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Abstract. A perturbation analysis of nonlinear inversion is presented. As a prototype of 
nonlinear inversion, inverse scattering with the Marchenko equation is considered from a 
perturbative point of view. It is shown that inverse scattering methods using the Marchenko 
equation implicitly reconstruct the potential by removing the nonlinearities from the data, 
and by performing a Born inversion of the resulting linear component in the data (the first 
Born approximation). This is illustrated with a one-dimensional example. This interpretation 
of the mechanism of inverse scattering algorithms clarifies the ‘miracle of Newton’, and has 
profound consequences for both the theoretical and the practical aspects of inverse scatter- 
ing, in particular for the stability of inverse scattering schemes. As shown in several examples, 
the arguments presented for inverse scattering with the Marchenko equation can be 
generalised to a wide class of nonlinear inverse problems. 

1. Introduction 

Inverse scattering methods such as the Marchenko or the Gel’fand-Levitan algorithms 
belong to the rare examples of an exact formulation of a nonlinear inverse problem. 
Despite the simple mathematical formulation of these algorithms, surprisingly little is 
known about the mechanism by which these algorithms actually perform the inversion. 
Which characteristics of the data are actually used for the reconstruction of the unknown 
potential? How are the nonlinearities in the problem handled? This paper clarifies these 
issues by showing a perturbative analysis of exact inverse scattering methods. 

This pertubative analysis is presented for the one-dimensional (ID) Marchenko 
equation, which forms the solution for the inverse problem for the I D  plasma wave 
equation (Balanis 1972, Burridge 1980). However, the obtained results depend only on 
the general structure of the Marchenko equation, but not on its details. This means that 
the results of this paper can be generalised to any nonlinear inversion scheme for which 
the forward problem has a regular perturbation expansion, and for which the inverse 
problem can be formulated in terms of operators that act repeatedly on the data. The 
main conclusion of the perturbative analysis is that only the linear components of the 
data (the first Born approximation, or the single reflected waves) contribute to the 
reconstruction of the potential. Implicitly the nonlinear components are subtracted from 
the data by solving the integral equation of inverse scattering. 

This observation gives new insights in nonlinear inversion algorithms. It makes it 
easy to understand why inverse scattering methods suffer from stability problems 
(Koehler and Taner 1977), why exact inverse scattering methods for media with a 
variable wave velocity have only been formulated relative to a fast reference medium 
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(Cheney et a1 1989), and it gives an example of the remarkable ‘miracle of Newton’ for 
inverse scattering in three dimensions. 

The ID plasma wave equation and the Marchenko equation are presented in section 2. 
In the subsequent section a perturbative analysis is applied to the Marchenko equation. 
This is illustrated in section 4 with a numerical example. Section 5 features three 
examples of a perturbative analysis of other nonlinear inversion schemes (the ‘miracle’ 
of Newton, the inversion of Corones et al(l983) using invariant embedding, and the 
iterative inversion of Morawetz and Kriegsmann (1983)). In an appendix it is shown 
explicitly that the quadratic nonlinearities for the 3~ Schrodinger equation are correctly 
subtracted from the scattering data by the Newton-Marchenko algorithm. 

2. Inverse scattering for the 1~ plasma wave equation 

The perturbative analysis of inverse scattering algorithms is the same for all inverse 
scattering schemes which involve the solution of an integral equation similar to the 
Marchenko equation or the Gel’fand-Levitan equation. Rather than giving a general 
derivation, the perturbation analysis is presented for the inversion of the ID plasma wave 
equation (PWE) using the Marchenko equation. The arguments presented in this paper 
are easily generalised for other inverse scattering equations such as presented by Rose 
et a1 (1986). 

The problem is considered where the wavefield u(x, t )  satisfies the PWE: 

uxr(x, 1) - urr(x, t )  - V(X>U(X,  t )  = 0 (1) 

V(x) = 0 for x < 0. (2) 

where V(x) is an unknown potential. For simplicity it is assumed that 

Furthermore it is assumed that V e L 2  and that (Chadan and Sabatier 1989): 

This potential is being probed by an impulsive wave coming in from the left, so that: 

for t < 0. 

The waves reflected by the potential are recorded at x = 0, so that the data for the 
inversion are given by the reflection time series R(t): 

( 5 )  

u(x, t )  = s(t  - x) (4) 

R(t) = U(X = 0, t )  - d(t) .  

The inverse problem consists of the determination of the unknown potential V ( x )  given 
the reflections R(t). 

The solution of this inverse problem has been formulated both in the spectral domain 
(Agranovich and Marchenko 1963) and in the time domain (Balanis 1972, Burridge 
1980). The reflection time series R(t) serves as an integral kernel in the Marchenko 
equation: 

K(x ,  t )  + R(x + t )  + K(x, z)R(z + t)dz = 0. ( 6 4  irr 
In shorthand notation this equation is also written as 

K +  R +  K R =  0. (6b) 
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Once K(x ,  t )  has been determined from the Marchenko equation, one can find the 
potential using 

dK(x, x) V(x )  = 2 ____ dx ’ 
(7)  

3. A perturbative analysis for the forward and inverse problem of the I D  plasma 
wave equation 

In order to understand the role of the nonlinearities in inverse scattering it is necessary 
to distinguish the linear effects from the nonlinear effects. For this reason it is convenient 
to attach a coupling parameter E to the potential: 

V = E V ( X ) .  (8) 
A perturbation expansion of the forward problem can be obtained by expressing the 
solution of (1) with the incident wave (3) as the following integral equation: 

dx’ U(X, t) = d( t  - X) + E dt‘ G,(x, t; x’, ~’ )V(X’ )U(X’ ,  t’) (9) c c  
with Go the causal Green function of the unperturbed PWE: 

d,,G,(x, t;x‘, t’) - ~, ,G, (X,  t;x‘, t’) = 6(x - x’)6(t - t’). 

G,(x, t;x’, t’) = -+H(t - t‘ - Ix - x’l) 

(10) 
This Green function is given by 

(1 1) 
H(t) being the Heaviside function. 

Iterating the integral equation (9) leads to a Neumann series which can be considered 
as a Taylor expansion in E .  Considering the resulting Neumann series for x = 0 leads 
with equation ( 5 )  to a perturbation expansion for the reflected waves: 

R(t)  = &R,(t)  + &*R2(t) + . . . (12) 
the R, being given by: 

dx, dt, Go(x = 0, t ;  x, , t , )V (x ,  ) d ( t ,  - x I )  

R,(t) = ~dxld t ,dx ,d t ,dx3dt ,Go(x  = O,t;xl,t,)V(x,) (13c) 

with obvious higher-order generalisations. The term RI (t) is the part of the data which 
depends linearly on the potential (the single reflected waves). In analogy with the 
quantum mechanical nomenclature this term will be referred to as the Born approxi- 
mation. R2(t) describes the wave that experienced two interactions with the potential, 
etc. 
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Just as the reflection R(t), the solution K(x, t )  of the Marchenko equation (5) is also 
a nonlinear function of the potential; this function can also be expanded in a Taylor 
series in E :  

K(x,t)  = ~ K , ( x , t )  + E * K ~ ( x , ~ )  + . . . .  (14) 
Inserting the Taylor expansions (12) and (14) in the Marchenko equation (6), and 
equating the coefficients of equal powers of E one obtains a hierarchy of equations for 
K,, : 

K - - R ,  1 -  (154 
K2 = -R2 - KIR, (15b) 
KS = - R, - K,  R, - K2Rl (15c) 

These equations constitute the relation between the K, and the terms R, in the Neumann 
series. A recursive application of these relations allows for the elimination of the Kn from 
the right-hand side of (15d). This gives 

KI = - RI 

K2 = - R, + RI R ,  

K, = - R3 + RZR, + RlR2- R,R,R,  

( 1 6 4  

(166) 

(16c) 
n 

K,, = 2 (-1>”’ RI , . . .  
in= I I , +  +i,,=n 

For example, K2 (x, x )  is given explicitly by 

K2(x,x) = - R2(2x) + 1‘ R:(x + r)dr. 
- - I  

Alternatively, one can insert (8) and the Taylor expansion (14) in the relation (7)  
between V and K. Equating the coefficients of equal powers of E gives 

dKl 
dx 

2 __ (x,x) = V(x )  (1 7 4  

n 2 2. (17b) dKn 2 - (x ,x )  = 0 
dx 

The above expressions imply that V(x)  is completely determined by K ,  . According to 
(15a), the first-order contribution K,  (x ,  x) depends only on the first Born approximation 
R I ,  and is thus independent of the nonlinear components in the data. This means that 
only the first Born approximation contributes to the reconstruction of the potential, and 
that the nonlinear components in the data do not contribute to the reconstruction of the 
potential. 

So what happens to the nonlinear components R, (n 2 2) in the data? As an example, 
consider the quadratic term K2(x,x) in equation (1%). This term consists of the dif- 
ference between the second Born term R,, and the iterated term K,R , .  According to 
(17b), K2 does not give a net contribution to the reconstruction of the potential, which 
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means that the second Born approximation R, is being subtracted from the data by the 
iterated term K,  R ,  . It can be seen explicitly in (16e) that the second-order Born term R2 
is being cancelled by an iteration of the first Born approximation R, . The same mech- 
anism is operative for the higher-order terms. For example, the third Born approxi- 
mation R, is being cancelled in (16c) by repeated iterations of the lower-order Born 
approximations R, and R,. 

This means that in the inversion using the Marchenko equation, only the first Born 
approximation contributes to the reconstruction of the potential, and that in the inver- 
sion the nonlinearities are being subtracted from the data. Note that this does not imply 
that one need only perform a Born inversion of the data in order to obtain the potential. 
The reason for this is that one does not measure the first Born approximation; the data 
consist of a sum of both the linear components and the nonlinear components. One really 
needs to go through a nonlinear inversion, such as the Marchenko method, in order to 
eliminate the effect of the nonlinearities. 

One can show from the integral representation for K(x,t) (Burridge 1980) that 
K(0,O) = 0. With (17a, b)  this implies that, for x > 0, 

K,(X, x) = 0 n 3 2 .  (1 8) 

I 

0.- 

I 

\ I ,  

4. A numerical example 

In this section a numerical example is presented to show that the nonlinear components 
are correctly subtracted from the data by using the Marchenko equation. In these 
examples the potential shown in figure 1 is used. The precise form of the potential is not 
important, but it should be kept in mind that the potential consists essentially of two 
scattering zones, and that waves with wavelengths much shorter than the distance 
between the scattering zones can bounce back and forth between the two sides of the 
potential. The low-frequency components in the wavefield interact in a simultaneous way 
with both sides of the potential. 

The first three terms (1 3a-c) of the Neumann series are shown together with their sum 
in figure 2 .  The Born approximation R, consists of reflections with opposite polarity 
from the two sides of the potential. The third-order contribution R3 shows a distinct 

2oo Figure 1. Potential used in the numerical 0 50 100 150 

Oist m e  example. 
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Figure 2. The first (thin full line), second 
(broken line) and third (dotted line) Born 
approximations and their sum (thick full 0 100 200 300 

Time line). 

wave arrival around t = 280, this is the wave that has bounced back and forth once 
between the sides of the potential. The static offset of the signals reflects the fact that no 
fixed boundary values are imposed on u(x, t ) ;  this behaviour is the same as for an infinite 
stretched string without fixed boundary conditions. 

The first-order contribution K,(x,x) computed with (150) and (13a) is shown in 
figure 3. Application of the differentiation (17a) of this function leads to a result which 
is indistinguishable from the original potential of figure 1. This reflects the fact that it 
is only the first Born approximation which gives a non-zero contribution to the 
reconstruction of the potential. 

The second-order contributions to K, (x, x) computed with (1 3a, b) and (1 5b) are 
shown in figure 4. The second Born approximation R, is exactly cancelled by the repeated 
iteration K,  RI  (= - R,  R , )  of the first Born approximation, which verifies that the 
quadratic component in the data is correctly subtracted. Note that this does not mean 
that K2(x,  t )  vanishes for all t # x, since the condition (18) only implies that K2(.x, x) 
vanishes. However, the latter condition is indeed satisfied. 

Figure 5 features the cubic contributions to K3(x,x) computed with (13a-c) 
and (15c). Again it can be seen that the third-order Born approximation R, is being 
cancelled by repeated iterations of lower-order Born approximations. The total 
contribution to K3(x, x) is not quite zero; the slight deviation around x = 100 is due to 
numerical errors. Note that the wave which has bounced back and forth between the 

0.02 - 

- 
2- 0 - 
I 

k- 

-0.02 - Figure 3. The first-order contribution 
K, (x, x) to the reconstruction of the 
potential. The derivative 2dK, ( x ,  n)/d.x is 
indistinguishable from the true potential in 0 50 100 150 

Distance figure 1. 
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Figure 4. The second-order contributions 
- R2 (chain line) and - K ,  R ,  (broken line) 
to the reconstruction of the potential, with 
their sum K 2 ( x , x )  (full line). 

Figure 5. The third-order contributions 
- R, (chain line), - K , R ,  (broken line) 
and -K,R,  (dotted line) to the recon- 

1 struction of the potential. with their sum 
K 3 ( x ,  s) (full line). 

sides of the potential (the valley around x = 150) is eliminated so that it does not 
contribute to the reconstruction of the potential. 

In practical inversions one does not, of course, known which parts of the data are due 
to linear effects, and which parts are caused by nonlinearities. Therefore one should 
really solve the Marchenko equation, or use some other nonlinear inversion scheme. As 
noted by Ge (1987), the Marchenko equation can efficiently be solved by iteration. In this 
algorithm the starting value is 

R"'(x, t )  = - R(x, t )  

l?("+')(x, t )  = - R(x ,  t) - 

(1 9 4  
and the following iterations are defined by 

' j?(nl(x, .r)R(.r + t)dz. (1 96) 
- I  

If this process converges, the final solution satisfies the Marchenko equation (6a). It 
should be noted that I??) and K, are fundamentally different functions, K,, depends by 
definition (14) only on the potential in the nth power, whereas Z? contains scattering 
effects of different orders. 

The algorithm of Ge (1987) applied to the scattering data for the I D  potential of 
figure 1 is shown in figure 6. In the iterations shown only the terms up to third order are 
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Figure 6. Iterative solution of the 
Marchenko equation after one (dotted 
line), two (broken line). and three iterations 

lo (full line). Only terms up to third order 
have been taken into account. 

included. (For simplicity, K ( x , x )  is shown rather than its derivative.) After the first 
iteration, the left bump of the potential (around x = 30) is already reconstructed quite 
well, but the second bump (around x = 80) and the area to the right are poorly 
reconstructed. The reason for this is that the first iteration of the Marchenko equation 
is equivalent to doing a Born inversion of the full data including the nonlinearities. The 
effect of the nonlinearities becomes stronger in the later parts of the signal (because then 
the waves have had time to bounce back and forth), so that after the first iteration the 
reconstruction suffers most from incorrectly treated nonlinearities further to the right. 
However, in subsequent iterations these incorrectly handled nonlinearities are subtracted 
from the reconstruction. The reconstruction after three iterations gives, after differ- 
entiation, exactly the potential. In this simple example, three iterations were sufficient to 
reconstruct the true potential because only terms up to third order were taken into 
account. However, when higher-order nonlinearities are present in the data one has to 
perform more iterations. 

It is possible to show that after M iterations all the multiple scattering effects up to 
nth order are correctly removed from the reconstructed potential, and that the error is 
of order E " + ' .  In order to see this, insert the Neumann series (12) in the algorithm (19a, 6);  
this gives, in the abbreviated notation of section 3 ,  

k" = -&RI - &*R, - E ~ R ,  + O(e4) (2Oa) 
gc2) = --ER, - c2(R, - R , R , )  - E,(R, - RI R, - R,R,) + O ( E ~ )  

= -&RI -- &,(R, - R ,  R , )  - e3(Rj - RI R2 - R,R, + RI RI  R , )  + O ( E ~ ) .  (20c) 
Using equation (1 6) one finds that 

E'') = EK, + O(E') 

k2' = E K ,  + c2K2 + O(E3) 

k(j) = BK, + E'K, + e3K3 + O ( E ~ )  

( 2 1 4  

( 2  16) 

( 2  1 c) 
with obvious generalisations to higher order. Applying the differentiations (1 7a) and 
(1 7b) one finds that 

di?'")(x, x) 
dx = &V(X) + O(&fl+l). 
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This means that after n iterations, all nonlinear scattering effects up to nth order are 
correctly subtracted from the data and d o  not contribute anymore to the reconstructed 
potential. The number of iterations needed in practice depends on the degree of non- 
linearity and the required accuracy. For example, with seismic reflection data one can 
sometimes clearly identify a set of multiply reflected waves. If the Nth multiple is of the 
same order as the noise level, one needs to perform N iterations. 

5. Generalisations to other nonlinear inversion methods 

The preceding theory was developed for the ID plasma wave equation. However, the 
arguments employed for the perturbation analysis of the forward and the inverse 
problem did not rely in an essential way on the details of the PWE or the Marchenko 
equation. The only essential ingredient in the analysis was that the forward problem 
could be expressed as a regular series expansion in E ,  and that the inversion could be 
expressed in the form of operators that act repeatedly on the data. A formal proof of this 
statement can be found in Snieder (1990), where a perturbation analysis is applied to 
nonlinear inversion in general. Rather than repeating that proof, three examples are 
presented in the following subsections of well known nonlinear inverse scattering 
problems for which only the first Born approximation contributes to the reconstruction 
of the inhomogeneity, and where the nonlinearities are removed in the inversion. 

5.1. Example 1. Inverse scattering,for the 3D Schrodinger equation and the ‘miracle 
of Newton’ 
An inverse scattering algorithm for the three-dimensional Schrodinger equation has been 
formulated by Newton (1980, 1981). In this method, one needs to solve an integral 
equation similar to the Marchenko equation (6). Just as in the one-dimensional case, the 
integral kernel for this integral equation depends on the scattering data. The potential 
follows by a differentiation of the solution of the integral equation. Therefore, the 
arguments of the preceding sections apply equally well to the Newton-Marchenko 
method. 

The Schrodinger equation in three dimensions is given by 

(V2 + k‘)$(k, it, Y) - E V(r)$(k, it, Y) = 0. 

lV(v)l d C(a  + IWP 

(23) 

(24) 

It is assumed that V E  Lz and that positive numbers C and a exist, such that 

lVV(Y)l < C(a + Ivl)-’ 

with ,U > 3 and 1’ > 7/2 (Chadan and Sabatier 1989). If the potential is irradiated with 
an incident plane wave, the wavefunction in the far field is asymptotically given by: 

exp(ikr) 
$(k, A,  Y) = exp(ikit * v) + A,(?, A) ~ r (25) 

A ,  being the scattering amplitude. The unit vector A denotes the direction of the incoming 
plane wave with wavenumber k. 

The Newton-Marchenko method proceeds by computing for every point Y, for every 
incident A and every final it’, an integral kernel R from the scattering data A,: 

; r x  

R(E,  it, it’, v )  = 2- 1 dk kA,( - it’, i i )  exp( - ik[r + (it + it’) * Y]} .  (26) 4n2 --J 
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This integral kernel is then used in the Newton-Marchenko equation 
c c 7  c 

d2n’R(r, i i ,  i i ’, v )  + d2n’R(x + j, i i ,  ii’, v)K(B, i i ‘, r ) .  (27) 

In this section and the appendix, Jd’n’ denotes an integration over the unit sphere. The 
potential is finally recovered by differentiation: 

V(v) = - 2; * V K ( x  = O , i i , V ) .  (28) 
There are two aspects of the Newton-Marchenko equation which are not well 

understood. First, the right-hand side of equation (28) depends on the unit vector i i, 
whereas the left-hand side is independent of i i. This is called the ‘miracle of Newton.’ 
Equation (28) should be true if A k  is indeed caused by scattering by a local potential. 
However, for general functions A , ,  the miracle need not necessarily be satisfied (i.e. the 
right-hand side of (28) depends on ii and in this case no local potential exists but a 
non-local potential exists when equation (28) still has a solution). 

Second, there is the paradox that the Newton-Marchenko equation requires scatter- 
ing data for all directions of incidence, for all scattering directions, and for all energies. 
However, for a Born inversion it suffices to measure a more restricted set of scattering 
data. (For example, it can be inferred from (30a) that a Born inversion of the potential 
can be performed by using the scattering amplitude for only one angle of incidence. all 
energies and all scattering directions.) It therefore appears that the Newton-Marchenko 
method requires a redundant data set. Note that this redundancy argument applies to 
the Born inversion, but not necessarily to the nonlinear inversion. The point of view of 
nonlinear inversion presented in this paper sheds light on both paradoxes. It is therefore 
instructive to do  a perturbative analysis of the Newton-Marchenko method. This 
analysis is analogous to the analysis presented in section 3 for the one-dimensional PWE. 

The scattering amplitude can be expanded in the following Born series (Rodberg and 
Thaler 1967): 

with 

Ai’)(i i’ ,  i i) = - d’r exp( - ikii’ * v )  V(v) exp(ikii U) (300) 
- - I  4n J 

exp(ik1r - r‘ 1)  
/ v  - v l I  

Af) (i’, f i )  = - [ d3 v { d3 Y’ exp( - ikii’ v )  V(v) 167~’ 
V(v’) exp(ikii - v ’ ) .  

(30b) 
The fact that it is assumed that the scattering amplitude can be written as the Born series 
for a local potential, implies that the analysis presented in this section has no bearing on 
the characterisation problem; it only has implications for the construction problem. The 
solution K from the Newton-Marchenko equation (27) is implicitly a function of the 
potential and can be expanded in a Taylor series as in equation (14). The first-order 
contribution K,  follows by applying the equivalent of (1 5a) to the Newton-Marchenko 
equation (27): 

K ,  (a, A, x) = d2n’R, ( x ,  ii, ii’, x), 



The Born upproxinzution in nonlinear inversion 257 

where R ,  is obtained by inserting the first Born approximation (300) in (26). This gives, 
after carrying out the ii' integration, 

Putting x = 0 and performing the k integral leads to 

K ,  (X = O, i i , x )  = XI - i i . ( u -  xi + ii * ( r  - 

(33) 
Replacing the integration variable r by r + x, switching to polar coordinates and 
carrying out the integration over the angles gives 

1 f X  

K,(R = O,ii,x) = - dr(V(x + rii) - V ( x  - rii))  (34) 4 J "  
so that 

P x '  

- 2A V, K ,  (R = 0, i i ,  x) = - +ii * J dr (V, V ( x  + rii) - V, V ( x  - rii)) .  
0 

(35) 

In this expression V, denotes the gradient with respect to the x coordinates. Introducing 
the vector y = rii,  and converting the x differentiations to y differentiations gives 

1 f r i X  

- 2 i i  .V,K,(R = O,ii,x) = - iJ dy . (V, V(X  + y )  + V, V(X  - y ) ) .  (36) 
0 

Since the potential is assumed to vanish at infinity, this gives 

- 2ii * v, K ,  (. = 0, 3, x) = V ( x )  (37) 
which confirms the occurrence of the miracle (28). The right-hand side of (36) is indeed 
independent of ii, the reason being that the potential only gives a contribution in the 
pointy = 0 (which is independent of i i) and in the points y = f iix (where the potential 
vanishes). In the derivation we can thus see the miracle 'in action' in a situation where 
the miracle (28) should hold. 

In an analogous way to (17b), the higher-order terms K, (n 2 2) satisfy 
- 2ii * V, K,, ( x  = 0, ii, x) = 0, so that these terms do not contribute to the reconstruction 
of the potential. This relation is explicitly verified for the quadratic terms in the appen- 
dix. The first iteration of the first Born approximation is thus the only term which 
contributes to the reconstruction of the potential; this means that the mechanism by 
which the miracle occurs in the construction of the potential is explained by the above 
derivation. However, note that it is assumed in (30) that the data A ,  are the Born series 
of some local potential. If this is not the case the argument of this section breaks down, 
and the miracle need not occur. The treatment of this section does not address the 
characterisation problem, which is a critical issue for the occurrence of the miracle. 

The problem of the apparent redundancy of the Newton-Marchenko method can 
also be understood with the results of this paper. It is true that the Newton-Marchenko 
method requires more data than are needed for a Born inversion. However, according 
to the results of section 3, two steps are implicitly taken in nonlinear inversion. The 
nonlinearities are removed from the data, and a Born inversion of the linear components 
of the data is performed. It is conceivable that the removal of the nonlinearities requires 
more data than are needed for a Born inversion of the linear component in the data. The 
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argument that the Newton-Marchenko algorithm requires more data than a Born 
inversion does not necessarily imply that it requires a redundant data set, because it is 
possible that the removal of the nonlinearities requires a larger data set than is needed 
for a Born reconstruction of the potential. 

5.2. Example 2. Nonlinear inversion using invariant embedding 

An alternative to the inverse scattering methods using integral equations is formulated 
using Ricatti equations (Gjevik et a1 1976, Corones et a1 1983, Bregman et a1 1985). 
Corones et a1 (1983) consider reflected waves recorded at x = 0 for the following I D  
equation: 

U,,  - U,, + &V(X)U, = 0.  (38) 
It is assumed that the potential extends from x = 0 to x = X .  They analyse this equation 
using an invariant embedding approach where ones studies a suite of truncated poten- 
tials extending from an arbitrary point x to the right side X of the true potential. The 
reflected waves R(x, t )  then depends on the position x of the left point of truncation. For 
details the reader is referred to Corones et a1 (1983) who show that R(x, t )  satisfies the 
following Ricatti equation 

a,R(x, t )  - 2d,R(x, t )  = - +&V(X)  J R(x, s)R(x, t - s)ds 
0 

(39) 

with boundary conditions 

R(x, 0) = -;e V (x )  (40a) 

R ( X ,  t )  = 0. (40b) 
For the forward problem one specifies V ( x ) ,  and hence by virtue of (40a), R(x, 0), 

and one integrates (39) leftwards towards x = 0 to obtain the reflected waves for the 
untruncated medium: 

r ( t )  = R(0, t ) .  (41) 

In the inverse problem one specifies r( t ) ,  and hence R(O,t), and one integrates (39) 
rightwards towards x = X .  The potential follows then from (40a). The forward and 
inverse problem thus constitute a mapping from the x axis to the t axis and vice versa, 
using the function R(x, t )  as an intermediary. 

In order to facilitate a perturbation expansion of the forward problem one needs to 
integrate (39) and it is useful to use expression (22) of Corones et a1 (1983): 

R ( x , ,  t - 2 x , )  - R(xO, t - 2x0) = - $ E  {,: ds j0'-2' dz V(s)R(s, z)R(s, t - 2s - T). 

(42) 

For the forward problem one needs to integrate leftwards; therefore take x, < x0 . Setting 
t = 2x0, and using (40a) one finds after a rearrangement of variables that: 

R(x, t )  = - &V(x + t / 2 )  + ) E  j:"" ds j0 i+Z(.x-s) 

dz V(s)R(s, r)R(s, 2x - 2s + t - 7). 
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R(x ,  t )  can be expressed as a Taylor series in E ,  the different powers E” indicating the 
nth-order scattering effects: 

R(x,t) = ~R,(x,f) + &*R2(x,t) + ~ ~ R ? ( x , t )  + . . . . (44) 

Inserting this expansion in (43) one obtains, equating the coefficients of equal powers 
of E ,  

RI (x, t )  = - 4 V ( X  + t / 2 ) ,  (450) 

R,(x, t )  = 0 (45b) 
1 r+r/2 I 2 ( \  -i) 

ds jo R,(x, t )  = ?jY d t  V(s)R,(s,s)Rl(s,2x - 2s + t - T ) .  (45c) 

The R,(x, t )  for even orders n vanish because only the reflected wavefield is considered. 
The reflected waves r ( t )  for the full medium from x = 0 to x = X have an expansion 
similar to (44). Setting x = 0 in (45), and inserting (45a) in (45c) one finds for the 
non-zero terms r ,  and r 3 :  

r , ( t )  = - $ V ( t / 2 )  (46a) 

(46b) 

In these expressions r l  describes the single reflected waves, and r3 describes the waves that 
are reflected three times. The generalisations to higher orders is straightforward. 

For the inverse problem, one needs to integrate rightward from x = 0. In order to do 
so set xo = 0 in (42); using (41) this gives, after a redefinition of variables, 

it 2( ,Y->)  

R(x, t )  = r( t  + 2x) - + E  
ds jo ds V(s)R(s,  z)R(s, 2x - 2s + t - 5). (47) 

Iterating this equation once, and using (46a) to eliminate the potential, gives for the first- 
and third-order effects 

r + 2 ( \ - ~ )  
R ( x ,  t )  = r( t  + 2x) + 2E joy ds jo dz r(2s)r(z + 2s)r(2x + t - 7) .  (48) 

The estimated model p(x, E )  = - 4R(x, 0) follows from this expression by setting t = 0. 
Inserting the expansions of R(x, t )  and r ( t )  in powers of c in this expression one finds 

2 ( Y - \ )  

p(x, E) = - 4Erl (2x) - 4c3r3(2x) - 8~~ jo‘ ds jo dz r ,  (2s)r ,  (z + 2s)r ,  (2x - 7). (49) 

It can be seen from (460) and (46h) that the third-order scattering term r3 ( t )  is being 
cancelled by the triple integral of the Born approximation r ,  ( t ) .  The only term contribut- 
ing to the reconstruction of the potential is the first-order term - 4&r1 (2x). According to 
(46a) this gives P(x, E )  = EV(X), as it shouId. The extension of the derivation presented 
in this section to higher orders is tedious but straightforward. 

5.3. Example 3. The iterative inversion of Morawetz and Kriegsmann (1983) 

The inverse problem for the I D  PWE (1) has been solved in an iterative way by Morawetz 
and Kriegsmann (1 983). (A similar iterative inversion scheme for higher-dimensional 
problems was presented by Morawetz (1981).) In their formulation the potential is 
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assumed to be an even function, V(x )  = V(-x), which vanishes for 1x1 > xo. The 
incident wave also has even parity: 

u,(x, t )  = s(t - x) + s(t + x). (50) 

R(t)  = u,(0, t ) .  (51) 

The reflected waves are recorded at x = 0, and the data are given by 

In the formulation of Morawetz and Kriegsmann (1983) a Jost solution P ( x ,  t )  is used, 
which satisfies the PWE (1) with the boundary condition 

P(x,  t )  = s(t - .) for x > xo. (52)  
By using a representation theorem which relates the data (at x = 0) via the Jost solution 
to the wavefield just after the wavefront (u(x, x)), one can derive the following equation 
for the unknown potential (Morawetz and Kriegsmann 1983): 

S(t - s)(R(r') + 26'(t))dt (53) 

with 

S ' ( t )  = - P(0, t ) .  (54) 
Applying an integration by parts to (53) and redefining 

r ( t )  = jo' K(t')dt' 

one finds that 

(55) 

with 

(57) 
d 

dx 
B(x,  t )  = - [P(x,  x - t )  - P( - x, x - t ) ] .  

Equation (56) is a nonlinear integral relation for the potential, because the Jost solution 
P ( x ,  t )  (and hence B(x ,  t ) )  is a nonlinear function of the potential, which enters the 
right-hand side quadratically. The data r ( t )  also depend nonlinearly on the potential. 
although in practical inversions one considers the data of course as a fixed independent 
quantity. 

A perturbative analysis can be applied to (56). In order to do so the following 
expansions in E can be used, these expansion can be derived from the Neumann series 
for the appropriate integral equations 

P(0, t )  = P,(O, t )  + EP, (0, t )  + E2P,(0, t )  + 
B(x,  f) = B,(x, t )  + EB, (x ,  t )  + t2B2(x,  t )  + . . . ( 5 8 )  
r(t> = Erl ( t )  + E2r2(t)  + . . . . 

The absence of the zeroth-order term for r( t )  can readily be inferred from (50), (51) and 
( 5 5 ) .  The zeroth-order terms Po and Bo are independent of the potential. Inserting these 
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expansions in (56) gives for the first- and second-order terms: 

$ E ~ ( x )  = E c-:L ds cox dzB,(-x, s)P,(O, T - s)rl (7) 

+ E' c_: ds jox d? [B,(x,s)P,,(O,z - s)r2(7) 

Equating the coefficients from equal powers of E ,  one sees that the potential depends only 
on r i  ( t ) ;  hence once more it is only the first Born approximation that contributes to the 
reconstruction of the potential. The term proportional to E' on the right-hand side is 
zero, because there is no corresponding term on the left. This means that the double 
reflected waves r2 ( t )  are being cancelled by repeated iterations of first-order quantities. 
This derivation is trivially extended to higher orders. This implies once more that the 
nonlinear components in the data do not contribute to the reconstruction of the poten- 
tial, and that they are cancelled in the inversion by repeated iterations of lower-order 
terms. 

6. Discussion 

Inverse scattering algorithms construct implicitly the potential by subtracting the non- 
linear components from the data, and performing a Born inversion of the linear com- 
ponent in the data. Although this point of view does not help us very much in the design 
of inversion schemes, it gives us some useful insights in the mechanism of nonlinear 
inversion. This conclusion pertains to any nonlinear problem where the forward problem 
can be expanded as a regular expansion, and where the inverse problem can be for- 
mulated in terms of a sum of operators which act repeatedly on the data (see Snieder 
1990). The examples of section 5 illustrate this statement. 

The fact that only the Born approximation contributes to the reconstruction of the 
potential does not imply that it suffices to perform a Born inversion of the data. The 
reason for this is that the data consist of the complete Neumann series instead of the first 
Born approximation. Removing the nonlinear components from the data is an essential 
ingredient of nonlinear inversion. This removal is achieved in an implicit fashion in any 
nonlinear inversion scheme that reconstructs the true potential. 

The fact that inverse scattering algorithms subtract the nonlinearities from the data 
by iteration of an integral equation implies that there exist interrelations between the 
part of the data corresponding to different orders of nonlinearity. (If this were not the 
case, then it would be impossible to subtract the nonlinearities by repeated iterations of 
the lower-order nonlinearities.) These interrelations are currently poorly understood and 
are needed to obtain a better understanding of inverse scattering algorithms. 

Errors in the data have a disastrous effect on the performance of inverse scattering 
algorithms. For example, it is shown by Koehler and Taner (1977) that timing errors lead 
to a severe instability of a Goupillaud inversion for a layered medium. (As shown by 
Berryman and Greene (1980), the Goupillaud inversion is equivalent to inverse scattering 
using the Marchenko equation (6)) The reason for this is now easy to understand. Errors 
in the data destroy the interrelations between the different nonlinear components in the 
data, so that the nonlinearities can no longer be subtracted properly. The data are 
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especially sensitive to timing errors, because timing errors destroy the relation between 
the arrival times between single reflected waves and multiple reflected waves. The 
detrimental effect of data errors on nonlinear inversion is illustrated with a numerical 
example in Snieder (1990). In some nonlinear inversions this instability may be partially 
countered with some form of regularisation. In an optimisation approach, such as shown 
in Snieder and Tarantola (1989) for the imaging of quantum mechanical potentials, such 
a regularisation can be incorporated in a natural way. 

The stability of inverse scattering algorithms has received considerable interest 
(Koehler and Taner 1977, Krueger 1981, Bregman et a1 1985, Carrion 1986). The fact 
that the subtraction of nonlinear components in the data leads to instabilities in non- 
linear inversion applies to a wide class of nonlinear inverse problems, such as those 
presented in section 5.  The nonlinear inversion scheme in the examples of Krueger (198 1)  
appears to be rather stable. However, the reflection coefficients in the example of 
Krueger (1981) are of the order of 5 % ,  so that one is for practical purposes in the linear 
domain. This is confirmed in figure 3 of Krueger (1981) which shows that increasing the 
data error by a factor 5 leads to a pointwise fivefold increase in the error of the 
reconstructed model, a typical linear phenomenon. In contrast, it is shown in Bregman 
et ul (1985) that numerical truncation and round-off effects leads to instabilities if one 
is in the strongly nonlinear domain. Similarly, Koehler and Taner (1977) showed that 
multiply reflected waves lead to instabilities in the Goupillaud inversion of seismic 
reflection data. For a proper appraisal of the stability of a nonlinear inversion scheme, 
it is crucial that one is in the nonlinear domain. 

Exact inverse scattering methods always rely on a causality principle (Rose et a1 1984, 
1985a,b, DeFacio and Rose 1985). Usually this causality principle manifests itself by the 
triangularity of some integral kernel. The interpretation of inverse scattering in this 
paper elucidates the crucial role of causality in nonlinear inversion. Causality implies 
that the linear component of the data arrives before the multiply scattered waves. For 
reflection data this is obvious, because a wave that is reflected only once arrives earlier 
than a wave that has bounced back and forth in the medium. For transmission data, the 
progressing wave expansion shows that the wavefield right after the direct wave depends 
linearly on the potential, and that the nonlinear components in the wavefield arrive later 
(Burridge 1980, Rose et a1 1984). This means that if one wants to subtract the non- 
linearities from the data at time to ,  one need only consider the signal at earlier times 
t 6 t o .  This is implicit in equations (15) where the nonlinearities are subtracted. For 
example, in (16d) the quadratic term R, at time r = 2x is being cancelled by a com- 
bination of linear terms R, at earlier times t 6 2x. This causality principle also forms the 
basis of various kinds of stripping algorithms (e.g. Bojarski 1980, Krueger 1981, Bube 
and Burridge 1983, Bregman et a1 1985). 

Exact inverse scattering methods were formulated for the Schrodinger equation. In 
the Schrodinger equation, the propagation speed of the waves is not affected by the 
potential. The formulation of exact inverse scattering methods for media with a variable 
wave velocity is problematic. (In one-dimensional inverse problems with a variable 
velocity one usually transforms the velocity away by converting depth to travel time (e.g. 
Burridge 1980)) For three-dimensional problems with variable wave velocity, an integral 
equation for the inverse problem has been formulated by Rose et a1 (1985a) for the 
special case where the wave velocity in the inhomogeneity is less than or equal to the 
wave velocity in the surrounding reference medium. Cheney et a1 (1989) remove this 
limitation using an inverse scattering algorithm which relates the variable velocity 
medium to a fast reference medium in such a way that the scattered waves are always 



The Born approximation in nonlinear inversion 263 

slower than the waves in the reference medium, so that the desired causality properties 
can be employed. The results of this paper allow a better understanding of the additional 
complications of exact inversion schemes for scattering media with a varying wave 
velocity. In inverse scattering, one deals with the nonlinearities by subtracting them from 
the data. In a medium with a fixed wave velocity, one can infer the arrival time of a 
multiply reflected wave if one knows the arrival times of the single reflected waves. This 
is no longer possible if the velocity is unknown because in that case one does not know 
at which time one should subtract the nonlinear components from the data. This 
problem is aggravated by the fact that for media with a variable wave velocity the 
nonlinear components in the data may arrive before the linear components in the data, 
which considerably complicates the inversion for media with a variable wave velocity. In 
fact, it is not known if the inverse problem for 3D media with an unrestricted variable 
wave velocity is well-posed (Cheney et a1 1989). 

As noted by Ge (1987), the second iteration of the Marchenko equation produces the 
same contribution to the reconstructed potential as the quadratic term of a perturbative 
inversion scheme for the Schrodinger equation derived by Moses (1956). It is shown by 
Snieder (1990) that the perturbative analysis of the Marchenko equation can be extended 
to any nonlinear inverse problem where both the forward and inverse problem can be 
expressed as regular Taylor series. It is therefore not surprising that the iterative solution 
of the Marchenko equation leads to the same algorithm as for a perturbative inversion 
as developed by Moses (1956). It follows from the fact that the arguments presented in 
this paper can be extended to a very wide class of nonlinear inverse problems (Snieder, 
1990) that the subtraction of the nonlinearities and the reconstruction of the 
inhomogeneity by the linear component in the data is a fundamental aspect of nonlinear 
inversion. 
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Appendix: the elimination of the quadratic nonlinearities in the Newton-Marchenko 
method 

The second-order contribution to the solution K of the Newton-Marchenko equation 
(27) is by analogy with (156) given by 

d2n’R,(a, 2,  ii‘, v )  + dp d2n‘Rl ( x  + B, ii, ii‘, v)Kl (B,  ii’, v ) .  (Al l  I:’ i 
Inserting the second-order Born approximation (30b) in (26) gives 

x exp[ikii’ * (v  - x)] exp[ikii * (r’ - x)] exp(iklr - v ‘ l )  exp( - ikx). (A2) 
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Carrying out the integration ld2n’  over the unit sphere gives 

x sin(k1r’ - xi) exp[ikii - ( r  - x)] exp(ik1v - I*’ 1)  exp( - ika). (A31 
The second term on the right-hand side of (Al )  follows by using (31) for K , ,  and by 

inserting the first Born approximation (30a) in (26). This gives 

jnx dfl 1 d2n’R, (a  + P ,  i i , ii ’, x ) K ,  ( P ,  A’, x) = 4 jOz db j d2n‘  j-: dk, k,  j d3r V(r)  64.n 

x exp[ik, ii’ - (r - x)] exp[ik, ii * ( U  - x)] exp[ - ik, (a  + /3)] J dk, 
- %  

sin ( k ,  Iv’ - X I )  -exp[ik,(ii’ (v’ .- x) - b)].  Ir’ - XI 
x j d3rf  V(v’) (‘44) 

Expanding the sine in two exponentials, and integrating over k, gives two delta 
functions, S(P  - in’ (r’ - x) - lr’ - X I )  and 6(8 - n’ - (r’ - x) + jr’ - X I ) .  The last delta 
function does not contribute since f i  > 0 and ii’ (v’ - x) - lv’ - X I  < 0. This gives 

x exp[ik, it’ (v - x)] exp[ik, ii ( r  - x)] exp[ - ik, (SI  + P) ]  

Carrying out the integration over f l  and over the unit sphere Sd’n’ produces 
V(v) V(r’)  

lr - v ’ /  Iv’ - x/  
joJ- dp d2n’R, (3 + 8, i i, ii’, x ) K ,  ( P ,  i i ’, x) = 4 { dk 1 d3r  d3r’ 

16.n - =  
x sin(klr - r’ 1 )  exp[ikii ( U  - x)] exp( - iklv’ - xi) exp( - ika). (A61 

Adding (A3) and (A6), and setting a = 0, one finds for the total contribution of the 
second-order contributions: 

x [sin(klr’ - xi) exp(ik1v - r’ 1)  + sin(k1r - r’ 1)  exp( - ikiv’ - X I ) ] .  (A7) 
Expanding the sines in exponentials one obtains four terms, two of which cancel each 
other. The remaining terms can be recombined to give 

x exp[ik(lr - v’ I + 11”’ - xi)] {exp[ikii * ( r  - x)] - [ - i i ] }  (‘48) 
where [ - i t ]  stands for the same term with ii replaced by - f i .  Defining r ,  E v - v‘ and 
18, 

r‘ - x, and carrying out the k integration, one finds 

1 V(v, + v, + x)V(vz + x) K,(a = O,ii,x) = ~ jd’r ,  (d3r2 
1671 rl r2 



The Born approximation in nonlinear inversion 265 

Carrying out the rI and r2 integrations in polar coordinates, gives with the definitions 
uI  = (ii * ? I )  and u2 = (it * r 2 ) :  

V(rl + r2 + x)V(r2  + x) 
T I  r? 

X 

x [6(rl + r2 + u l r l  + u2r2)  - 6(r ,  + r2 - u l r I  - uzr,>]. (A 10) 

The delta functions give a contribution equal to zero upon integration over the two 
variables u l  and u2.  This means that 

&(a  = 0, it, x) = 0. (A1 1 )  

This confirms that in the Newton-Marchenko algorithm the second-order Born 
approximation is being cancelled by a repeated iteration of the first-order Born 
approximation. 
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