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Time-lapse traveltime change of singly scattered acoustic waves
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S U M M A R Y
We present a technique based on the single-scattering approximation that relates time-lapse
localized changes in the propagation velocity to changes in the traveltime of singly scattered
waves. We describe wave propagation in a random medium with homogeneous statistical
properties as a single-scattering process where the fluctuations of the velocity with respect to
the background velocity are assumed to be weak. This corresponds to one of two end-member
regimes of wave propagation in a random medium, the first being single scattering, and the
second multiple scattering. We present a formulation that relates the change in the traveltime
of the scattered waves to a localized change in the propagation velocity by means of the
Born approximation for the scattered wavefield. We validate the methodology with synthetic
seismograms calculated with finite differences for 2-D acoustic waves. Potential applications
of this technique include non-destructive evaluation of heterogeneous materials and time-lapse
monitoring of heterogeneous reservoirs.

Key words: Born approximation, random media, scattering.

1 I N T RO D U C T I O N

In the search for technically simple and computationally inexpensive methods for monitoring the time varying behaviour of the subsurface,

such as changes associated with a producing hydrocarbon reservoir, we consider coda wave methods to be promising because of their great

sensitivity to small changes in the medium. Here we explore the time-lapse behaviour of singly scattered acoustic waves under localized

changes in the propagation velocity of the medium.

Coda waves are the result of the interaction of an incident wave with the heterogeneities of the medium that gives rise to scattered

waves. Many studies have described these scattered waves as multiply scattered waves, and the diffusion approximation has been employed to

characterize the energy transport in strongly scattering media (Aki & Chouet 1975; Turner & Weaver 1994; Page et al. 1995; Schriemer et al.
1997). In particular, multiply scattered waves have been used to monitor temporal changes in the medium due to the high sensitivity of these

waves to small changes in the medium (Weitz & Pine 1993; Yodh & Chance 1995; Snieder et al. 2002; Jian et al. 2003). Recently, Pacheco &

Snieder (2005) use the diffusion approximation to account for the traveltime change of multiply scattered waves due to a localized velocity

perturbation.

There are many important practical applications where scattering is not sufficiently strong for the diffusion approximation to be used to

model the energy propagation in the scattering medium. Seismic imaging techniques, as used in oil exploration (Claerbout 1985), rely on the

single-scattering approximation to obtain an image of the subsurface. In the single-scattering model all scattered waves are assumed to have

been scattered once on their way from the source to the receiver, this is usually called the first Born approximation. The application of this

approximation to coda waves is valid for weakly scattering media. The Born approximation has been used in theoretical studies of the apparent

attenuation of a scattering medium (Chernov 1960; Wu 1982) and in the analysis of the decay of the coda envelope for microearthquakes (Aki

& Chouet 1975; Sato 1977). Kopnichev (1977) calculated the time dependence of the energy of the seismogram’s coda by applying the Born

approximation to scattering theory.

Leary (2002) used first-order elastic wave scattering theory to numerically simulate time-lapse borehole seismic data aimed at monitoring

oil–water substitution in heterogeneous hydrocarbon reservoirs. In his work, P-wave backscatter ‘snapshots’ of a heterogeneous rock can be

acquired with a borehole seismic source and sensor located at the centre of the volume. Using this methodology, Leary (2002) was able to image

the large-scale time-lapse variations of the scattering volume that are the essential drainage structures that a reservoir model incorporates.
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Here we consider the time-lapse variation of the traveltime of the scattered waves caused by a localized slowness perturbation. We

restrict ourselves to singly scattered waves. The case of multiply scattered waves, investigated in Pacheco & Snieder (2005), relies on a

different diffusion approximation for the scattered wavefield. A small change in the propagation velocity of the medium induces a change in

the traveltime of the perturbed wavefield with respect to the unperturbed wavefield. The difference in the time of propagation between the

unperturbed and perturbed scattered waves provides a framework to estimate changes in the propagation velocity of finite extent. In this work

we determine the mean traveltime change of the scattered wavefield for a given localized propagation velocity perturbation.

The remainder of this paper is divided into five parts. In Section 2 we introduce coda wave interferometry and explain how to obtain

an estimate of the mean traveltime change of waves by cross-correlating the unperturbed and perturbed wavefields. Section 3 reviews

the single-scattering model and how to numerically simulate singly scattered waves. In Section 4 we present a theory that accounts for

the time-lapse variation of the traveltime of the scattered waves using the single-scattering approximation. With this technique we calculate the

mean traveltime change for any given source–receiver pair due to localized perturbation in the propagation velocity. For the sake of simplicity,

the theory has been developed for 2-D acoustic waves. We validate this theory in Section 5 by computing the unperturbed and perturbed

seismograms with the aid of a fourth-order finite-difference algorithm and measure the change in the traveltime of the wavefield for different

source and receiver pairs, and compare this with the theoretical traveltime change that is derived in this paper. Finally in Section 6 we discuss

applications and possible limitations of this technique.

2 C O DA WAV E I N T E R F E RO M E T RY

In order to find the imprint of localized velocity changes in the scattering medium, we derive an expression that relates the traveltime change

with the localized slowness perturbation in the medium. Snieder et al. (2002), using the technique called coda wave interferometry, were able

to detect temperature dependent changes in the velocity of a granite sample by measuring the difference in the traveltime of scattered waves

at different times. For a weak perturbation in the slowness, estimates of small velocity perturbations can be obtained from the unperturbed

and perturbed waves by a time-windowed cross-correlation of the scattered waves recorded before and after the perturbation. The unperturbed

wavefield uu(t) can be written as a summation of waves over all possible scattering paths P (Snieder 1999)

uu(t) =
∑

P

AP (t), (1)

where for single scattering the paths P are defined by ellipses as shown in Fig. 1. The possible locations for scatterers are distributed on

the ellipses. Scattered energy (centre and right panels) arrives after the first or direct arrival (left panel). Notice that for a given traveltime

t, energy arriving at the receiver is the sum of waves that have been scattered at different locations on the single-scattering ellipse. It is

convenient, therefore, to define a quantity called the mean traveltime change 〈τ 〉(t) that represents the average traveltime difference between

all the unperturbed and perturbed waves that arrive at the receiver within a time window (t − t w , t + t w).

When we introduce a small perturbation of the propagation velocity, the effect of this perturbation on the geometrical spreading and the

scattering strength can be ignored (Snieder 2006), and the dominant effect on the waveform arises from the change in the traveltime of the

Figure 1. Single-scattering paths for different propagation times t. Top: seismogram indicating three energy arrival times. Bottom: single-scattering ellipses

and ray paths for the three arrival times indicated on the seismogram.
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wave that travels along each path:

u p(t) =
∑

P

AP (t − τP ), (2)

where τ P is the traveltime perturbation for the propagation along trajectory P due to the slowness perturbation. Snieder et al. (2002)

characterized the change in the wavefield using the time-windowed cross-correlation function, defined as

C (t,tw )
up (ts) =

∫ t+tw

t−tw

uu(t ′)u p(t ′ + ts) dt ′, (3)

where t denotes the centre of a time window of length 2t w , and t s is the lag time for the correlation. When eqs (1) and (2) are inserted into

eq. (3), double sums
∑

PP′ appear. We assume that in these double sums, the cross terms related to different paths (P �=P′) are incoherent

and average out to zero when the mean of the source signal vanishes. The contribution of the crossterms is estimated by Snieder (2004). A

dimensionless measure of the change of the wavefield is given by the time-windowed correlation coefficient, which is given by

R(t,tw )(ts) =
∫ t+tw

t−tw
uu(t ′)u p(t ′ + ts) dt ′(∫ t+tw

t−tw
u2

u(t ′) dt ′ ∫ t+tw
t−tw

u2
p(t ′) dt ′

)1/2
. (4)

For time shifts ts much smaller than the dominant period T of the wave, a second-order Taylor expansion of the wave field in τ P gives

(Snieder 2006)

R(t,tw )(ts) = 1 − 1

2
ω̄2〈(τP − ts)〉2 (t, tw), (5)

where ω̄ is the dominant frequency of the wave. In this expression 〈...〉(t,tw) denotes the average over all waves that arrive in the time window

(t − t w , t + t w) with a weight factor that is equal to the intensity of the waves (Snieder 2006). Thus, averages are taken with a weight factor

that is given by the intensity of each singly scattered wave. This means that in this work, the average traveltime change 〈τ 〉(t , t w) is given by

an average of the traveltime change of individual waves with different paths P arriving on the time window (t − t w , t + t w), that is,

〈τ 〉 (t, tw) =
∑

P wP (t, tw)τP (t, tw)∑
P wP (t, tw)

, (6)

where the weighting factor w P (t , t w) is given by the intensity for the singly scattered waves arriving on the time window (t − t w , t + t w).

3 S I N G L E - S C AT T E R I N G M O D E L

A seismic wave propagating in a spatially heterogeneous medium is treated as a source pulse that remains unaltered in wave shape despite

interactions with the heterogeneities, plus scattered waves generated by the source pulse as it encounters heterogeneities in the medium. This

is the basis of the single-scattering model.

In our numerical implementation of this single-scattering model we assume that the velocity field is a statistically homogeneous quasi-

random medium, where small-scale velocity fluctuations with Gaussian autocorrelation function are added to a constant background velocity.

The scale length of the velocity fluctuations is given by the correlation length a of the velocity fluctuations. The relative magnitude of the

velocity fluctuations with respect to the mean is given by the standard deviation σ .

The single-scattering model assumes that the scattering is weak. For our random velocity model this implies that the magnitude of the

velocity fluctuations σ is small so that the amplitude of the scattered waves is much smaller than the amplitude of the incident wave. Thus, as

the incident wave propagates through the random medium, a small fraction of the energy of the incident is transformed into scattered energy

due to the weak scattering.

By appropriately adjusting the values of a and σ for a given band-limited source signal, in Section 5 we calculate, using finite differences

(second order in space, fourth order in space), synthetic seismograms such as the one shown in Fig. 1, which can be described using the

single-scattering model. By this we mean that the energy loss of the incident wave by scattering is small. Also, the amplitude of the scattered

waves is linearly proportional to the magnitude of the velocity fluctuations. For the sake of simplicity we ignore intrinsic attenuation and

assume that the mass density is constant. If intrinsic attenuation is neglected, the dominant reduction in the amplitude of a propagating wave

in this model is due to geometric spreading.

4 M E A N T R AV E LT I M E C H A N G E I N T H E S I N G L E - S C AT T E R I N G R E G I M E

In the Born approximation the total wavefield u can be thought of as the summation of waves going over a multitude of paths, with all the

possible paths defined by the single-scattering ellipses as shown in Fig. 1.

Each path from source to receiver is associated with a weight which is proportional to the intensity of the wave following that path. In

the single-scattering regime this weight can be calculated using the Born approximation for the scattered intensity. Thus, recalling eq. (6), and

considering the waves arriving within the time window (t − t w , t + t w) we can calculate the average or mean traveltime change 〈τ 〉(t) for the

waves as the weighted average of the traveltime perturbations τ P for waves that travel along different paths P.
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Figure 2. A wavefield generated at the source (asterisk) interacts with scattering heterogeneities and is recorded at the receiver (triangle).

Fig. 2 shows a cartoon representation of the paths that waves can follow in the single-scattering medium. The total wavefield is regarded

as the superposition of many waves following different paths. Each wave starts at the source location, is scattered once with the heterogeneities,

and finally, it is detected at the receiver location. If we introduce a localized perturbation in the propagation velocity (as shown by the shaded

area in Fig. 2) some paths traverse the perturbation while others do not. This localized velocity change will perturb the traveltimes of the

individual paths in a different way. The mean traveltime change 〈τ 〉(t) averages out the different traveltime perturbations within a given time

window.

4.1 Single-scattering intensity

Sato (1977) derived the space–time dependence of the energy density of scattered waves in 3-D assuming single isotropic scattering due to

uniformly distributed scatterers. His model explains how scattered energy is homogeneously distributed as time increases. In this approach,

the scattered field is assumed to be linearly proportional to the perturbations in the constitutive parameters (in our case, the acoustic velocity).

In this study we use this approach to describe the time–space evolution of the intensity of the scattered waves.

First, we derive the expression for the time–space dependent intensity for an isotropic source in a statistically homogeneous random

medium in the single-scattering regime. This gives the intensity I P (t) of a singly scattered wave with traveltime t and path P. The derivation

is shown for scalar waves in two dimensions (2-D). Suppose that the propagation velocity v(x) can be represented as a perturbation from a

constant background velocity v0 such that

v(x) = v0(1 + n(x)), (7)

where n(x) is a quasi-random perturbation added to the homogeneous background. For the present discussion, n(x) is assumed to be small

(n(x) � 1) so that

1

v2(x)
= 1

v0
2

(1 − 2n(x)). (8)

In the last equation we have retained only the first-order term of an expansion about powers of n(x), this is consistent with the Born

approximation. The Helmholtz equation is given by

∇2u + ω2

v0
2

[1 − 2n(x)]u = 0. (9)

The solution to the Helmholtz equation in the Born approximation is, in the frequency domain, given by (Bleistein et al. 2001)

u(xg, xs, ω) = u0(xg, xs, ω) + 2
ω2

v0
2

∫
A

n(x)u0(x, xs, ω) × G0(xg, x, ω) dA(x), (10)

where u0(xg, xs) is the incident or unperturbed wavefield generated at source location xs. The integration is over the locations x along the single-

scattering ellipses. The term G0(xg, x) represents the free space Green’s function that satisfies the Helmholtz equation for the homogeneous

medium with velocity v0:[
∇2 + ω2

v0
2

]
G0(xg, x, ω) = δ(xg − x). (11)
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The free space Green’s function in two dimensions G 0(xg, x, ω) is

G0(xg, x, ω) = − i

4
H0

(1)(k|xg − x|), (12)

where H 0
(1) is the first Hankel function of degree zero and k = ω/v0 is the wavenumber. In the far field, the Hankel function is given by

H (1)
0 (k|xg − x|) = eik|xg−x|−iπ/4√

π

2
k|xg − x|

. (13)

The scattered field us is given by the second term on the right hand side of eq. (10), that is,

us(xg, xs, ω) = 2
ω2

v0
2

∫
A

G0(xg, x, ω) n(x) u0(x, xs, ω) × dA(x). (14)

For a point source, the incident field u0(x, xs, ω) is equal to the impulse response or Green’s function G 0(x, xs, ω) and

us(xg, xs, ω) = 2
ω2

v0
2

∫
A

G0(xg, x, ω) n(x) G0(x, xs, ω) × dA(x). (15)

Substituting eqs (12) and (13) into eq. (14) and setting the distances |x − xs| = r s and |xg − x| = r g we get

us(xg, xs, ω) = − ω2

4πv0
2

∫
A

eik(rs+rg )−iπ/2 n(x)

k
√

rsrg
dA(x)

= (−iω)

4πv0

∫
A

eik(rs+rg ) n(x)√
rsrg

dA(x). (16)

To go to the time domain we multiply eq. (16) with e−iωt and integrate over angular frequencies ω:

us(xg, xs, t) = 1

4πv0

∫
A

dA(x) ×
∫ +∞

−∞
(−iω)

exp

[
−iω

(
t − rs + rg

v0

)]
√

rsrg
n(x) dω. (17)

Since n(x), r s and r g do not depend on ω we can write

us(xg, xs, t) = 1

4πv0

∫
A

dA(x)
n(x)√
rsrg

×
∫ +∞

−∞
(−iω) exp

[
−iω

(
t − rs + rg

v0

)]
dω. (18)

Using the differentiation and shifting property of Fourier transforms we obtain

us(xg, xs, t)= 1

2v0

∫
A

n(x)√
rsrg

d

dt

[
δ

(
t− (rs + rg)

v0

)]
dA(x). (19)

Eq. (19) states that the total wavefield is the superposition of waves scattered with the heterogeneities defined by n(x), with a geometric

spreading decay given by the factor
√

rsrg and with traveltime t = (r s + r g)/v0. The time derivative of the delta function accounts for a π /2

phase change of the scattered waves. Now let us compute the average intensity from the scattered wavefield obtained in eq. (19). The intensity

is given by

I (t) = us
2(t) + uH

s
2
(t), (20)

where uH
s is the Hilbert transform of the scattered wavefield. Setting

S(t, x) = d

dt

[
δ

(
t − (rs + rg)

v0

)]
. (21)

We then have

us(xg, xs, t) = 1

2v0

∫
A

n(x)√
rsrg

S(t, x) dA(x). (22)

Inserting eqs (19), (22) and its corresponding expression for its Hilbert transform into eq. (20) we obtain

I (xs, xg, t) = 1

4v0
2

∫
A1

∫
A2

dA1(x1)dA2(x2)
n(x1)√
rs1

rg1

n(x2)√
rs2

rg2

× [
S(t, x1)S(t, x2) + SH (t, x1)SH (t, x2)

]
.

(23)

The mean intensity is obtained after calculating the ensemble average of the intensity, that is,

〈I (xs, xg, t)〉 = 1

4v0
2

∫
A1

∫
A2

dA1(x1)dA2(x2)
〈n(x1) n(x2)〉√
rs1

rg1

√
rs2

rg2

× [
S(t, x1)S(t, x2) + SH (t, x1)SH (t, x2)

]
, (24)
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where 〈. . .〉 denotes ensemble averaging. When the correlation length a of the velocity fluctuations n(x) is much smaller than the seismic

wavelength, we can approximate

〈n(x1) n(x2)〉 = 〈n2〉δ(x1 − x2). (25)

Inserting this into eq. (24) we obtain

〈I (xs, xg, t)〉 = 1

4v0
2

∫
A

〈n2(x)〉
rsrg

W

(
t − rs + rg

v0

)
dA(x), (26)

where

W

(
t − rs + rg

v0

)
=

[
S2

(
t − rs + rg

v0

)
+ SH 2

(
t − rs + rg

v0

)]
, (27)

where W (t − (r s + r g)/v0) is the envelope of the source wavelet. In the high frequency approximation the envelope of the source function

can be approximated as

W

(
t − rs + rg

v0

)
� δ

(
t − rs + rg

v0

)
, (28)

and the mean intensity becomes

〈I (xs, xg, t)〉 = C

∫
A

〈n2(x)〉
rsrg

δ

(
t − rs + rg

v0

)
dA(x), (29)

where C is a constant. eq. (29) represents the total average intensity at receiver xs due to an impulse generated at the source location xs and

transmitted through the scattering medium. Let us look just at the contribution to the total intensity of an area element dA(x) at location x.

The contribution to the total intensity of the wavefield will be

〈d I (xs, xg, t)〉 = C
〈n2(x)〉

rsrg
δ

(
t − rs + rg

v0

)
dA(x). (30)

Eq. (30) is the contribution to the total intensity from an area element dA located at point x. However, this can also be interpreted as the

intensity of the singly scattered waves with paths P visiting location x.

In eq. (6) the mean traveltime change is an average of the traveltime changes of every path P weighted by the intensity of the wave

going along that path. It is easier though to consider the contribution of an area element dA(x) to the total intensity and then integrate over

the whole area. In this way we replace the discrete summation over paths by an integration over area elements, and 〈d I (xs, xg, t)〉 substitutes

the weight factor or intensity of the paths w p(t , t w) in eq. (6). All the possible paths P are included if we integrate over the area within the

single-scattering ellipse. Since the constant C cancels out because it appears in both the numerator and the denominator, we define w(x, t) as

the weight factor for the ensemble averaging over area

w(x, t) = 〈n2(x)〉
rsrg

δ

(
t − rs + rg

v0

)
. (31)

Integrating over the whole area within the single-scattering ellipse has replaced summing over all the possible scattering paths P and in this

way the calculation is greatly simplified.

4.2 Integral representation for the mean traveltime change in the single-scattering regime

We now turn our attention to the change that a wave with path P undergoes when we introduce a small change in the propagation velocity.

Suppose that the background slowness in a certain region is perturbed by an amount δs(x) small enough that the ray is essentially unchanged

(see Fig. 3). The traveltime of the scattered wave with trajectory P is given by

tP =
∫

ls

1

v0

dl +
∫

lg

1

v0

dl = rs + rg

v0

, (32)

Figure 3. Geometry of a single-scattering path P: ls is the path from the source (asterisk) to the edge of the ellipse and l g is the path from the edge of the

ellipse to the receiver (triangle). The shaded area indicates a perturbation in the slowness.
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where ls represents the straight path from the source at xs to a given scatterer on the ellipse, and lg represents the straight path from the

scatterer to the receiver location xg; rs and rg are the lengths of the paths ls and lg respectively.

Expressing the traveltime tP in terms of the mean slowness s0, this integral is given by

tP =
∫

ls

s0 dl +
∫

lg

s0 dl = rs + rg

v0

. (33)

We introduce a small perturbation in the slowness δs0(x) such that the perturbed slowness is sp(x) = s0 + δs(x). After the perturbation,

the traveltime of the path P changes by

τP �
∫

P
δs(x) dl(x) =

∫
ls

δs(x) dl(x) +
∫

lg

δs(x) dl(x), (34)

where ls and lg are the ray paths through the reference medium. The assumption here is that the slowness perturbation is small (compared to

the reference or mean slowness) such that we can linearize the expression in eq. (33) with respect to the slowness. The traveltime change τ P

represents the propagation time change of the wave that propagates through the medium with trajectory P and time tP. The approximation in

eq. (34) is the application of Fermat’s theorem to traveltime tomography (Aldridge 1994).

We can use the changes in the traveltime τ P to study the localized slowness change in the medium. In eq. (6) the mean traveltime change

〈τ 〉(t) was expressed as the sum over the paths P dictated by the single-scattering ellipsoids. As described in the previous section, it is more

convenient to replace the sum over paths with an integration over area. The mean traveltime change can thus be rewritten as

〈τ 〉(t) =
∫

A τ (x) w(x, t) dA(x)∫
A w(x, t) dA(x)

, (35)

where the traveltime change τ (x) corresponds to the traveltime change of the two paths P1 and P2 going through x as depicted in Fig. 4. The

weight w(x, t) corresponds to the intensity of the paths P with traveltime t going through x. The integration is over the area where scattering

takes place so that all possible paths P are included in the integral defined in eq. (35). Inserting eqs (31) and (34) into eq. (35) we obtain

〈τ 〉(t) =
∫

A

[∫
ls (x)

δs(x) dl(x) + ∫
lg (x)

δs(x) dl(x)
]

× n2(x)
rsrg

δ
(

t − rs + rg
v0

)
dA(x)

∫
A

n2(x)
rsrg

δ
(

t − rs + rg
v0

)
dA(x)

. (36)

The area of integration is delimited by the single-scattering ellipse at traveltime t for source and receiver located at xs and xg, respectively.

In Appendix A we solve the integrals using elliptical coordinates and obtain the following expression for the mean traveltime change of scattered

waves in the single-scattering regime

〈τ 〉(t) = 1

2πh

√(
v0t

2h

)2

− 1

∫
A

[
rs

s
+ rg

g

]
δs(x) dA(x), (37)

where h is the half-distance between source and receiver and we have made use of the geometrical variables specified in Fig. 5. Note that this

result is independent of n(x), which is a measure of the scattering strength of the medium. Eq. (37) accounts for the average change in the

traveltime of singly scattered waves due to a localized slowness perturbation δs(x). This expression gives the linearized relationship between

the mean traveltime change and the localized slowness perturbation δs(x), that is,

〈τ 〉(t) =
∫

A
K (x, t) δs(x) dA(x), (38)

where K(x, t) is the integration kernel that relates the mean traveltime change at traveltime t with a localized slowness perturbation at x for a

given source and receiver configuration, and is given by

K (x, t) = 1

2πh

√(
v0t

2h

)2

− 1

[
rs

s
+ rg

g

]
. (39)

Figure 4. Single-scattering paths that intersect location x.
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Figure 5. Geometry used in the derivation of eq. (37).

Figure 6. Logarithm of K as function of location for h = 2000 m and t = 1 s. The background velocity v0 is 6000 m s−1.

The kernel K(x, t) is the sensitivity function of the mean traveltime change for the localized slowness perturbation. It has dimensions

of 1/distance. Fig. 6 shows the logarithm of K as a function of location for half source–receiver distance h = 2000 m and propagation time

t = 1 s. The distribution is peaked at the source and receiver locations, and decreases rapidly from both locations until it vanishes outside the

single-scattering ellipse described by the traveltime t. In the next section we use eq. (37) to calculate numerically the mean traveltime change

for a localized perturbation for different source and receiver geometries.

5 T R AV E LT I M E C H A N G E F RO M F I N I T E - D I F F E R E N C E S Y N T H E T I C S

We validate our theory with synthetic seismograms of acoustic waves calculated with a fourth-order finite-difference algorithm before and

after a localized slowness perturbation has been introduced in the medium. As described in Section 3 the velocity model is characterized as a

constant background velocity with added small random velocity fluctuations. The correlation distance a is 40 m, which is small compared to

the dominant wavelength of 240 m for the Gaussian shaped source wavelet employed. We set the value for σ (relative magnitude of the velocity

fluctuations with respect to the background velocity v0 = 6000 m) such that the scattering is weak and the single-scattering approximation is

valid. For the example shown here we use σ = 2 per cent.

We perturb the initial velocity model by adding a localized constant slowness perturbation to it. This slowness perturbation is small and

smooth. Fig. 7 shows the localized perturbation of the mean slowness in the shape of a square with sides of length equal to 3000 m. The

magnitude of the slowness perturbation with respect to the mean slowness is δs/s0 = 0.005. We calculate the synthetic seismograms for

the unperturbed and perturbed velocity model. Fig. 8 shows, as an example, both the unperturbed and perturbed seismograms for receiver

R2 located 5500 m away from the source. At first sight there seems to be no substantial difference between the wavefields before and after

the perturbation but looking more closely (see Fig. 9), we can clearly see that one seismogram lags with respect to the other. More careful

inspection indicates that the behaviour of the time lags as a function of traveltime is systematic. It is this variation in the traveltime change as

a function of propagation time t the one that we seek to predict with our theory.

We calculate the theoretical mean traveltime change for the single-scattering wavefield recorded at the receivers pictured in Fig. 7 and

compare the result with the mean traveltime change estimated from the synthetic seismograms using the time-windowed cross-correlation as

described by Snieder et al. (2002). The comparison is shown in Figs 10, 11, 12 and 13. The theoretical mean traveltime change 〈τ 〉(t) was

calculated using eq. (37) for a range of traveltimes t. The mean traveltime of the synthetic seismograms was obtained using the time-windowed

cross-correlation technique using a window length of 500 ms (approximately 12 periods at the dominant frequency).
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Figure 7. Perturbation of the slowness added to the initial velocity model to create the perturbed velocity model. The side length of the square is 3000 m and

the magnitude of the perturbation is δs0/s0 = 0.0050. Source is shown as a star and the four receivers are shown as triangles.

Figure 8. Unperturbed (solid) and perturbed (dashed) synthetic seismograms for receiver R2 located 5500 m away from the source.

Figure 9. Closer view to the unperturbed (solid) and perturbed (dashed) synthetic seismograms for receiver R2 located 5500 m away from the source.
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Figure 10. Theoretical versus measured mean traveltime change for receiver R1 located 500 m from the source. The window length in the cross-correlation is

500 ms.

Figure 11. Theoretical versus measured mean traveltime change for receiver R2 located 5500 m away from the source. The window length in the cross-correlation

is 500 ms.

Figure 12. Theoretical versus measured mean traveltime change for receiver R3 located 4500 m away from the source. The window length in the cross-correlation

is 500 ms.

Fig. 10 shows the mean traveltime change for receiver R1 located 500 m away from the source and ahead of the localized slowness

perturbation. Notice that the mean traveltime change starts increasing and then reaches a maximum. For receiver R2 the mean traveltime change

decreases from a maximum at t = 1.0s. We also show the mean traveltime change for receivers R3 and R4 in Figs 12 and 13, respectively.

Despite fluctuations about the predicted mean traveltime change (because of the randomness of the model), there is a good agreement between

the theoretical and the measured mean traveltime change 〈τ 〉(t) for all cases shown here.

For different source–receiver pairs we obtain different values of the mean traveltime change as a function of time. This difference can be

better understood if we look at the single-scattering ellipses that define the paths for different receivers. In Fig. 14 we show the single-scattering
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Figure 13. Theoretical versus measured mean traveltime change for receiver R4 located 4500 m away from the source. The window length in the cross-correlation

is 500 ms.
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Figure 14. Single-scattering ellipses for receiver R1 (left panel) and receiver R2. Source and receiver locations are indicated by asterisks.

ellipses for receivers R1 (left panel) and receiver R2 (right panel). For receiver R1 and for early propagation times, the paths do not sample the

slowness perturbation. As the propagation time increases the ellipses broaden and sample a larger piece of the perturbation. For receiver R2
on the other hand, for early times, the perturbation occupies relatively a larger portion of the ellipses and, therefore, more paths are affected

by the perturbation. For larger traveltimes the ellipses occupy relatively smaller portions of the ellipses and in this case a larger fraction of

the paths go around the perturbation, decreasing the mean traveltime change. The difference in the traveltime change for different source

and receiver pairs can be exploited in a tomographic scheme to invert the mean traveltime change information to estimate the location and

magnitude of the slowness perturbation in a linearized inverse problem formulation based on eq. (38).

We compare the mean traveltime change calculated for the single-scattering regime with the mean traveltime change calculated for the

multiple scattering regime for the same slowness perturbation using the technique developed by Pacheco & Snieder (2005). The value of

n(x) is larger in the multiple scattering example in order to generate stronger scattering events. Fig. 15 shows such a comparison for receiver

R2. Notice the different behaviour of the theoretical mean traveltime change for the single and for the multiple scattering case. At t = 1s

both approximations give the same mean traveltime change (the traveltime change of the direct arrival in the single-scattering case, and the

traveltime change of the coherent wave for the multiple scattering case) but for later traveltimes the mean traveltime change for multiply

scattered waves increases as a function of time, while the mean traveltime change for singly scattered waves decreases as a function of time.

This difference is due to the fact that the multiply scattered waves sample a given area more often than the singly scattered waves do.

6 D I S C U S S I O N A N D C O N C L U S I O N S

In the synthetic examples of the previous section we observed fluctuations of the measured mean traveltime change from the calculated

finite-difference seismograms around the theoretical value calculated using eq. (37). The fluctuations are due to the random nature of the

scattered wavefield.
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Figure 15. Comparison between mean traveltime change for single and for multiple scattering for receiver R2 for the same slowness perturbation, that is, same

δs(x). The window length in the cross-correlation is 500 ms (approximately 12 periods).

Figure 16. Comparison between the 〈τ 〉(t) of the synthetic seismograms (dots) versus the theoretical 〈τ 〉(t) for different lengths of the time window (indicated

on the upper left corner of each plot) used in the cross-correlation of the unperturbed and perturbed seismograms for receiver R1. The theoretical mean traveltime

change is shown as the solid line.

The fluctuations in the mean traveltime change estimated from the synthetic seismograms are due to the fact that we have only a single

realization of the scattered wavefield. We measure the mean traveltime change from the synthetic seismograms using a time-windowed cross-

correlation technique. The mean traveltime change measured in this way is a weighted average of the time lag for the many scattered waves that

arrive within that time window. The time averaging we use in the time-windowed cross-correlation reduces the fluctuations of the measured

mean traveltime change. Snieder (2004) shows that we can reduce these fluctuations by a factor 1/
√

� f tw , where �f is the bandwidth of the

data, and 2t w as the length of the time window.

The decrease in the fluctuations with the increase of the time-window length 2t w is shown in Fig. 16 where we plot the measured 〈τ 〉(t)
versus propagation time t using different window lengths for the time-windowed cross-correlation for the receiver R1. For this synthetic data

example the dominant period is 40 ms. The length of the time window 2t w varies from 100 to 500 ms. We see that the fluctuations of the

measured 〈τ 〉(t) indeed decrease with an increase of t w .

In developing the expression of the mean traveltime change 〈τ 〉(t) as an average over different paths we assume that the paths before

and after the perturbation are the same. Should this not be the case, the weight of each scattering path looses significance. This imposes a

constraint on the magnitude of the slowness perturbations that we can solve using our approximation, since the perturbations have to be small

enough in order that the paths are preserved after the perturbation.
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The most important result of this work is that we are able to predict the traveltime change of singly scattered waves in a statistical way

without any knowledge of the scattering properties of the medium (no diffusion constant, mean free path or standard deviation of the velocity

fluctuations σ value is required for the calculation). As long as we can describe the wavefield by means of the single-scattering approximation,

the perturbation of the traveltime of the scattered waves depends linearly on the localized slowness perturbation. This technique has the

potential of imaging time-lapse changes of the scattering medium. This technique can be used to detect temporal variations in the slowness

of the medium for a random medium characterized by homogeneously distributed weak scatterers.
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A P P E N D I X A : M E A N T R AV E LT I M E C H A N G E F O R N O N - C O I N C I D E N T S O U RC E

A N D R E C E I V E R

In this section we show the derivation of eq. (37) from eq. (36). Let us start with eq. (33), where δs(x) is the localized slowness perturbation.

The path ls runs form the source to the edge of the ellipse, and the path lg goes from the edge of the ellipse to the receiver. The term 〈n2(x)〉
is approximately constant so we can take it out of the integrals in the numerator and denominator. If we replace δ(t − (rs+rg )

v0
) with v0δ (v0t −

(r s + r g)) we obtain

〈τ 〉(t) =
∫

A

[∫
ls (x)

δs(x) dl(x) + ∫
lg (x)

δs(x)) dl(x)
]

1
rsrg

δ(v0t − (rs + rg)) dA(x)∫
A

1
rsrg

δ(v0t − (rs + rg)) dA(x)
. (A1)

This expression is complicated due to presence of the delta function inside the integrals. We use elliptical coordinates (Morse & Feshbach

1953) to evaluate the integration of the delta function. The elliptical coordinates θ and ε are defined by

ε = rs + rg

2h
, cos(θ ) = rs − rg

2h
, x = hε cos(θ ), y = h

√
ε2 − 1 sin(θ ), (A2)

where h is the half-distance from source to receiver, a is the half-length of the major axis of the ellipse, and θ is the angle formed between the

line connecting the origin with location x (see Fig. A1). The delta function is in this coordinate system given by

δ(v0t − (rs + rg)) = δ(v0t − 2hε) = 1

2h
δ

(
ε − vot

2h

)
. (A3)

The element of area dA in elliptical coordinates is given by dA = [∂(x , y)/∂(ε, θ )] dε dθ , where [∂(x, y)/∂(ε, θ )] is the Jacobian of the

coordinate transformation, that is,

∂(x, y)

∂(ε, θ )
=

∣∣∣∣∣∣∣∣∣∣

∂x
∂ε

∂y
∂ε

∂x
∂θ

∂y
∂θ

∣∣∣∣∣∣∣∣∣∣
= h2(ε2 − cos2(θ ))√

ε2 − 1
. (A4)
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Figure A1. Geometry of the ellipse with centre at the origin.

Therefore, the area element becomes

dA = dx dy = h2(ε2 − cos2(θ ))√
ε2 − 1

dε dθ. (A5)

In the integrals in eq. (A1) we need the combination dA/rsrg. Using the elliptical coordinates in eq. (A2) we find

rsrg = h(ε − cos(θ ))h(ε + cos(θ )) = h2(ε2 − cos2(θ )). (A6)

We first solve for the denominator I D in eq. (A1). Inserting eqs (A3), (A5) and (A6) into eq. (A1) we can write the denominator as

ID =
∫

A

1

rsrg
δ(v0t − (rs + rg)) dA(x) =

∫ 2π

0

dθ

∫ ∞

1

dε
1

2h
√

ε2 − 1
δ

(
ε − v0t

2h

)
. (A7)

Since the integrand does not depend on θ we obtain

ID = π

h

∫ ∞

1

dε
1√

ε2 − 1
δ

(
ε − v0t

2h

)
. (A8)

Using the shifting property of the delta function, and since ε = v0t/2h lies within the interval of integration, we obtain

ID = π

h

1√(
vot

2h

)2

− 1

, (A9)

and we can write eq. (A1) as follows

〈τ 〉(t) = 1

ID

∫ 2π

0

dθ

∫ +∞

1

dε√
ε2 − 1

[∫
ls (x)

1

2h
δ

(
ε − v0t

2h

)
δs(x) dl(x)+

∫
lg (x)

1

2h
δ

(
ε − v0t

2h

)
δs(x) dl(x)

]
. (A10)

For convenience, we can write the expression of the mean traveltime change as the sum of the mean traveltime change from the source location

xs to the edge of the ellipse plus the mean traveltime change from the edge of the ellipse to the receiver location xg. Thus,

〈τ 〉(t) = Is + Ig, (A11)

where I s and I g are

Is = 1

ID

∫ 2π

0

dθ

∫ +∞

1

dε√
ε2 − 1

∫
ls (x)

1

2h
δ

(
ε − v0t

2h

)
δs(x) dl(x), (A12)

Ig = 1

ID

∫ 2π

0

dθ

∫ +∞

1

dε√
ε2 − 1

∫
lg (x)

1

2h
δ

(
ε − v0t

2h

)
δs(x) dl(x). (A13)

Let us first analyse the contribution to the mean traveltime change of the paths that start at the source and finish at the edge of the ellipse.

Substituting the value of I D from eq. (A12) and using again the shifting property of the delta function, we obtain

Is = 1

2π

∫ 2π

0

dθ

∫
ls (x)

δs(x) dl(x). (A14)

Eq. (A14) states that the mean traveltime change of paths starting at the source and ending at the edge of the ellipse is an average of

the traveltime change of the different paths l s for each value of θ . This looks simple enough, but it is not yet useful, as we would like the

expression for the mean traveltime change to take the form of an area integral over the Cartesian coordinates x and y. The key is to realize that

the combination of the θ -integral and the dl-integral sweeps over the whole interior of the single-scattering ellipse. Thus, we want to obtain

the value of dθdl as a function of dxdy. The question is, then, what is the scaling factor if rewrite eq. (A14) as an integral over the Cartesian

coordinates x and y.
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Figure A2. Relation between the area element dA and the length element dl for a path l s starting at the source and ending at the edge of the ellipse. n is a unit

vector that points on the direction of the path and e is a unit vector that points along the edge of the ellipse at the point of intersection of the path with the edge

of the ellipse.

Let dl be an increment in length along the path ls from the source location to the edge of the ellipse and de be an increment in length

along the edge of the ellipse for an increment in angle dθ . Then,

dA = s

rs
(dl × de) = s

rs
dl de sin(φ), (A15)

where φ is the angle between the unit vector n pointing along the direction of the path l s and the vector e parallel to the edge of the ellipse on

the point of intersection, as described in Fig. A2. The term s/r s corrects for the fact that the surface area shrinks as we approach the source.

Let us compute the length element de along the edge of the ellipse. We get this by differentiating x and y in elliptical coordinates with

respect to angle θ , that is,

de =
√

dx2 + dy2, (A16)

where

dx = −h ε sin(θ ) dθ, (A17)

and

dy = h
√

ε2 − 1 cos(θ ) dθ. (A18)

Inserting eqs (A17) and (A18) into eq. (A16) we obtain

de = h
√

ε2 − cos2(θ ) dθ = h

√(
vot

2h

)2

− cos2(θ ) dθ, (A19)

where we have made the substitution ε = v0t/2h. In order to compute sin(φ) we first construct the unit vectors n and e, and then, calculate

the magnitude of the cross-product of the two vectors. The vector n points away from the source along the path l s . The vector e points along

the edge of the ellipse. According to the geometry specified in Fig. A3 we have

n = 1√
(x + h)2 + y2

⎛
⎝ x + h

y

⎞
⎠ = 1√

(hcos(θ ) + h)2 + (h
√

ε2 − 1 sin(θ ))2

⎛
⎝ h cos(θ ) + h

h
√

ε2 − 1 sin(θ )

⎞
⎠ . (A20)

After some algebra we obtain

n = 1

ε + cos(θ )

⎛
⎝ ε cos(θ ) + 1

√
ε2 − 1 sin(θ )

⎞
⎠ . (A21)

The vector e points along the edge of the ellipse and is given by

e = 1√(
∂x
∂θ

)2

+
(

∂y
∂θ

)2

⎛
⎜⎝

∂x
∂θ

∂y
∂θ

⎞
⎟⎠ = 1√

(−hε sin(θ ))2 + (h
√

ε2 − 1 cos(θ ))2

⎛
⎝ −hε sin(θ )

(h
√

ε2 − 1 cos(θ )

⎞
⎠ , (A22)

so that

e = 1√
ε2 − cos2(θ )

⎛
⎝ −ε sin(θ )

√
ε2 − 1 cos(θ )

⎞
⎠ . (A23)

We now calculate the term sin (φ) from the magnitude of the cross-product between n and e. Thus,

sin(φ) = |n × e| =
√

ε2 − 1√
ε2 − cos2(θ )

. (A24)
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Figure A3. Geometry used to calculate the unit vectors n and e.

Using ε = v0t/2h we get

sin(φ) =
√(

v0t
2h

)2 − 1√(
v0t
2h

)2 − cos2(θ )

. (A25)

Insert this with eq. (A22) into eq. (A18) and we obtain

dA = dx dy = h
s

rs

√(
v0t

2h

)2

− 1 dl dθ. (A26)

From eq. (A26) we can obtain dl dθ as a function of dA. Therefore,

dl dθ = rs

s

dA

h
√(

v0t
2h

)2 − 1

, (A27)

and we can substitute the integral over dl and dθ in eq. (A14) with an integral over area, where the area to be integrated is the interior of the

single-scattering ellipse at time t, that is,

Is = 1

2πh
√(

v0t
2h

)2 − 1

∫
A

rs

s
(x) δs(x) dA(x). (A28)

By symmetry, the second integral I g that accounts for the mean traveltime changes of the paths going from the edge of the ellipse to the

receiver location x gives a similar contribution. Taking the integral I g into account and using the symmetry of source and receiver location,

we get, using the notation of pictured in Fig. 5 the expression for the mean traveltime change for waves in the single-scattering regime with

traveltime t

〈τ (t)〉 = 1

2πh
√(

v0t
2h

)2 − 1

∫
A

[
rs

s
+ rg

g

]
(x) δs(x) dA(x). (A29)
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