHM

The Metropolis-Hastings algorithm (Metropolis e al. 1953;
Hastings 1970) is a method for generating a sequence of sam-
ples from a probability distribution that is difficult to sample
directly. The actual implementation of the algorithm is com-
prises of the following steps.

1 Pick an initial sample m,,., € R" andsetk =1, mk = My
2 Setk — k+ 1.
3 Draw a proposal sample my,,, € R” from the proposal dis-

tribution g(mye,, my,,,) and calculate the acceptance ratio

a(m m,,,,) = min |:1 T post (M prop )G (M 0, mpreu)]
prevs prop) — ’ .

npost(mprev )q(mprev B mprop)

(A1)

4 Draw ¢ € [0, 1] from the uniform probability density.

k) (k) —

5 If a(Mypepy Myy0p) > 2, set m*) = my,,,; otherwise, m* =
Myyey.
6 When k is the desired sample size, stop; otherwise, repeat

the procedure starting with step (2).

We choose a Gaussian distribution as a proposal distribution
as follows:

my,op ~ N(mprev, CT,'ZI) s (A2)

where the variances o7 describe the probabilistic sampling step
of the model parameters during the random simulation. If o
is too large, the drawn my,,,, is practically never accepted. On
the other hand, if o7 is too small, a proper sampling of the
distribution requires a prohibitively large sample set. A good
rule of thumb is that roughly 20-30% of all m,,,, should be
accepted (Kaipio et al. 2000).
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APPENDIX B: ROCK-PHYSICS MODELS
OF THIS STUDY

P-wave velocity V, is defined as a function of bulk modulus
K, shear modulus i and density p, such that

K+1%
v, = | — 3" (B1)
0

The bulk modulus K is related to porosity ¢ and water sat-
uration S,,. For a fluid saturated medium, the bulk modulus
is given by Gassmann’s equation (Gassmann 1951; Han and
Batzle 2004) as follows:

(1-%)

¢ 1-¢ Ka~’

Ky Ko K2

K=K;+ (B2)
where Ky, Ky and K are the bulk modulus of the dry rock,
mineral material and pore fluid, respectively. We model two
phases of pore fluid: water and gas. A mixture of two different
pore fluids can be regarded as an effective fluid model and the
bulk modulus is derived from Wood’s equation (Wood 1955;
Batzle and Wang 1992) as follows:

1 Sw 1-=S8,

2w B3
it kot (B3)

where K,, and K, are the bulk modulus of the water and gas
phases. We also relate the bulk modulus of the dry rock Ky

and shear modulus u with porosity ¢ as follows:

K, = Ko (1 _ f) (B4)
/L:Mo(l—%), (B5)

where g is the shear modulus of the mineral material and
¢, is the critical porosity that is the threshold porosity value

between the suspension and the load-bearing domain. Finally,
we model the dependence of density p on porosity and water

saturation as:

P =¢Supw + (1 —)po, (B6)

where p,, and pg are the density of water phase and mineral
material, respectively.

The relationship between the reservoir parameters and elec-
tric conductivity is first given by Archie’s second law (Archie
1942), which describes electric conductivity in clean sands. In
fact, electric conductivity in shaley sands is complicated by
the presence of clays and is described by the Waxman-Smits
formula (Waxman and Smits 1968):

BO,
5 ] , (B7)

O, = d)mS:) [Jw +

where 7 is the cementation exponent, # is the saturation ex-
ponent and o, is electric conductivity of the pore fluid. The
parameter B is an equivalent counterion mobility and Q, is
the excess of surface charge per unit pore volume. Parameter
B is given empirically at 25°C by

B =B, [1 — 0.6 exp (— 0'((7)")13” ’ (BS)

where o, is in S/m and the maximum counterion mobility
By is given by 4.78 x 10~ m?/V/s (Revil, Cathles and Losh
1998). Parameter Q is related to the mineral density po (in

kg/m’) and the cation exchange capacity (CEC) by

1-9¢
¢

The cation exchange capacity is only significant for clay miner-

Qv = po CEC. (B9)

als and the variation of cation exchange capacity for different
clay minerals is dramatic.
The modelled values of each rock-physics parameters intro-

duced above are summarized in Table 1.
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