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Abstmct. The inverse problem where one wants to estimate a continuous model with 
infinitely many degrees of freedom from a finite data set is necessarily ill-posed. Although 
Some examples exist of exact nonlinear inversion schemes for infinite data sets, there exists 
apart from data-fitting procedures no theory for nonlinear inversion that lakes into account 
that a real data set is tinite. A nonlinear perturbation theory is presented for the optimal 
determination of a model from a finite data set which generalizes Backus-Gilbert theory for 
linear inverse problems to include nonlinear effects. The extent to which the reconstructed 
model resembles the true model is described by linear and nonlinear resolution kernels. In 
this way, it is possible lo evaluate to what degree the reconstructed model resembles the true 
model. A statistical analysis reveals the effects of errors in nonlinear inversion. The most 
dramatic effect is that if the data have no bias, the reconstructed model may suffer from a 
bias due lo the nonlinearity of the problem. The theory is extended for the special case of 
infinite data sets which are of mathematical interest. As an example, it is shown that the 
Newton-Marchenko method for the inverse problem of them Schrijdinger equation requires 
a redundant data set, even if the nonlinearities are taken into account. 

1. Introduction 

The aim of inverse theory is twofold. In many areas of science and technology, such as 
quantum mechanics, seismology, non-destructive testing, one aims to get estimates of a 
model from a given data set. However, exact inverse problems are also intensively 
studied in mathematics and theoretical physics. There is a large discrepancy between the 
development of inverse theory for linear problems and for nonlinear problems. Linear 
inverse theory can use the powerful tools of linear algebra, and the linear inverse problem 
is well understood (e.g. Backus and Gilbert 1967, 1968, Franklin 1970, Jackson 1972, 
Wiggins 1972, Parker 1977a). In contrast to this, there exists no general treatment for 
nonlinear inverse problems. For some special nonlinear inverse problems where one has 
an infinite data set, exact inversion methods exist. Examples are the determination of the 
potential from the reflection coefficient of the one-dimensional Schrodinger equation 
using the Marchenko equation (Agranovich and Marchenko 1963, Chadan and Sabatier 
1989), travel-time inversion using the Herglotz-Wiegert method in seismology (Aki and 
Richards 1980), or the inversion of Love-wave dispersion data (Takahashi 1955). In 
practical problems one frequently has to resort to optimization methods where one 
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minimizes the misfit between the measurements and synthetic data as a function 
of the desired model (Krappe and Lipperheide 1985, Tarantola 1987, Snieder and 
Tarantola 1989). 

For general nonlinear inverse problems there is no systematic way to reconstruct the 
model. However, when the forward problem can he expanded in a regular perturbation 
series, it is possible to use perturbation theory for the inverse problem. This is shown in 
Snieder (1990~1) for the Marchenko equation and some other examples in inverse theory, 
whereas in Snieder (1990b) a general perturbative treatment of nonlinear inverse 
problems is presented for inverse problems where the model can he reconstructed from 
the data in an exact and unique way. A major conclusion of thcsc papers is that when 
the data are considered as a component that is related in a linear way to the model (such 
as the first Born approximation in quantum scattering theory) plus components that 
depend in a nonlinear way on the model, only the linear Components give a non-zero 
contribution to the reconstruction of the model. In the process of inversion, the non- 
linear components of the data are subtracted either explicitly or implicitly, so that these 
components give no net contribution to the reconstructed model. The reader is referred 
to Snieder (1990b) for details. 

However, both exact nonlinear inversion methods and the perturbative treatment of 
Snieder (1990a, b) are unrealistic in the sense that they ignore the fact that a physical 
experiment always leads to a finite amount of data, whereas the desired model is in 
general an element of an infinite-dimensional function space. For linear inverse 
problems, this was recognized by Backus and Gilbert (1967), who showed that linear 
inverse nmh!ems hzve either cc sc!oti..n CT ififzite!;. rr.-ny sc !ko~s .  !E :Lc latter case 
one can only determine some linear functionals of the true model. Backus and Gilbert 
(1967, 1968) show how these functionals can he designed so that they represent local 
averages of the true model in an optimal way. Their theory also allows for the com- 
putation of resolution kernels that describe how the model functionals depend on 
the true model. 

In this paper, the theories of Backus and Gilbert (1968, 1970), and Snieder (1990b) 
are synthesized to a formalism which leads to nonlinear model functionals that represent 
optimal local averages of the true model, This is achieved using perturbation analysis. 
The theory generalizes the concept of linear resolution kernels by using higher-order 
nonlinear resolution kernels. The first-order resolution kernels indicate to what extent 
the model functionals are local averages of the true model, whereas the higher-order 
resolution kernels indicate to what degree there is a nonlinear mapping from the true 
model to the model functionals. In the ideal case, the model functionals resemble the true 
model as well as possible. which implies that the nonlinear components of the model 
functionals should he as small as possible. An algorithm is presented in section 2 that 
achieves this in an optimal way. 

In section 3, a statistical analysis is applied to the model functionals derived in section 
2 .  It shows that the statistics are dramatically affected by the nonlinearity of the problem. 
In the linear theory of Backus and Gilbert (1970) there is a fundamental trade-off between 
variance and resolution. In nonlinear inverse problems this trade-off is also present; it 
is shown is section 3 that there is also a trade-off between variance and the removal of 
spurious nonlinear components in the model functionals. Although it is for most non- 
linear inverse problems not possible to eliminate the spurious nonlinear mapping from 
the true model to the estimated model, it is shown in section 4 that for a special class of 
nonlinear inverse problems the nonlinearities can he removed completely from the data. 
A numerical example of the theory of the sections 2 and 3 is shown in section 5. 
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In section 6 it  is shown how the formalism of section 2 can be generalized to inverse 
problems with an infinite data set, which arise in mathematical problems. Inverse 
scattering for the 3D Schrodinger equation is treated as an example. This example shows 
that the theory of this paper cannot only be used for model estimation, but that it 
can also be used to investigate the properties of exact nonlinear inverse methods. 
Throughout the paper the summation convention is used, 

2. Derivation of the algorithm 

Suppose we have a model E ~ ( x ) ,  and that we have data d, which are related to the model 
through some nonlinear relation: 

d, = C,(&m). (1) 
The parameter E is attached to the model to facilitate a systematic perturbation analysis 
of the inverse problem. In the notation of this paper the model is a function of one space 
variable, extensions to higher dimensions involve merely a change of notation. The data 
kernels C, are nonlinear functionals that produce the data for a given model. The model, 
the data and the data kernels may he complex. Note that the model is a function of the 
space variables, but that a discrete index i is used to enumerate the data. The reason for 
this is that for realistic inverse problems with real data, the amount of data is always 
finite. The inverse problem consists of the determination of the model from the data d, .  

A general solution of the inverse problem for arbitrary nonlinear data kernels C, is 
not possible. However, if the forward problem has a regular perturbation expansion with 
non-zero first-order terms it is possible to derive a general algorithm for the inverse 
problem. Consider therefore the following perturbation expansion for the forward 
problem. 

G!"(x)m(x)dx + &* G/z'(x,, x2)m(xl)m(x2) d l l  dx, + . . . (20) s 
or 

d, = f f j G / l ) ( x l , . .  .,x,)m(xl).. .m(x,)dx, ... dx,,. (2b) 
n= I 

An example of the expansion (2) is the Born series in quantum scattering theory 
(Rodberg and Thaler 1967). The reader is referred to section 6 for an example of the Born 
series for the Schrodinger equation in three dimensions. 

It should be noted that the forward problem cannot always be expanded in a regular 
perturbation series. For examples, travel times of elastic waves in the Earth may be 
extremely sensitive to perturbations in the velocity structure. Near the triplication a 
minor change in the velocity field leads to catastrophic changes in the ray paths, a 
singular phenomenon (Zeeman 1977). In tunnelling experiments in quantum mechanics 
the transmission coefficient Tis in the WKBJ approximation related to the potential V by 

(3) 

where E is the energy and xL and xR are the turning points (Bender and Orszag, 1978). 
When V z E this leads to a singular perturbation expansion of the forward problem. The 
theory of this paper is restricted to situations where the forward problem has a regular 
perturbation expansion of the form (2). 

1 T = exp ( - 2 ( V(x) - E)"* dx 
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For a finite data set, it is impossible to infer the model in a unique way; the null-space 
is non-zero and one is forced to accept that it is not possible to reconstruct the model 
from the data in all detail. However, as in the theory of Backus and Gilbert (1968, 1970) 
for linear inverse problems, one can look for functionals that characterize certain 
properties of the true model. For example, given the orbital parameters of the Earth, it 
is impossible to infer the density structure in all detail, but there is a functional of the 
density model, the Earth‘s mass, that can be determined from the orbital parameters and 
which contains relevant information. As shown by Backus and Gilbert (1968, 1970), one 
can design model functionals that effectively are local smoothed averages of the true 
model. For the linear problems discussed by Backus and Gilbert. these model functionals 
are linear functionals. For the nonlinear inverse problems treated here, the model 
functionals are necessarily nonlinear functionals. 

Since the data are nonlinear functionals of the true model, the inversion leads to 
functionals of the true model. Now let us consider a model functional f i ( x , ) ,  which 
depends in a nonlinear way on the data. In general, this model functional can be 
expressed as a power series of the data: 

(4) 
The model functional is labelled with a variable xu to indicate that it represents a local 
estimate of the model around position x,. For any desired position x, one can determine 
the functional m(xU). For arbitrary coefficients a‘“’ this model functional may not contain 
any useful information. The inverse problem consists of finding coefficients ai”’(xu) in 
such a way that the model functional m(xo) constitutes a local average of the true model 
m(x) around x = x,. Note that the subscripts of the a‘“’ can he permuted without 
changing the sum (4). 

By inserting (2) in (4) one finds that the model functional and the true model are 
related by 

m(xu) = a)”(x,)d, + ar’(xn)dj4. + . . . + ~)~!..~~(x,)d,,d;~ . . . d, + . . . . 

&(xu,&) = E U ) ” ( X , )  G?(x,)m(x,)dx, J 

x G;;’(x,,+, ,..., ~ , ~ ) . . . G i ; ’ ( x  ,,., + ,,..., x,)m(xl) . . .  m(x,)dx, ... dx,. 
(5b) 

Observe that the model functional &(xu, E )  depends on E in an arbitrary (nonlinear) way. 
The reason for this is that for a general nonlinear inverse problem with a finite data set 
there is no guarantee that even with optimal coefficients a‘“’(x,) the model functional 
f i ( x , , ~ )  is equal to the true model sm(x,) (which would imply a linear relation). The 
relation ( 5 )  between the model functional and the true model can he written as 

~ ( x , , E )  = 8 Rii’(x,;x,)m(xl)dx, 

+ f E“ l R “ ’ ( x u ; x , .  . . . ,x,,)m(xl). . .m(x.)dx,. ..dx. (6) 

I 
n = 2  
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with 

f f " ( x , ;  xI) = U ~ ' ) ( X ~ ) G ~ ~ ) ( X ~ )  ( 7 4  

(76) 
The R'") are the nonlinear generalization of the resolution kernels introduced by 

Backus and Gilbert (1968, 1970). The first-order resolution kernel RI'' describes to what 
degree there is a smearing in the linear mapping from the true model to the model 
functional. The higher-order resolution kernels describe to what extent there is a 
spurious nonlinear mapping from the true model to the model functional. In the ideal 
case, the model functional A(xO,&) represents the true model at x = xo: m(xo,&)  = 
em(xO). This is only the case when 

f f " ( x , ; x , )  = 6(xo - XI) 

R'"'(x,;x,, . . . ,x,,) = 0. 

( 8 4  

(86)  
In this ideal situation, there is no blurring of the true model in the inversion (equation 
(sa)), and there is no spurious nonlinear mapping from the true model on the model 
functional (equation (86)). These relations can be used to derive optimal values for the 
coefficients a'"'. 

The first-order coefficients a(''(x,) follow from the requirement that the first-order 
resolution kernel R ( ' ) ( x o , x l )  resembles the delta function 6(xo - xI) as closely as 
possible. The requirement (8a) and the relation (70) are the same as in the linear theory 
of Backus and Gilbert (1968, 1970). These authors provide several methods to satisfy 
(Sa) in an optimal way and discuss the trade-off between resolution and variance in great 
detail. The coefficients a'" that lead to the minimum-norm solution are found by using 
the projection operator on the dual space of the @')as described in appendix B of Backus 
and Gilbert (1968). The solution is given by 

(9) u!i)(xo) = rj; I G, ( I ) *  (xo) 

r, = G ~ + ( x ) G ~ ( x )  dx. (10) 

where the Gram matrix r is defined by 

5 
In general one may assume that the first-order data kernels are independent. If they are 
not, one may form combinations of the data that are independent (Parker 1977a). This 
ensures that the Gram matrix r can be inverted. However, in many cases the Gram 
matrix is ill-conditioned because the data are nearly dependent and thus has a large 
condition number, which may give rise to large uncertainties in the inversion. In practice, 
one adds a damping term qa and computes 

r-E (r + qE1)-]. (11)  

This regularizes the solution for the a(') in (9). This damping term effectively regulates 
the trade-off between the resolution and the variance of the linear inversion; the reader 
is referred to Backus and Gilbert (1970) for details. 

The solution (9) leads to resolution kernels with deep negative sidelobes (Backus and 
Gilbert 1968). One can avoid these sidelobes by determining the a") from the condition 
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that the following function is minimized (Backus and Gilbert 1970, Aki and Richards 
1980) 

K =  12 I ( ~ - " g ) ' I R ' ' ' ( x ~ , x ) l ~ d x  (12) 
subject to the unimodularity constraint 

5 R'"(x,, x) dx = I ,  (13) 

In practical inversions one adds a regularization term to (12) and minimizes 

K,  = 12 J (X - Xo)ZIRiI)(XO,X)I' dx + q~{"*C;uj'). (14) 

The last term regulates the trade-off between resolution and variance, Ci denotes the 
data covariance and q is the trade-off parameter. The coefficients ai" that minimize (14) 
subject to the constraint (13) are (Aki and Richards 1980) 

(16) 
wj(x,) = 12 (x - x,)'G!')*(x)G:')(x)dx + qCg d s 

and 

ui = Gj"(x)dx. (17) s 
In nonlinear inversion, the higher-order resolution kernels for the nonlinear terms 

should be as close as possible to zero, because one wants to minimize the spurious 
nonlinear mapping from the true model to the model functional. Just as with the linear 
terms U") ,  one can determine optimal solutions to (8h) using different criteria. The 
number of coefficients a'"' that needs to be determined is staggering, and a simple 
recursive method is presented here for the computation of these coefficients, where (86) 
is satisfied in an optimal way by minimizing the &-norm of R'"): 

11 R'"'jl: = /lR'"'(x,;x,, . . . ,x,)I' dx, . . . dx,. (18) 

Inserting (7h) in (18) one finds that in the minimization criterion for llR'n'll;, the 
coefficients a"' are present for j = I , .  . . n. However, suppose that the a") are known for 
j = I , .  . . , n - 1, then one can use (18) for the determination ofthe U'"'. This can be done 
by inserting (75) in ( l8) ,  and b y  spcttkg the sum f x m j  = 1 to :: in a SUE fro-; = I 
to n - 1 and a term j = n. ignoring terms that do not contain the ai"), and which are 
therefore irrelevant for the minimization of 1lR'")Il~ with respect to the U'"', gives 
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Differentiating this expression with respect to at),*.,n and carrying out the integration 
Jdx, . . . dx. gives 

In this expression the Gram matrix r is defined in (IO). The generalized Gram matrices 
P" are defined by 

(21) p ...PnV J C~:'*(xl). . . G~L'*(x,)GP'(x,, . . . ,x,)dx, . . . dx.. 

Equation (20) is a linear equation for the a'"' that can be solved efficiently by premultiply- 
ing n times with T-g on the left, this gives 

Note that (22)  follows from (20) when r-8 = r-' (hence when qa = 0). For non-zero 
values for qE (22) does not lead exactly to the minimum of (19). 

It can be seen explicitly that the a'"' can be computed once the a"' (j = 1, . . . , n - 1) 
are known, so that these coefficients can be computed recursively. Note that it is 
necessary to compute the inverse T-g of the first-order Gram matrix ( I  1) once, hut that 
it is not necessary to invert a different matrix for every order n. This is important, because 
the number ofcoefficients increases rapidly with the order n of the nonlinearity. Once the 
a'"' are determined, the desired model functional can be computed from (4). The non- 
linear resolution kernels can be obtained from (7b). 

One can show that when the true model has a finite L,-norm and is Lipschitz 
continuous the model functional &(xo) approaches the true model m(xo) when the width 
(12) of the first-order resolution kernel and the L,-norm of the higher-order resolution 
kernels go to zero. To see this, define the following norm in model space: 

Using the unimodularity constraint (13) one can write (6) as 

fi(xo) - m(xo) = (m(x) - m(xo))R"'(xo;x)dx I 
+ 2 J R'"'(x,;x, ,  . . . ,x,,)m(xl). . . m(x,,)dx, . . . dx,, 

* = 2  

With the help of Schwartz inequality one can derive that 

This implies that when (12) and (18) become smaller the model functional &(x,) resem- 
bles the true model in a better way. Note that we tacitly assumed here that for a given 
data set one can find higher-order resolution kernels which have a sufficiently small 
L,-norm for the series Z,"=, I/ R'"'I1,II M 11; to converge. Whether this condition is satisfied 
depends both on the data kernels that are a t  our disposal (because these quantities 
determine the R'"'), and on the model norm 11 m 11, (because this determines the strength 
of the nonlinear effects). 
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3. The propagation of errors in the inversion 

In a realistic experiment, the data  are contaminated with errors, and it is important to 
know how the model functional is affected by these errors. Very little is known about the 
propagation of errors in nonlinear inversion. The perturbative treatment of section 2 
allows for the estimation of errors in the model functional. Let the data d, be perturbed 
with errors Ad;. The perturbation in the estimated model follows from (4) 

m 

A W O )  = 1 U!:! ., ;,(x0) { (dj ,  + Ad(,)  . . . (djn + Ad;") - djl . . . djo} .  (26) 

If follows that the nth-order term in this sum depends on products of the errors Ad in 
powers up to the nth-order. For a statistical analysis of the model functional it is 
therefore necessary to prescribe the higher moments of the distribution of the errors. For 
realistic data, it is usually difficult to determine the mean and the variance of the 
data; estimating higher-order moments such as the skewness and kurtosis is virtually 
impossible. 

In order to obviate the need for the higher-order moments, it is assumed here that 
the errors in the data are much smaller than the data themselves: 

"=I  

1Ad;I << Id,l. (27) 
It is then realistic to take only the first- and second-order effects of the data errors into 
account. Using the fact that the subscripts of the a'"' can be permuted and that a sum 
over the subscripts is implied, one finds that 

Afi(x,)  = 1 a t ' . . j " ( x ~ ) { n ( A d , , ) d j ~ .  . . d ,  + n(n - l ) (Adj , ) (Adt2)dj , .  . . d j n }  + O(Ad)'.  
m 

*=I 

(28) 
Let an overbar denote the statistical average. If the data errors have zero mean (a = O), 
the expectation value of the error in the model functional is given by 

m 

Arit(xO) = C n(n - l ) a t ! . . j a ( x O ) C ~ f 1 2 d j , .  . . d, + O(Ad)' (29) 
n=1 

where Cd is the data covariance: 
e; =q. 

This means that if the data have no bias (a = 0), the model functional may suffer from 
a non-zero bias because of the nonlinear terms in expression (29). For linear inverse 
problems there is no bias i n  the reconstriicted model if the data are unbiased: this is 
reflected in (29) by the fact that  the linear term n = I is equal to zero. Note that the 
magnitude of the bias in the model functional depends both on the data covariance and 
on the data themselves. This is due to the fact that the model bias is a purely nonlinear 
effect. If the nonlinearity is stronger, and hence if the magnitude of the d, is larger, the 
bias is also stronger. 

The covariance of the model functional follows from (28). Up to second order in the 
data errors the model covariance is given by: 

m m  

Am(x)Ark(x') = 1 1 n r u ~ ~ ! , , j " ( x ) u ~ : )  . . . j , ( x ' ) d j ~ .  . .d["d,. . .4,C:, + O(Ad)'. (31) 
n- I r =  I 

In contrast to linear inversion, the model covariance depends not only on the errors in 
the data, but also on the data  themselves. (This is only the case for the nonlinear 
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terms (n and r > 2).). This can be understood as follows. It is shown in Snieder (1990a,b) 
that in nonlinear inversion only the h e a r  part of the data gives a non-zero contribution 
to the reconstruction of the model. In the process of nonlinear inversion the nonlinear 
components in the data are being subtracted. If the data are larger, and the nonlinearity 
is stronger, this subtraction is more important. However, as shown in Snieder (1990b), 
this process of subtraction can be highly unstable. This means that for a given data 
covariance, the model covariance is larger when the nonlinearity is stronger. 

It is shown by Backus and Gilbert (1970) that the parameter q in (14) regulates the 
trade-off between the width of the first-order resolution kernel and the variance of the 
model functional. It follows from the results of Backus and Gilbert (1 970) that increasing 
the trade-off parameter q leads to decreasing values of the magnitude of the coefficients 

because the last term in (14) penalizes for solutions with large values of the sum 
@)'c;a$'), It follows from (22) that all higher-order coefficients a'") can be expressed as 
a linear combination of the first-order coefficients a'", i.e. by applying (22) recursively 
one can write the a'") in the form 

&' p ,... P"(X0) = B,,... P", I . . .  4" a" ' (xo) .  q, . .ay;(xo). (32) 

This implies that 

la:~...p"(xo)lz < c 14 ,.. .  P " q i . . . U "  1') ( c I ab'' (10 1 Ivy. ( V I .  .. . .V" 
(33) 

An upper bound on the Ia'")IZ therefore decreases when the &-norm of the coefficients 
a'" decreases, One can conclude from this that increasing the trade-off parameter q 
decreases the upper hound on Iu~),,,,(xo)l. Because of (31) this implies that an upper 
bound on the nonlinear variance decreases when the trade-off parameter q is increased. 
Note that this does not imply that the nonlinear variance goes to zero in a uniform way 
when q is increased. However, once the coefficients a")(x0) are computed for the deter- 
mination of the model functional it requires little numerical effort to compute the 
nonlinear variance from (31) and to investigate the effect of q on the nonlinear variance 
numerically. 

When using either of the solutions (9) or (15) for the ai", one needs the (generalized) 
inverse r-8 of the Gram matrix for the computation of the higher-order a'"'. Increasing 
the value of the damping parameter qx has two effects. First, since r is a positive definite 
matrix, one increases all eigenvalues of (r + q,I)  by increasing qx.  This means that the 
norm 11 r-x [ I z  = 11 (I- + qxI)-' 11' decreases when qa is increasing. From (22) one finds that 
this implies that an upper bound on Z p , , , , , , p n ~ a ~ ~ . . . p n ~ '  decreases when qg increases. With 
(31) this implies that the upper bound on the nonlinear variance decreases for increasing 
q8.  Again, the nonlinear variance need not decrease uniformly with increasing q z ,  and 
numerical computations are needed to establish the detailed effects of q8 on the nonlinear 
variance. 

Second, the &-norm 11 R'"'II, of the nonlinear resolution kernels is minimized for 
coefficients a'"' that satisfy (20). Premultiplying (20) n times with r-' gives the a'"' that 
minimize ~ ~ R ~ " ) ~ ~ 2 .  If one premultiplies (20) with r-' (with qg > 0) one obtains different 
values for the a'"', these necessarily do not lead to the minimum of llR'")llz, because the 
minimum is obtained by premultiplying (20) with r-'. This means that taking q8 > 0 
leads to an increased value of llR(")l12 and hence to a suboptimal subtraction of the 
non-linear components in the data. 

This implies that the parameter qx regulates a trade-off between the upper bound of 
the nonlinear variance, and the nonlinear resolution. Since the nonlinear variance may 
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vary with qR in a nonuniform way one needs to establish this trade-off numerically. Once 
the a'"' are computed this can be done with little computational effort, 

4. The removability of the nonlinear terms in the inversion 

In an ideal nonlinear inversion, there is no smearing in the linear part of the inversion 
@U), and there is no spurious nonlinear mapping from the true model to the model 
functional (86). The condition (8a) can be investigated with standard Backus-Gilbert 
theory (1968, 1970). The issue of the removal of the nonlinearities in the inversion (86) 
is difficult to answer in general. However, it is shown in this section that for the special 
case that: 

(a) a unique inverse of the Gram matrix exists, 

(b) the nonlinear data kernels can be expressed as a linear combination of the linear 
and 

data kernels, 
there is no spurious nonlinear mapping from the true model to the model functional. 

To see this, split the sum (76) in a sum . j  = I , .  . . , n - 1 and a term j = n: 

+ c;j...qn(xu)G;;'(x,). . . G;:'(x"). 

Inserting (22) in the last term leads to 

The extent to which the nonlinearities can be removed depends on the term within 
brackets in (35). Multiplying (35) with G::'*. . . G:il*, integrating over x l r . .  . &, and 
using (21) gives: 

/G.!:"(x1). . . G~~~*(x.)R'"'(xo;xl,. . . ,x,)dxl . . . dx, 

p } &l (36) - ( r -q , ,  ...(~-~r)),,,r~.'..,,,~, . .. 'i., +I . . .  ' "4 V I  .4, (xo) .  

If the inverse of the Gram matrix exists (r--gr = I )  the right-hand side vanishes: 

/G!:'*(xl). . . C!~'*(xn)R'"'(xo;xl, . . . ,x,)dx, . . .dx, = 0. (37) 

This mcans that the projection of the nonlinear resolution kernels R""on the linear data 
kernels is equal to zero; only parts of the R'"' outside the subspace of the linear data 
kernels G/"(x )  can be non-zero. 

It follows from (76), that the nonlinear resolution kernel RI"' is a combination from 
the nonlinear data kernels G"', with j  = I , .  . . ,n. Now suppose that the nonlinear data 
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kernels are contained in the subspace of the linear data kernels, i.e. that they can be 
expanded with expansion coefficients a as 

j =  I ,  . . . ,  n. (38) 
In that case, because of (7b), the nonlinear resolution kernel RI"' has no components 
outside the subspace spanned by the linear data kernels. With (37) this implies that the 
nonlinear resolution kernel vanishes: R'"' = 0, so that the model functional depends in 
a linear way on the true model. (The nonlinearities are completely subtracted in the 
inversion.) 

Note that it is tacitly assumed here that the data kernels can he written as a direct 
sum of linear data kernels and nonlinear data kernels; i.e. that this decomposition is 
unique. The data kernels follow from a perturbation analysis of the forward problem. 
When for a particular problem a regular perturbation series of the form (2) can be 
derived in an unambiguous way, the decomposition of the data kernels in linear com- 
ponents and nonlinear components is unique. 

In section 5 an example is shown where the second-order data kernel GF) (xl ,x2) is 
not contained in the subspace spanned by the combination G,(')(xl)Gj')(x2), so that (38) 
cannot be satisfied. This leads to a non-zero spurious second-order mapping from the 
true model to the model functional. As a simple example of a finite data set where (38) 
is satisfied consider data defined by 

d, = f H,(x)m(x) dx (39)  1 (I 
where the H,(x) are linear kernels and wheref(r) is a nonlinear function with a Taylor 
expansion 

f(5) =f, 5 +fZP + . , , . 

G:"'(x,,. ..,x,) =f,H,(xI)H;(xz). .. ff;(xn). 

(40) 

(41) 

It is assumed that the first-order termfi is non-zero. Inserting (40) in (39) leads in the 
notation of (2) to the following data kernels: 

The first-order data kernel is given by G{')(x) =f, H,(x), and one readily verifies that the 
condition (38) for complete subtraction of nonlinearities in the inversion is satisfied. The 
fact that in this example the nonlinearities can be completely removed in the inversion 
is not surprising. Applying the inverse functionf-I to (39) and defining transformed data 
by 2. = f - ' ( d j )  one finds that 

z. = J&(x)m(x)dx. (42) 

This is a linear problem, the application o f f - '  produced a global linearization of the 
inverse problem. When using the perturhative inversion (4) one performs this lineariz- 
ation by implicitly subtracting out the nonlinearities that are present in the original data 
di. For the inverse problem of (39) one can determine the coefficients a'"' from the 
transformed linear problem (42). The Backus-Gilbert solution of the linearized problem 
(42) is given by 

(43) 
where the coefficients h, are Taylor expansion coefficients of the inverse of 
f:f-'(p) = kIp + h2pz + _ .  . . Since we know that the application o f f - '  removed the 
nonlinearity completely, we are assumed that (43) is the optimal inverse series of the form 

rCr(xo) = a!"(xo)2. = a!.')(xo)(hldi + hzd: + . . . )  

(4); hence aj;!..j,(xa) = /~~a! ' ) (x~)d~, , ,d , ,~~ 
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5. A numerical example 

In this section an example is shown of the theory for nonlinear inversion. Consider a 
one-dimensional string of length L with fixed endpoints. The mass-density p(x)  varies 
along the string. The differential equation for the modes of vibration of the string is given 
by 

In this expression Tis the tension in the string. The condition that the endpoints are fixed 
implies that 

(45) 
These boundary condition are only satisfied for discrete frequencies on. In the inverse 
problem that is considered here, the aim of the inversion is to determine the unknown 
density distribution p(x), using a finite set of eigenfrequencies U,. 

The first step is formulate a perturbation expansion of the form ( 2 )  for the forward 
problem. Consider a perturbation from a homogeneous reference string with constant 
mass-density po.  The model m(x)  is defined by 

p(.x) = po(l + "x)). 

u(0) = u(L) = 0. 

(46) 
The eigenfunctions of the homogeneous reference string are given by 

u:,~ (x) = ( )"' sin ( 7)  
and the unperturbed eigenfrequencies satisfy 

The data d. for this problem are the relative frequency shifts defined by 

(47) 

A perturbation expansion of (49) can he formulated using non-degenerate Rayleigh- 
Schrodinger perturbation theory (e.g. Morse and Feshbach, 1953) and leads to the 
follo\ving perturbation expansion: 

In this expression the matrix elements M,, are defined by 
L 

M,, = lo u~"(x)m(x)u?(x)dx (51) 

with the eigenfunctions given by (47). Inserting (50) in the definition (49) of the data one 
finds that 
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Using the definition (51) of the matrix elements M,, it follows that the first- and second- 
order data kernels defined in (2) are given by 

and 

4 n2 sin (7) sin (+) m m  sin ( y ) sin (7) mnx, 
G.c2~(x,,x2) = c 7 7  .#+“L n - m2 

+ $sin, (7) sin2 ( y ) . (54) 

It is instructive to consider first the accuracy of the second-order expansion (52). As 
a test example, consider the situation where a point mass is attached to the string in 
x = x,: 

m(x) = m,d(x - x,) (55) 

where m, is the ratio of the perturbing point mass to the mass of the unperturbed string. 
For this simple example, the eigenfrequencies obey the following transcendental 
equation: 

m,ksin[k(L - xJsin(kx,) = sin(kL) with k = & W .  (56) 

The exact frequency perturbations, and the first- and second-order approximations are 
for the three gravest modes shown in figures I(a, h, c)  when the point mass is attached 
to the point x, = 0.25. (in the examples of this section the string is of unit length; L = I . )  
For the fundamental mode (n = 1) the fully nonlinear frequency shift and the first- and 
second-order approximations are undistinguishable for mass perturbations less than 
15%. For the modes 2 and 3 (figures l(h, c) the first-order approximation is only 
accurate for perturbations of a few percent, whereas the second-order approximation 
cannot he distinguished from the exact frequency shift for mass perturbations up to 8%. 
For larger mass perturbations the third- and higher-order effects are important in the 
forward problem. In this section, only first- and second-order effects in the expansion (4) 
for the inverse problem are taken into account. The perturbation expansions should 
therefore be regarded as asymptotic relations. Whether the obtained accuracy is accept- 
able or not depends on the data errors, the required accuracy and on the magnitude of 
the model perturbation (hence on the degree of nonlinearity). Extending the example of 
this section to higher than second order poses no conceptual problems. 

In order to perform the nonlinear inversion to second order one needs to know the 
first- and second-order Gram matrices. From the definition ( I O )  and the data kernels (53) 
one finds that 

(57) 
1 
L r,, = - ( I  ++U. 

The generalized inverse of this matrix is given by 
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(a )  Mode = 1, mass at x=0.25 
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First order ..~. 
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( c )  Mode = 3, mass at x=0.25 
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Figure 1. Relative frequency shift defined in (49) for 
(0)  t,he fundamental mode, (h) the first-higher made and 

0.05 0.10 0.15 0.20 0.25 (c) the second-higher mode, as a function of  the perturb- 
ing mass for a point mass in x = 0.25. 

0 
I , , , , , , , , I  
Relative mass perturbation 

where N is the number of data. The second-order Gram matrix follows by inserting (53) 
and (54) in (21) and performing the trigonometric integrations: 

I 
+ F(l + pnk + is,, + $8,d" l ) .  (59) 

Because of the delta functions in the right-hand side the summation over the modes m 
can be performed trivially. 

In the inversions shown in this section the frequency shifts of the four gravest modes 
(n = 1,2,3,4) are used to determine the estimated model a t  position xo = 0.25. The 
first-order resolution kernel obtained from the minimization of (14) is shown in 
figure 2. The resolution kernel has a finite width, for the undamped case ( q  = 0) this 
width is determined by the highest eigenfunction that is taken into account (n = 4 in this 
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First-order resolution kernels 
~ Without Tqgulorinolion h = O i  

~ Wllh regulorizorion irl=60i 

I 
0.25 0.50 0.75 

X I  

Figure 2. First-order resolution kernels R“’ (x , ;x , )  for xo = 0.25 for q = 0 (thick line) and 
7 = 60 (lhin line). 

case). Using the solution (9) instead of ( IS)  leads to a resolution kernel with deep 
negative sidelobes; this solution is not shown here. 

The most pronounced aspect of the resolution kernel is the symmetry around the 
centre of the string. When one has recorded the eigenfrequencies of a string subject to 
the boundary conditions (45) one cannot determine the structure of the string in a unique 
way because reflecting the string around its centre leads to a string with the same 
eigenfrequencies as the original string. This ambiguity holds of course also for the 
nonlinear inverse problem. It was recognized by Borg ( I  946) that in order to determine 
the structure of the string uniquely one also needs to know the eigenfrequencies for other 
boundary conditions than (45). For example, if one also knows the boundary conditions 
when one side of the string is open (u,(L) = 0) then the symmetry between the two halves 
of the string is broken and one can recover the non-symmetric part of the model. The 
resolution kernels in figure 2 reflect this symmetry property by the peak in the resolution 
kernel at the location xI = 0.75. Since it is known that one cannot remove this peak, the 
integration over x in (14) was computed only over the left half of the string (0 < x < 0.5). 

According to (50)  or (76) the second-order resolution kernel contains two terms; a 
term U $ ~ ) G ! ~ ~ ( X ~ ,  xz) which describes the mapping of the quadratic nonlinearity by the 
linear estimators a!”, and a term u ~ ) G ~ ” ( ~ , ) G ~ ~ ’ ( x , )  which serves to remove this quad- 
ratic nonlinearity as well as possible. The first term is shown in figure 3(a) (In the 
numerical example of this section, the value xo = 0.25 is used.) Suppose one would 
ignore the nonlinearity of the inverse problem and perform a linear inversion. This 
amounts to using only U;” and setting all the a’“’ equal to zero for n > 2 .  In that case the 
model functional riz(x,) is given by 

a!”(x,)G~z’(x,,x,)m(x,)m(xz)dx, dx, + . . . . (60) 

The function in figure 3(a) therefore shows the second-order mapping for the problem 
of the inhomogeneous string in case one performs a linear inversion without bothering 
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0.25 0.50 0.75 
XI 

0.25 0.50 0.75 
X I  

Figure 3. (4 Mapping of second-order term a?(xo) 
G!'I(x,,x>) of the forward problem in the first-order 
inversion. (b)  Second-order term a $ ( ~ ~ ) G i " ( x , ) C ~ ' ~ ( x , )  
in the inverse series (50) for the subtraction of quadratic 
effects. (c) Second-order resolution kernel R@'(x,;x, ,x2). 
In all cases the contour value is equal to I and positirc 

X I  values are shaded. 

about the nonlinearity of the forward problem. The function O~~G!')(X,)G,('~(X~) which 
serves to subtract this spurious nonlinear mapping is shown in figure 3(b). The second- 
order resolution kernel R ' 2 ' ( ~ o ; ~ ,  , xZ), which is the sum of the functions of the figures 
3(a) and 3(b) is shown in figure 3(c). 

It is instructive to estimate the ratio of the spurious quadratic mapping to the linear 
mapping in the inversion. If the model has a characteristic magnitude M this ratio is 
approximately given by 

where the unimodularity constraint (13) has been used for the estimation of the 
denominator. For the resolution kernel of figure 3(c), 11 R(') = 2.55. This means that for 
a model with a strength EM = 1 % the relative error by the spurious quadratic mapping 
is only 2.5%. However, for a model strength of EM = 20%, the error introduced by the 
spurious quadratic mapping is 50% of the linear mapping. The resolution kernel thus 
contains valuable information as to what extent the nonlinearities can or cannot be 
removed in the inversion. 
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If one simply performs a linear inversion of the data, and ignores that the forward 
problem is in reality nonlinear, one obtains a quadratic mapping from the true model 
to the model functional shown in figure 3(a). The L2-norm of this function is approxi- 
mately 3.47. Since the &-norm of the second-order resolution kernel in figure 3(c) is 
equal to 2.55 this means that for the employed data about one third of the quadratic 
nonlinearity in the forward problem is removed in the second-order inversion. There are 
two reasons why the spurious nonlinear mapping is only partly removed 
( I )  It can be seen from (54) that the second-order data kernel GA’)(x,, x2) contains a sum 
over all eigenfunctions U!,?, regardless of whether or not one actually knows the per- 
turbed eigenfrequencies of these eigenfunctions. This gives rise to smaller wavelength 
structures in G,!”(x,,x,) than are present in the first-order data kernels. Since a linear 
combination of the first-order data kernels is used to subtract the nonlinearity 
introduced by the higher-order data kernels this implies that this subtraction can only 
be partially achieved. One finds indeed that the function used for subtracting the 
second-order nonlinearity (figure 3(h)) is smoother than the second-order forward 
mapping (figure 3(a)) so that this subtraction cannot be fully achieved. The results of 
section 4 imply that this discrepancy in the wavelengths of these patterns is only removed 
when the first-order data kernels form a complete set, so that all wavelengths are present 
in the set of functions that is used to subtract the nonlinearity. 
(2) The nonlinear forward mapping of figure 3(a)  has a twofold symmetry, it is 
symmetric for reflections in the two diagonals of the (xI, x2) plane. In contrast to this, 
the term for subtracting the second-order nonlinearity in figure 3(h) has a fourfold 
symmetry; this function is symmetric for reflections in the two diagonals in the (xI .x2) 
plane and in the lines xI = L/2 and x, = L/2 .  These symmetries can be related to the 
symmetry properties of the data kernels defined in (53)  and (54). When subtracting a 
function with a fourfold symmetry from a function with only a twofold symmetry, the 
result is in general non-zero. This inability to completely subtract the quadratic non- 
linearity in the inversion is related to the result of Borg (1946) that one needs the 
eigenfrequencies of the string for two different boundary conditions for a complete 
reconstruction of the structure of the string. For example, if one also knows eigen- 
frequencies for the string with one open end, one breaks the symmetry of the first-order 
data kernels for reflection in the middle of the string. The fourfold symmetry of figure 
3(h) is then broken in the same way, and the term used for subtracting the nonlinearity 
has the same twofold symmetry as the second-order mapping in the forward problem. 
This allows for a more complete subtraction of the nonlinearity. 

In figure 4 the results of a second-order inversion are shown for exact data for the 
four gravest modes computed for a point mass in position x, = 0.25. In the ideal case 
there is no spurious nonlinear mapping and the model functional a t  the location of the 
point mass is given by 

rit(x,) = f i ” (x , ,x )m(x )dx  = m,R“’(x,,x,) for m(x) = m,d(x - x”). (62) 

This quantity is shown in figure 4 together with the model functionals determined with 
a first-order inversion and with a second-order inversion where the series (56) was 
truncated at respectively n = 1 and n = 2. The first-order inversion is a normal Backus- 
Gilbert inversion using the criterion (12). It follows from figure 4 that for mass pertur- 
bations between 2.5% and 10% the second-order inversion is much more accurate than 
the first-order inversion. In this parameter range a substantial increase in the accuracy 

ib‘ 
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Without regularization 

Relative mass perturbation 

Figure 4. Ideal model estimate, as defined in (62), and 
the result of linear and second-order inversion for a 
point mass in x = 0.25 as a function of the relative 
mass-perturbation, m,. 

I 
0.02 0.04 0.06 0.08 

Resolution 

Figure 5. Trade-off curve for variance versus the 
width of the first-order resolution kernel as a function 
of the regularization parameter q. Linear variance is 
denoted with a thin line, the second-order variance 
with a thick line. 

of the inversion is obtained by taking second-order effects into account. For larger values 
of the mass perturbation the ideal result from (62) and the result from the secnnd-or,iir 
inversion diverge. There are three reasons for this. First, as shown in figure 3(c), one 
cannot completely remove the second-order nonlinearity with this data set, so that there 
still is a spurious second mapping from the true model to  the model functional. Second, 
the data used in the forward problem are computed from a uumerical solution of the 
transcendental equation (56). This means that the used data also contain cubic and 
higher-order terms which are increasingly important for larger values of the mass 
perturbation. Third, even if the forward problem contained only first- and second-order 
terms, one needs to take third- and higher-order terms in the inverse series (4) into 
account. A simple example can clarify this. Suppose that d and m are simple scalars and 
that the forward problem is given by d = ern + +(em)’. This relation can be inverted to 
give m = -+ + $(I + 2d)’” = d - +d’ + id’ + . . , , This last effect, and the effect of 
higher-order nonlinearities in the forward problem can be handled by using third- and 
higher-order terms in the inverse series (4). However, the fact that the second-order 
resoiuiion kernel R“’ is not equai to zero is an effect of the finite amount of data that 
is used. Extending the inverse series to higher order does of course not remove this source 
of spurious second-order mapping in the inverse problem. This is analogous to the 
inherent inability to obtain a first-order resolution kernel with a vanishing width from 
a finite amount of data. 

Up to this point, the effect of errors in the data has been ignored. Now suppose that 
the data are uncorrelated, and have the same variance U: 

For this case the variance in the model functional constructed from the linear and 
second-order estimators a!” and a$’ is according to (31) given by 

var,(,, (Af f l (~ )Af i (~ ) )”~  = u(ay)a!’) + 4@ai1’4 + 4~!~”&)4.dJ”~.  (64) 

c; = $6,. (63) 

In the examples shown here the values d, = -0.1 and U = 0.02 are used. 
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Figure 6. Trade-off curve for I1 R"'ll2 versus the width 
of the first-order resolution kernel as a function of the 
regularization parameter '1. 

Figure 7. Trade-off curve for 11 RI*] l l i  versus the 
second-order variance as a function of the regulanz- 
ation parameter v ~ .  Note the expanded scales in this 
figure. 

By varying the parameter q in the criterion (14) one can regulate the trade-off between 
linear resolution (defined by (12)) and linear variance. The resulting trade-off curve is 
shown in figure 5. In this figure the variance is computed from (64) both for a linear 
inversion (where uDJ = 0) and for a second-order inversion. Including second-order 
effects in the inversion increases the variance of the resulting model functional. This is 
due to the fact that the subtraction of the nonlinear components of the data is sensitive 
to data errors. 

Increasing the regularization parameter q decreases the norm of the coefficients 
ui"(xo). Since the nonlinear components in the data are mapped to the model functional 
f i ( x o )  through the coefficients ui1)(x0) one can reduce the spurious nonlinear mapping 
from the true model to the model functional through the linear estimator u$lJ(x0) by 
increasing q.  This is shown in figure 6 where 11 R'2' 1 1 2  is shown as a function of the 
resolution of the first-order mapping. Note the strong trade-off between linear resolution 
and spurious nonlinear mapping. Interestingly, the optimal points on the trade-off curves 
in figures 5 and 6 are attained for similar values of q. This may not be so for other nonlinear 
inverse problems, and one has to decide how much importance one wants to attach to the 
factors variance, resolution and nonlinear contamination. The value q = 60 is selected 
here as an optimal choice; the resulting linear resolution kernel is shown in figure 2. 

As shown in section 3, the parameter qg can be used as an additional tool to regulate 
the trade-off between (nonlinear) variance and spurious nonlinear mapping. This trade- 
off is shown in figure 7. (In this example the value q = 60 is used for the computation 
of the linear coefficients u"'(xo).) Note the expanded scales that are used in this figure. 
It can be seen that increasing ng has a minor effect on the variance, whereas the nonlinear 
mapping increases dramatically with qE. For this example the value qa = 0.25 would be 
a good choice. One should keep in mind that for this problem the Gram matrix (57) is 
well-conditioned. For problems where the data are nearly dependent and where the 
Gram matrix is poorly conditioned a stronger regularization using the parameter q8 may 
be advisable. 



428 R Snieder 

Trade-off curves as shown in figures 5 ,6  and 7 make it possible to choose values for 
the trade-off parameters that optimize the conflicting requirements of minimizing the 
width of the linear resolution kernel, the (nonlinear) variance, and the spurious nonlinear 
mapping. The optimal choice depends on the strength of the nonlinearity. Note that for 
the computation of the trade-off curves one does not need to know the magnitude of the 
model: it suffices to use the data. 

6. An example from quantum mechanics 

The theory of the preceding section can he used for model estimation from a finite data 
se!, and for the assessment of the artifacts that occur in model estimation. The example 
of this section shows that the theory can he extended for infinite data sets and that it can 
he used for the determination of the amount of data that are needed for an exact 
nonlinear inversion, a problem of mathematical interest. 

Suppose that for the Schrodinger equation in three dimensions one wants to 
reconstruct an unknown potential from scattering data. In linear theory (the first Born 
approximation), it suffices to  have the scattering coefficient for backscattering for all 
energies and all incoming directions. In contrast to this, the exact (nonlinear) Newton- 
Marchenko algorithm for inverse scattcring rcquires the scattering coefficient for all 
energies, all incoming directions and all outgoing directions (Newton 1980, 1981). This 
means that the Newton-Marchenko algorithm requires a larger data set than a Born 
inversion. It is cutljectured by Snieder (1990a) that this is due to the fact that the removal 
oi the noniinearities requires a iarger data set than is needed for an exact Born inversion. 
The theory of sections 2 and 4 shows that this is not the case. 

The analysis of this section leads to a reconstruction algorithm that is equivalent to 
the method derived by Prosser (1969). However, Prosser assumed a priori that the 
potential could be reconstructed exactly from backscattering data for all energies and 
incoming directions. His derivation relies completely on this assumption and cannot 
therefore be extended to data sets that are insufficient for a unique reconstruction of the 
potential. In general one cannot determine apriori if a given infinite data set is sufficient 
for an exact reconstruction of the model or not. This means that Prosser’s results, 
although correct, are based o n  an unproven assumption. Using the method of section 2 
one does not need the apriori assumption that the potential can he reconstructed exactly 
and one can verify a posteriori to what extent the nonlinearities can be removed by 
inspecting the nonlinear resolution kernels. For this, the theorem derived in section 4 is 
usefu!. The theory of !his paper can thus not only be IISP~ !o de!crmine the poten!ial (the 
construction problem), hut i i  can also he used to determini to what cxtcnt thc potential 
can he reconstructed from a given data set (the existence problem). 

For the 3~ Schrodinger equation, a perturbation treatment follows from the Born 
series, The scattering amplitude for wavenumber k, direction of incoming wave R and 
direction of outgoing wave it‘ is (Rodberg and Thaler 1967): 

d’rexp( -ik$ . r)m(r) exp(ikR. r) 4n 

+ &[dlrSd]r’exp(-ik$ ’ r)m(r) 

exp(ik1r - r’l) 
1r - r’l X m(r‘)exp(ikR . r‘) + O(E’). 
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The potential is denoted here by the model E ~ ( Y ) .  Let the data consist of the scattering 
amplitude for backscattering: 

d(k,A) = A k ( -  R , R ) .  (66) 
Note that instead of the discrete data label i, the data are now a function of the 
continuous variables k and R. The example in this section shows that the theory of 
sections 2-4 can easily be generalized for an infinite data set. For convenience, the 
notation k 5 kii is used in the following derivation. 

Using (65) with ri' = -I?, one finds for the first- and second-order data kernels: 

-1  G"'(k;x) = -exp(2ik. x) 4n 

1 
I6n' G"'(k;xl,x,) = -exp(ik 

Again, the discrete data indices of the data kernels are replaced by the continuous 
variable k. 

The Gram matrix r follows from (67a): 

(68) 
n r (k ,  k') = IC"'*(k; x)G'"(k'; x)d'x = --6(k - k'), 
16 

Since this operator is diagonal, the inverse follows has the simple form 

(69) 
16 r-' (k, k') = - 6(k - k'). 

Using the first-order coefficients from (9) one obtains 

n 

- 4  
a"'(k;x,) = d3k'T- ' (k ,k ' )G( ' ' * (k ' ;xO) = -exp(-2ik .xo). (70) i n2 

Using this in (4) and ignoring higher-order terms is equivalent to performing a Born 
inversion of the data. By inserting (67a) and (70) in ( 7 4  and replacing the summation 
over the data index by an integration over k one finds that 

R"'(x,;x) = 6(x, - x) (71) 

which reflects the well known fact that a Born inversion applied to the linear components 
of these data leads to a perfect reconstruction of the model. 

It is interesting to see whether this data set is also sufficient for the removal of the 
nonlinearities in the inversion. The second-order terms a(*' follow from (22): 

a"'(k,,k,;x,) = - d'p, d3p, d3kT- ' (k , ,p , )  r ~ ' ( k 2 , p , ) a ( 1 1 ( k ; x n ) r [ z 1 ( p l , p 2 ,  k). l i i  
Using (69) and (70), and carrying out the integrations gives 

a'2'(kl, k,; xo) = - 1 0 2 4 h k e x p ( - 2 i k .  xo)r'2'(kl,k2,k). 
n4 

(73) 
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With the definition (21) and (67a, h) ,  one obtains 

F2)(k1,k2,k) = d’x, d’x2G‘1’* (k, ;x l )G‘”*(k2;x2)G‘2’ (k;x,  ,x2) S I  
= -[d’x, I rd’x~G‘”(k;x,,x,)cxp(-Zik, . x,)exp(-Zik, . x,). (74) 

1671, 
Using this and inserting (69) and (70) in (72)  leads to 

d’x, G‘”(k;x,,x,) 

x exp(-2ik.x0)exp(-2ik, .xl)exp(-2ik, ‘x,), (75) 
The second-order resolution kernel can be derived from (7h): 

R”’ (x , ;x , , x , )  = d ’ k u “ ’ ( k ; ~ , ) G ‘ ~ ’ ( k ; x , , x , )  I 
+ J J  d’k, d3k2 a‘2)(k, ,kz;x, )G“’(kl ;x , )G”’(k, ;x , ) .  (76) 

Inserting (70) and ( 7 9 ,  and carrying out the integrals over k, and k, one obtains 

J d‘k, J d’k, d2’(k,, k,;x,)G‘”(k,; x,)G(’)(k2; x,) 

= L F k e x p ( - Z i k  K2 . ~ ~ ) G ‘ ~ ) ( k ; x , , x ~ ) .  ( 7 7 )  

Using this and (70) in the first term of (76) it follows that the second-order resolution 
kernel vanishes 

R‘Z’(xO;x , ,  x,) = 0 (78) 
This result could also have been obtained with the results of section 4. For the 

example of this section, the inverse of the Gram matrix exists; see (69). Furthermore, the 
first-order data kernels (670) form a complete set in the sense that one can expand any 
functionf(x,, . . . , x,) in the first-order kernels 

f ( x , , .  . . ,xn)  = k, . . . d’k, F(k, ,  . . . ,kn)Gi:)(x,). . . Giy(x,). (79) 

For the data kernels (67a) F (k , , .  . . ,kJ  is nothing but the Fourier transform of 
f(xl,, . . , x,). The higher-order data kernels are therefore contained in the function space 
of the first-order data kerne!s. The twc :eqi;iremer.t; of section 4 a x  :hcicf~i i  satisfied, 
and al: higher-order resoluiiori kerncis vanish, so that there is no spurious nonlinear 
mapping from the true potential on the estimated potential. 

The data set analysed in this study is therefore sufficient both for the reconstruction 
of the potential from the linear part of the data and for the proper subtraction of all 
multiple-scattering components in the data. This means that the Newton-Marchenko 
algorithm does indeed require a redundant data set. The conclusion of redundancy is 
therefore not affected by the nonlinearity of the inverse problem. 

7. Discussion 

The formalism of this paper can be used for the determination of nonlinear model 
functionals that describe the properties of the true model in an optimal fashion. Since 
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the theory relies on a perturbation treatment and since the number of required 
coefficients a'"' increases with the order n at a staggering rate, it is only possible to apply 
the method to inverse problems that are weakly nonlinear or in problems where it is 
possible to compute the U'"' and the model functional (4) analytically to all orders. The 
resulution kernels provide useful information on the resolution and degree of nonlinear 
contamination of models obtained in inversions. As with the theory of Backus and 
Gilbert (1968, 1970), the theory may be more valuable for the determination of the 
resolution properties (including the nonlinear effects) of the inverse problem than for the 
actual estimation of the model. The analysis of both the linear and the nonlinear 
resolution kernels can be helpful in the optimal design of experiments since it provides 
the means to determine the properties of the inverse problem as a function of the 
(nonlinear) data kernels. 

In the ideal case, the nonlinear model functionals are good local estimates of the true 
model. One should be cautious in the interpretation of the resolution kernels. The 
first-order resolution kernel describes to what degree some local averaging is present in 
the inversion. For a given first-order resolution kernel, the model functional is a more 
informative estimate of the true model for a smoothly varying model than for a rapidly 
oscillating model (Parker 1977b). For the nonlinear resolution kernels a similar effect 
occurs. The higher-order resolution kernels describe to what extent the nonlinear com- 
ponents are removed from the data functionals. For a given nonlinear resolution kernel, 
the nonlinear mapping from the true model to the model functional is smaller for a 
weakly perturbed model than for a model that is strongly perturbed and nonlinear. 

A statistical analysis of the model functionals reveals that the nonlinearity alters the 
statistics of the inverse problem. The most important result is that for unbiased data the 
nonlinearity of the problem may lead to a bias in the inversion. In many practical 
experimcnts the data have significant errors. A large amount of data is frequently used 
to eliminate the effect of these random errors. The results of section 3 imply that this 
procedure for suppressing the effect of data errors does not work for nonlinear inverse 
problems, and that the resulting model may suffer from a bias. It is of interest to note 
here that one frequently linearizes a nonlinear problem and that one applies a statistical 
analysis to the linearized inversion. This procedure may give the false impression that 
there is no bias in the model obtained from the linearized inversion. 

The analysis of this paper relies on a perturbative treatment of both the forward and 
the inverse problem. Note that the derivation of section 2 breaks down when all first- 
order kernels G!') vanish. It should be kept in mind that the theory provides a local 
analysis of the nonlinear inverse problem. A caveat should be made here that the global 
properties of the nonlinear inverse problem may be different from the local properties. 
As an example, consider the inverse problem (39) withf(t) = sin 5 .  This inverse problem 
is ill-posed; for Id1 < 1 there are infinitely many solutions, whereas for Id1 > 1 there is 
no solution, Now consider the truncated third-order expansion for this problem: 
d = jH(x)m(x)dx - gjH(x)m(x)dx)'. This equation leads to three possible values of 
jH(x)m(x)dx for ldl < +& 0.9428, and for one possible value for Id1 > +&. This 
example shows that truncation of the perturbation series for the forward problem 
changes the global properties of the inverse problem. It is should be kept in mind that 
the theory of this paper only leads to a local analysis of the properties of the inverse 
problem. In the example shown here this implies that the theory can only be applied for 
models close to m = 0. 

The theory of this paper relies completely on the perturbation expansions (2) and (4) 
of the forward and the inverse problem. It is in general extremely difficult to proof the 
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convergence of these expressions. It should be noted that convergence of the pertur- 
bation series (2)  of the forward problem does not guarantee the convergence of the series 
(4) of the inverse problem. To see this, consider the forward problem (39) with p =f 
( 5 )  = sin t, the perturbation expansion 

1 1 
3! 5!  p = 5 - - 5 3 + - 5 5 +  

converges for all values o f t .  However, the perturbation series of the inverse 

lp' 1 . 3 ~ ~  
2 3 2.4 5 { =f- '(p) = arcsinp = p +-- +--+ . .  . 

converges only for lpl i I .  The divergence of the perturbation series is related to the 
ill-posedness of the inverse problem; for I p 1 z 1 the inverse problem has no solution and 
the derivative af- ' /ap is singular for Ipl = I .  The issue of the convergence of the 
perturbation series for the inverse problem is therefore closely related to the well- 
posedness of the inverse problem. Since the theory of this paper assumes the existence 
of the perturbation series a priori, one ideally should supplement each problem with a 
proof of convergence of the forward and inverse series (2)  and (4). 

A proof of convergence usually entails certain restrictions to be imposed on the 
model. For example, Jost and Kohn (1952) establish the convergence of perturbation 
series similar to (2) and (4) for the Schrodinger equation for spherically symmetric 
potentials when the potential satisfies. 

Jpr "  V(r)ldr < cc for n =  1,2 and rlV(r)I < M < 00. (80) 

From a practical point of view this is not very satisfactory Before performing the 
inversion one does not know what the model is, or whether the relation (80) is satisfied. 
However, one does know the data and one may know certain characteristics of the 
model. (For example, a mass density should be positive.) A convergence proof of the 
series (2) and (4) should therefore be based either on the data (instead of the model), or 
on physical a priori notions of the model (rather than convenient mathematical 
inequalities). 

This implies that for the purpose of estimating a model, the series solution (4) of the 
inverse problem should be regarded as an asymptotic solution. The numerical example 
of figure 4 shows that the resulting model estimates may be substantially more accurate 
than the result from a linearized inversion. The usefulness of the theory of this paper for 
practical problems therefore depends on the strength of the noniinearity. As a check on 
the consistency of the model obtained from a truncated solution of the series (4) one can 
compute synthetic data for the determined model using a fully nonlinear theory for the 
forward problem and verify whether the computed synthetic data agree with the used 
data within the measurement error. Truncating the inverse series (4) may thus provide 
useful nonlinear estimators of the model. 

With these remarks in mind, the algorithm of section 2 can be used to estimate 
models from a finite data set. The example of section 6 for the inverse problem for the 
3~ Schrodinger equation shows how the theory can be used to determine whether a given 
data set is unsufficient, sufficient, or redundant for the reconstruction of the model. With 
this theory, the redundancy of the data set required for the Newton-Marchenko method 
(Newton, 1980, 1981) is established, even in the case where the nonlinearity is strong 
and there is a large discrepancy between the scattering amplitude and its Born 
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approximation. The theory is therefore useful both for model estimation using a finite 
data set, and for idealized studies for an infinite data set. 
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