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Abstract
The linear sampling method seeks to localize the unknown source of an 
observed, time-dependent field. The unknown source could be, for example, 
a scatterer embedded within a medium, or an impulsive excitation such as 
an earthquake or explosion. The source of the observed field is localized by 
means of solving the so-called near-field equation and mapping the obtained 
solutions through an indicator functional over a test region assumed to contain 
the source. In its current formulation, however, the linear sampling method 
suffers from an ambiguous time parameter that strongly influences its ability 
to localize the unknown source. Our paper consists of two fundamental results 
central to the theoretical understanding of the linear sampling method and 
its numerical implementation. First, we prove the so-called blowup behavior 
of solutions to the near-field equation  for a general source function that is 
separable in space and time. Second, we show that the linear sampling method 
can be formulated such that the ambiguous time parameter is irrelevant. We 
demonstrate that a dependence of the linear sampling method on the time 
parameter arises from an incorrect implementation of a convolution-type 
operator found in the near-field equation. When the operator is implemented 
correctly, the dependence on the time parameter vanishes. We provide detailed 
algorithms for efficient and proper implementations of the convolutional 
operator in both the time and frequency domains. The crucial result of the 
improved implementations is that they allow the linear sampling method 
to be completely automated, as one does not need to know the space-time 
dependence of the unknown source. We demonstrate the effectiveness of 
the improved time- and frequency-domain implementations using several 
numerical examples applied to imaging scatterers.
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1.  Introduction

The linear sampling method [1–4] is an inverse scattering technique that aims to localize the 
unknown source of an observed field. First introduced as a way to image scattering objects 
using monochromatic waves, the method relates the measured far-field patterns of the scat-
tered waves to that of an impulse response of the host medium in which the scattering object 
is embedded. The impulse response is the wave field generated by a hypothesized source 
localized at a particular sampling point in the host medium. In particular, the far-field patterns 
of the scattered waves and impulse response are related through an ill-posed integral equa-
tion called the far-field equation. The effectiveness of the linear sampling method in recon-
structing the support of a scatterer relies on a characteristic blowup behavior of solutions to 
the far-field equation. In particular, the norm of a solution becomes arbitrarily large whenever 
the sampling point lies outside the support of the scatterer. This behavior has been studied and 
rigorously proven for the far-field case (e.g. [5, 6] and the references therein).

Due to the limited spatial resolution provided by a single frequency, the quality of the 
obtained reconstructions using monochromatic waves is relatively poor. Consequently, efforts 
to improve the accuracy of the linear sampling method have been made more recently [7–9]. 
By interrogating the scatterer with signals that possess a continuous range of frequencies, the 
accuracy of the reconstructed targets is significantly enhanced. In this approach, the linear 
sampling method relates time-domain recordings of near-field scattered waves to an impulse 
response of the host medium through the near-field equation. Although the desired blowup 
behavior of solutions to the near-field equation has yet to be rigorously proven (a task that is 
considerably more difficult than for the far-field case), several numerical experiments have 
validated the blowup behavior (e.g. [8, 9]). With the time-domain approach, however, came an 
ambiguous time parameter that strongly influences the ability of the method to faithfully recon-
struct the support of the scatterer. In particular, the literature to date indicates that ‘an appropri-
ate time shift’ must be chosen to obtain an image of the scatterer [7–10], yet no information is 
offered on how this parameter should be chosen. We have found that a clear and precise analy-
sis of the time parameter and its influence on the reconstruction process has yet to be provided.

In this paper, we give a simple proof of the blowup behavior of solutions to the near-field 
equation, and show that a proper formulation of the linear sampling method can be obtained 
without introducing an ambiguous time parameter. We find that the reported dependence on 
the time parameter arises when a discretized convolutional operator found in the near-field 
equation  is truncated. When the full convolution is implemented correctly, the dependence 
on the time parameter vanishes. Moreover, we present an algorithm for solving the near-field 
equation in the frequency domain, in which the recorded signals have sparse representations, 
that substantially reduces computational cost compared to the time-domain approach.

In what follows, we provide a brief overview of the time-domain linear sampling method, 
introducing relevant equations, definitions, and parameters (section 2). We then present a 
physical framework in which to formulate the linear sampling method, and in particular to 
prove the blowup behavior of solutions to the near-field equation (appendix) and analyze the 
role of the time parameter (section 3). Next, we provide an in-depth discussion on the numer
ical solution of the near-field equation, with a particular emphasis on how to properly and 
efficiently implement the convolutional operator in both the time and frequency domains (sec-
tion 4). Following this discussion, we present several numerical examples applied to imaging 
scatterers to demonstrate the effectiveness of the improved implementations (section 5). We 
conclude our paper by examining a few implications of our proof of the blowup behavior for 
other possible applications of the linear sampling method, as well as the performance of the 
improved algorithms (section 6).
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2.  Overview of the time-domain linear sampling method

In this section, we present an overview of the time-domain linear sampling method as is 
typically done for the case of imaging a scatterer. For simplicity, we consider the scattering 
of acoustic waves due to an inhomogeneity of compact support D ⊂ R3. The generalization 
to elastic wave scattering is relatively straightforward and has been considered in [10], for 
example. We assume the inhomogeneity is modeled by a variable wave speed c = c(x), with 
c(x) > 0 for all x ∈ D, and that the wave speed is a positive constant c  =  c0 for all x ∈ R3 \ D, 
where D  denotes the closure of D. For a point source located at xs ∈ R3, let u be the total wave 
that satisfies the initial-value problem

∇2u(x, t)− 1
c2(x)

∂2u(x, t)
∂t2 = −δ(x − xs)χ(t), x ∈ R3, t > 0,� (1a)

u(x, t) = 0,
∂u(x, t)

∂t
= 0, x ∈ R3, t � 0,� (1b)

where δ is the Dirac delta distribution and χ ∈ C2(R) is a time-dependent function that 
describes the shape of the wave.

The total wave can be decomposed into an incident wave ui and a scattered wave us such 
that u = ui + us is a solution to (1a) and (1b). By defining the refractive index

n(x) :=
c2

0

c2(x)
,

and the contrast function

m := 1 − n,� (2)

it follows that if the incident wave ui satisfies

∇2ui(x, t)− 1
c2

0

∂2ui(x, t)
∂t2 = −δ(x − xs)χ(t), x ∈ R3, t > 0,� (3a)

ui(x, t) = 0,
∂ui(x, t)

∂t
= 0, x ∈ R3, t � 0,� (3b)

then the scattered wave us satisfies

∇2us(x, t)− 1
c2

0
n(x)

∂2us(x, t)
∂t2 = − 1

c2
0

m(x)
∂2ui(x, t)

∂t2 , x ∈ R3, t > 0,

us(x, t) = 0,
∂us(x, t)

∂t
= 0, x ∈ R3, t � 0.

The unique solution to (3a) and (3b) is given by the convolution of the free-space Green func-
tion (i.e. the radiating fundamental solution) with the pulse function χ:

ui(x, t; xs) :=
χ(t − c−1

0 |x − xs|)
4π|x − xs|

.� (4)

In an imaging experiment, we record the total wave field u at receiver locations xr, which 
are typically restricted to an acquisition surface we denote by Γr . Similarly, the sources used 
to generate the wave field u are restricted to points xs of an acquisition surface we denote 
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by Γs (possibly equal to Γr ) such that Γs and D  are disjoint. Consequently, we can consider 
constructing an incident wave generated by a distribution of sources over Γs. Such an incident 
wave is given by a linear combination of expression (4):

vϕ(x, t) :=
∫

R

∫

Γs

χ(t − ts − c−1
0 |x − xs|)

4π|x − xs|
ϕ(xs, ts) ds(xs) dts,� (5)

where ϕ ∈ L2(Γs × R) is a spatiotemporal density function. The definition given in expression 
(5) defines a Herglotz wave function. Since vϕ is an incident wave, it follows by linearity that 
the function

wϕ(x, t) :=
∫

R

∫

Γs

us(x, t − ts; xs)ϕ(xs, ts) ds(xs) dts� (6)

is a radiating solution to

∇2wϕ(x, t)− 1
c2

0
n(x)

∂2wϕ(x, t)
∂t2 = − 1

c2
0

m(x)
∂2vϕ(x, t)

∂t2 , x ∈ R3, t ∈ R.

Thus, wϕ is a scattered wave. When the scattered wave us is evaluated on the receiver surface 
Γr , expression (6) defines the near-field operator N : L2(Γs × R) → L2(Γr × R) by setting 
wϕ = Nϕ.

Finally, we introduce a prescribed wave function Ψz,τ = Ψ(x, t − τ ; z), often called a test 
function, which is the impulse response of the host medium due to a point source localized at 
z ∈ R3 and at time τ ∈ R:

Ψ(x, t − τ ; z) :=
ζ(t − τ − c−1

0 |x − z|)
4π|x − z|

.� (7)

Here, ζ ∈ C2(R) is a time-dependent function with compact support. The test function (7) 
represents a wave field that can be computed based on the assumption that the host medium 
(in this case, the constant wave speed c0) is known. We note that this test function is often 
assigned the same time dependence χ ∈ C2(R) as the incident wave (4) that interrogates the 
scatterer (as was done in [7–11]). This choice is typically valid in an active imaging experi-
ment in which the sources distributed over Γs are known (as opposed to a passive imaging 
experiment in which unknown, ambient sources generate the interrogating waves), and is 
often simply made for convenience. If the time dependence of the generating source func-
tion is unknown, then ζ should be chosen such that it possesses the same frequency band as 
the observed signals (the reason for this requirement will be explained in section 4). Since 
we are analyzing the linear sampling method in the context of an active imaging experi-
ment, we assume the sources distributed over Γs are known, and in particular that their time 
dependence is given by the known function χ. Hence, we follow our predecessors and choose 
ζ = χ.

The linear sampling method treats the functions (vϕ, wϕ) as an incident-scattered wave 
pair of an inverse focusing problem [12]. In particular, the goal of the linear sampling method 
is to find a spatiotemporal density function ϕz,τ ∈ L2(Γs × R) such that scattered wave wϕz,τ, 
as observed on the receiver surface Γr , coincides with a prescribed test function Ψz,τ; that is, 
we set wϕz,τ = Ψz,τ  on Γr  and, using the definition of the near-field operator N , solve the ill-
posed integral equation

Nϕz,τ = Ψz,τ� (8)

A C Prunty and R K Snieder﻿Inverse Problems 35 (2019) 055003
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in a least-squares sense. Equation (8) is called the near-field equation. Provided we can sepa-
rate the scattered wave us from the total wave u recorded on Γr  (via the difference us = u − ui), 
we can solve the near-field equation to obtain a density function ϕz,τ  such that the constructed 
Herglotz wave function vϕz,τ  optimally focuses onto the point z at time τ , and wϕz,τ = Ψz,τ  is 
the resulting scattered wave.

An interesting comparison can be made between the time-domain linear sampling method 
and the well-established time reversal method [13–15] as focusing techniques. In the time 
reversal method, an impulsive source generates a wave that propagates through an inhomo-
geneous medium and is recorded on an acquisition surface. The observed signals are then 
time-reversed and re-emitted into the original medium, now acting as a source-time function 
distributed over the recording surface. Such an acquisition surface is called a time-reversal 
mirror (TRM). In particular, the time reversal method requires that the medium be invari-
ant to time reversal, and that Γr  and Γs be coincident. Thus, the time reversal method is best 
suited for lossless, nonattenuating media. By modifying how the time-reversed signals are 
re-emitted into the original medium, the time reversal method can focus the observed field 
onto a strongly scattering target or the location of the impulsive source. In contrast, the linear 
sampling method does not rely on time-reversal invariance of the wave equation to achieve 
focusing, nor does it require that Γr  and Γs be coincident. Consequently, the linear sampling 
method can be applied to weakly attenuating media, or even to diffusive fields. (Note that the 
functions vϕ and Ψz,τ—given by expressions (5) and (7), respectively—require knowledge of 
the host medium for their computation. If we mistakenly assume the host medium is lossless, 
then the corresponding errors will be absorbed into the solution to the near-field equation (8). 
In this case, we expect a degraded accuracy in the obtained reconstructions. However, if the 
attenuation in a medium is so strong that no waves are observed, then clearly the linear sam-
pling method will fail. In this case, we would obtain a trivial (zero) near-field operator, and 
every solution to equation (8) would lie in its null space.) Perhaps most interesting, the focus-
ing of the Herglotz wave function vϕz,τ  onto the sampling point z does not depend on a knowl-
edge of the target scatterer. This can be seen from the definition of vϕz,τ  given by expression 
(5), which depends only on the density function ϕz,τ  obtained by solving equation (8), and the 
known incident field ui that propagates through the host medium without the scatterer. We will 
expand our discussion of how the Herglotz wave function focuses in section 3.

We can obtain an image of the scatterer by exploiting the blowup behavior of the solutions 
ϕz,τ , which is generally described by ‖ϕz,τ‖L2(Γs×R) < ∞ for z ∈ D and ‖ϕz,τ‖L2(Γs×R) → ∞ 
for z ∈ R3 \ D. In particular [7–9], if z ∈ D we have the limiting behavior

lim
z→∂D

‖ϕα
z,τ‖L2(Γs×R) = ∞,

where ∂D denotes the boundary of D, and for all z ∈ R3 \ D we have

lim
α→0

‖ϕα
z,τ‖L2(Γs×R) = ∞,

where α > 0 is a regularization parameter and ϕα
z,τ  denotes a regularized solution to the near-

field equation (8). Thus, the norm ‖ϕz,τ‖L2(Γs×R) effectively behaves as a binary indicator for 
the support of the scatterer. Note that since Γs and D  are disjoint, the norm ‖ϕz,τ‖L2(Γs×R) 
remains unbounded as z approaches Γs. However, as stated in section 1, it is not well under-
stood based on the literature to date how the norm ‖ϕz,τ‖L2(Γs×R) behaves as τ  is varied. 
This ambiguity in the time parameter must be addressed and corrected if the linear sampling 
method is to see its use in practical applications concerning time-dependent fields.

Traditionally, the point z in space is called a sampling point, a term used since the inception 
of the linear sampling method for the scattering of monochromatic waves. In the next section, 
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we present a physical framework in which the time parameter τ  can be viewed as the fourth 
component to a four-dimensional space-time sampling point. Within this framework, we relate 
the sampling point (z, τ) to the focusing point and focusing time of the inverse scattering prob-
lem. We provide physical arguments that set clear limitations on the values that τ  can assume 
based on the time interval over which the data are recorded.

3.  Space-time, causality, and the sampling of the near-field operator

Waves are generated by sources that depend on both space and time. When the evolution of the 
waves through a medium is time invariant, this statement can be written compactly as

u = G0 � S,� (9)

where G0 is the unperturbed Green function of the background medium (which in general 
may be inhomogeneous), S is a source function, and � denotes integration over space and 
convolution in time. Implicitly captured in expression (9) is the notion of causality, in which 
the support of the wave u in space-time is determined by the support of the functions G0 and S. 
Intuitively, the source function S determines from which points in space-time the waves origi-
nate, and the Green function G0 describes how the waves propagate away from those points.

For the purpose of illustration, consider the space-time diagram shown in figure 1(a), which 
shows the propagation of a wave u = ui + us in a one-dimensional medium consisting of two 
scatterers (shown as the dark gray circles to the left of the space axis). The scattered wave us 
(shown in green) is recorded in a time interval [t0, tf ] ⊂ R, which has length T = tf − t0. In 
this example, the scatterers can be thought of as a secondary source function that generates 
the scattered wave us. Using expression (9), we can write the scattered wave us as the wave 
generated by this secondary source function, say S′, so that us = G0 � S′ . The support of S′ 
(shown in blue) is localized in space by the locations of the scatterers, whereas the support of 
S′ in time is determined by the travel times of all the waves incident to the scatterers. In this 
illustration, the total wave incident to the scatterers consists of the incident wave ui and all the 
reverberations between the scatterers.

Figure 1(b) illustrates the convolution of the scattered waves us in the near-field equation. 
Here, we prescribe a test function Ψz,τ (shown in red), which is the wave field generated by a 
source localized in space-time at the sampling point (z, τ). The near-field equation (8) attempts 
to construct the prescribed test function Ψz,τ from a linear combination of the scattered waves 
us. In particular, Ψz,τ is set to be a convolution of the scattered waves us. Consequently, the 
scattered waves us are time-reversed, shifted, and integrated with an unknown function ϕz,τ  
such that Ψz,τ is the resulting convolution. Since Ψz,τ is defined to be a singular radiating 
wave, clearly ϕz,τ  must act as an inverse of the source function S′ (otherwise Ψz,τ would 
contain multiple wave arrivals). The solution to the near-field equation ϕz,τ  thus contains the 
time shifts and scattering amplitudes necessary to construct a Herglotz wave function vϕz,τ  
that focuses onto the sampling point (z, τ). That is, the Herglotz wave function is constructed 
in such a way as to ‘cancel’ its interactions with the scatterers as it propagates through the 
medium. As can be seen from figure 1(b), the solution ϕz,τ  can effectively cancel the unknown 
source function S′ if the time-reversed scattered waves can be shifted so that the sampling 
point (z, τ) lies within the support of S′. That is, ϕz,τ  is an effective inverse of S′ if and only 
if the point z lies within the support of the source function S′ along the space axis. If z lies 
within the support of S′, we say the sampling point z is causal, since at this point in space 
there was a causal (or physical) source of scattered waves. Otherwise, we say the sampling 
point is acausal.

A C Prunty and R K Snieder﻿Inverse Problems 35 (2019) 055003
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Note that the time axis in figure 1(b) spans the convolution interval [−T , T]— not the physi-
cal time interval [t0, tf ] in which the data are recorded. This is due to the fact that the incident 
and scattered waves of the inverse focusing problem (vϕ, wϕ) are convolutions of the incident 
and scattered waves of the forward scattering problem (ui, us), respectively. For the near-field 
equation to be consistent, the prescribed test functions Ψz,τ must also be evaluated over the 
convolution interval [−T , T]. Here, τ  is a focusing time; i.e. a time at which the Herglotz wave 
function vϕz,τ  focuses onto the point z and the test function Ψz,τ radiates. It follows that the 
length of the recording interval T has two important consequences. First, the accuracy of the 

Figure 1.  One-dimensional space-time diagrams illustrating (a) the forward scattering 
problem and (b) the linear sampling method. An unknown source function S′ (shown 
in blue) generates the scattered waves us. A prescribed sampling point (z, τ) determines 
from which point in space-time the test function Ψz,τ (shown in red) propagates. When 
the point z lies within the support of S′ along the space axis, the time-reversed scattered 
waves us

tr can be shifted so that the sampling point (z, τ) lies within the support of S′.

A C Prunty and R K Snieder﻿Inverse Problems 35 (2019) 055003
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convolution of the scattered wave us is directly dependent on how well us is represented in the 
recording interval. In particular, if the support of the scattered wave us is effectively contained 
in the recording interval [t0, tf ], then we can expect its convolution wϕ to have compact support 
in the interval [−T , T]. Second, the near-field equation has a nontrivial solution only when the 
test function Ψz,τ lies in the convolution interval [−T , T], as observed on a given recording 
surface Γr . For a fixed recording length T, a focusing time τ  can always be found such that the 
test function Ψz,τ (at least partially) lies in the convolution interval [−T , T]. That is, no matter 
how near or far the point z is from the recording surface Γr , the test functions can be shifted 
in time to lie in the interval [−T , T]. Thus, the size of the sampling region (or imaging domain) 
is arbitrary.

Provided we have adequately recorded the scattered wave us, consider the sampling points 
z for which the test functions Ψz,τ fully lie in the convolution interval [−T , T] when τ = 0. In 
this case, the observed test functions Ψz are nonzero only in the subinterval [0, T], which has 
the same length as the recording interval [t0, tf ]. Clearly, the source of the observed field must 
lie in this region of space, since both the test functions and the data are contained in a time 
interval of the same length as measured on the recording surface Γr . For these sampling points, 
the near-field equation will have nontrivial solutions, and an image of the source function can 
therefore be obtained. Note, however, that the test functions will not lie in the interval [−T , T] 
for τ � T , and generally for τ � −T . For these values of τ , the near-field equation will have 
trivial solutions, and the linear sampling method will fail. Hence, provided the observed field 
is adequately contained in the recording interval, the parameter τ  can be discarded (i.e. set to 
zero) without loss of generality.

We now show how sampling the near-field operator N  generates solutions to the near-field 
equation with the desired blowup behavior. We give a proof in the appendix for a general 
source function that is separable in space and time, and apply the result here for the case 
of localizing a scatterer. According to the Lippmann–Schwinger equation [16], the scattered 
wave us has the integral representation

us(x, t; xs) = − 1
c2

0

∫

R

∫

D
G0(x, t − t′;η)m(η)

∂2u(η, t′; xs)

∂t′2
dη dt′,

where m is the contrast function (2) with compact support D and u(·, ·, xs) is the total wave 
incident to the scatterer due to a source at xs ∈ Γs. Note that the scattered wave us has the form 
of expression (9) if we identify S  =  mutt. Such a source function is called a contrast source. 
Following the procedure given in the appendix, we find that the near-field equation can be 
rewritten as

∫

R

∫

Γs

∂2u(z, t − t′; xs)

∂t′2
ϕ(xs, t′) ds(xs) dt′ = −c2

0ζ(t)
m(z)

, z ∈ D.� (10)

It follows that in the limit as z → ∂D, the contrast function m(z) → 0 and the right-hand side 
of equation (10) becomes unbounded. In fact, by definition (2), the contrast function m(z) = 0 
for all z ∈ R3 \ D. Thus, any solution ϕz to equation (10)—and consequently to the near-field 
equation (8)—becomes unbounded as z → ∂D, and remains unbounded for all z ∈ R3 \ D. 
Thus, the blowup behavior of solutions to the near-field equation  is due to division by the 
contrast function m with compact support D.

The behavior of ‖ϕz‖L2(Γs×R) has a simple physical interpretation [12]. The L2 norm of 
each solution ϕz is effectively a measure of the energy required to construct a singular, radiat-
ing wave from a linear combination of the recorded data us that originated from the sampling 
point z. In other words, we can use expression (9) to write the near-field equation as

A C Prunty and R K Snieder﻿Inverse Problems 35 (2019) 055003
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us � ϕz = Ψz,

so that ϕz can be thought of as a type of inverse source function, and its L2 norm as a measure 
of its energy. We saw above that sampling the near-field operator is equivalent to sampling the 
source function that generates the observed field. If the sampling point z is causal (that is, if 
z is inside the scatterer), then the recorded data contain the field us due to that source point in 
space. In this case, the linear sampling method matches the energy of the test function Ψz with 
the energy of the scattered waves us due to the source point z. Since the recorded data have 
finite energy, the energy of the source function ϕz is finite. Otherwise, if the sampling point is 
acausal, then there is no corresponding field in the recorded data that can be attributed to the 
sampling point z. Here, the linear sampling method reasonably predicts that the amount of 
energy required to construct the test function Ψz is infinite, because it takes a source function 
ϕz of infinite energy to construct Ψz from waves that never existed.

Regarding the numerical solution of the near-field equation, the common mistake found in 
the literature to date is to truncate the convolution to fit within a support which has the same 
length as the recorded time interval. As we show in the next section, truncating the convo-
lution discards much of the information provided by the scattered wave us, and negatively 
impacts the ability of the linear sampling method to localize the unknown source. In this case, 
the focusing time τ  becomes crucial to ensure that the prescribed test functions Ψz,τ lie in a 
particular subset of the interval [−T , T]. The particular subset of [−T , T] needed to obtain an 
accurate image is determined by which part of the convolution is truncated.

4.  On the numerical solution of the near-field equation

In this section, we give an in-depth discussion on the numerical implementation of the near-
field operator in both the time and frequency domains, including detailed algorithms. As we 
will show, the frequency-domain implementation is more economical in many cases than the 
time-domain implementation, especially when the signals are band-limited. First, we briefly 
describe a general procedure for setting up a least-squares formulation of the ill-posed near-
field equation. Our strategy is to apply a Tikhonov regularization scheme [17] and obtain a 
least-squares solution to

min
ϕz,τ

‖Nϕz,τ −Ψz,τ‖2
2 + α‖ϕz,τ‖2

2
� (11)

for the time-domain case and

min
ϕ̂z

‖N̂ϕ̂z − Ψ̂z‖2
2 + α‖ϕ̂z‖2

2
� (12)

for the frequency-domain case. Here, α � 0 is the regularization parameter. For the frequency-
domain case, the parameter τ  is taken to be zero. The discretized near-field operator is given 
in the time domain by

(Nϕ)(i, k) :=
Nt−1∑

l=−Nt+1

Ns∑
j=1

us(xi, (k − l)∆t; yj)ϕ( j, l)

and in the frequency domain by

(N̂ϕ̂)(i;ω) :=
Ns∑

j=1

ûs(xi, yj;ω)ϕ̂( j;ω),
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where i = 1, . . . , Nr , where Nr is the number of receivers; j = 1, . . . , Ns, where Ns is the num-
ber of sources; and k = −Nt + 1, . . . , Nt − 1, where Nt is the number of time samples used to 
record the scattered wave us and ∆t  is the length of a time step. Note that for the time-domain 
case we do not limit k and l to the interval [1, Nt], which would be valid only if the nonzero 
durations of both us and ϕ are known to be limited to the interval [1, Nt]. Since ϕ is unknown, 
we do not make this assumption. Here, ω is a vector of angular frequencies which is deter-
mined by a user-specified bandpass filter. Similarly, the discretized test functions are given in 
the time and frequency domains by

Ψz,τ (i, k) = Ψz,τ (xi, k∆t)

and

Ψ̂z(i;ω) = Ψ̂z(xi;ω),

respectively. We follow the general approach of [8, 9] and obtain least-squares solutions to 
equations  (11) and (12) using a truncated singular-value decomposition (SVD) of the dis-
cretized near-field operators N and N̂, respectively. As is often noted in the literature, the sin-
gular-value decomposition is aptly suited for the linear sampling method—since the scattered 
wave us is independent of any sampling point (z, τ) ∈ R3 × R, the singular-value decompo-
sition of N (or N̂) is independent of any sampling point as well, and therefore need only be 
computed once. Hence, an efficient approach to the linear sampling method consists of two 
main steps: (1) estimate a low-rank approximation to the discretized near-field operator via a 
truncated SVD; and (2) approximate the solutions to (11) and (12) for each sampling point by 
orthogonally projecting the test functions onto the solution space using the SVD. We denote 
by (σn,φn,ψn) the singular-value decomposition of N, where σn  are the singular values and 
φn and ψn are the corresponding left- and right-singular vectors, respectively. Similarly, we 
denote by (σn, φ̂n, ψ̂n) the singular-value decomposition of N̂. Using the K largest singular 
values and corresponding vectors [18], an approximate solution is computed for each sam-
pling point as

ϕ̃α
z,τ =

K∑
n=1

σn

α+ σ2
n
(φn ·Ψz,τ )ψn� (13)

for the time-domain case and as

ϕ̃α
z =

K∑
n=1

σn

α+ σ2
n
(φ̂n · Ψ̂z)ψ̂n� (14)

for the frequency-domain case. Note that if the chosen pulse function ζ ∈ C2(R) does not 
possess the same frequency band as the recorded data, then the projections φn ·Ψz,τ  and 
φ̂n · Ψ̂z are trivially zero, since the singular vectors will lie in a frequency band disjoint from 
that of the test functions. Consequently, the obtain solutions ϕ̃α

z  are trivially zero. Hence, it 
is important to analyze the frequency content of the recorded data before choosing the pulse 
function ζ.

An image is obtained by mapping the obtained solutions (13) and (14) through an indicator 
functional I  that assigns to each sampling point (z, τ) a value based on the norm of the solu-
tion (recall τ = 0 for the frequency-domain case). We define the indicator function as

I(z, τ) :=
f (z, τ)−minz f (z, τ)

maxz f (z, τ)−minz f (z, τ) + ε
,
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where

f (z, τ) :=
1

‖ϕ̃α
z,τ‖2 + ε

.

Here, the norm of ϕ̃α
z,τ ( j, l) is computed over all j = 1, . . . , Ns and l = −Nt + 1, . . . , Nt − 1 

(or l = 1, . . . , Nω in the frequency domain where Nω is the number of frequency samples). 
We have added a small positive number ε—typically taken to be the machine precision of 
the computer—to the denominator of each term for numerical stability. Thus, by the blowup 
behavior of the solutions (13) and (14), we have 0 � I(z, τ) � 1, where values close to zero 
indicate an ‘unlikely’ location of the source function and values close to one indicate a ‘likely’ 
location of the source function.

The question remains on how to efficiently obtain a truncated SVD of the discretized near-
field operators N and N̂. As noted in [8, 9], an efficient way to do this is by estimating the actions 
of N and N̂ through the use of so-called matrix-vector products that define their forward and 
adjoint operations. These matrix-vector products then define a linear operator whose SVD can 
be estimated using open-source software packages such as ARPACK [19]. As we discuss next, 
how we define these matrix-vector products significantly affects the accuracy of the obtained 
SVD. In particular, we focus on the effects of truncating the convolution in the near-field opera-
tor and how this leads to a dependence of the imaging algorithm on the time parameter τ .

4.1.  Algorithms for an efficient implementation of the near-field operator

Our goal is to define matrix-vector products for the forward and adjoint operations of the dis-
cretized near-field operators N and N̂. According to the well-known convolution theorem, con-
volution in the time domain is equivalent to multiplication in the frequency domain. Hence, 
the convolution in the near-field operator N can be performed using a fast Fourier transform 
algorithm (FFT), which is most efficient for signals of length 2n for some natural number 
n ∈ N. We can further increase efficiency by using an FFT algorithm that exploits the fact that 
the recorded data are real valued, in which case the Fourier transform is conjugate symmetric 
with respect to the positive and negative frequencies.

Let D ∈ RNr×Nt×Ns denote a three-dimensional array consisting of the sampled scattered wave 
us, so that D(i, k, j) = us(xi, k∆t; xj). As stated in section 3, the common mistake in the literature 
to date is to truncate the convolution in the discretized near-field operator N so that it has the 
same length Nt as the data array D. To see the significance of this mistake, we refer to figure 2, 
which illustrates the convolution of two arbitrary signals in both the time and frequency domains. 
In the middle row of figure 2, the convolution in the time domain has length 2Nt  −  1. The high-
lighted regions indicate two possible subintervals of length Nt that are returned in a truncated 
implementation of the discretized near-field operator N. In general, a subinterval of length Nt is 
insufficient to capture the full convolution. Hence, truncation of the convolution discards much 
of the information provided by the scattered wave us. This is equivalent to under-representing the 
discretized near-field operator N. Intuitively, truncation of the convolution manifests in a singular-
value decomposition as a more rapid decay of the singular values, since a truncated convolutional 
operator contains ‘less’ information than an operator that returns a full convolution.

The bottom row of figure 2 shows the amplitude spectrum of one of the convolved signals in 
the frequency domain. Because the signal is band-limited, its representation in the frequency 
domain is sparse. Hence, the convolution in the frequency domain will be nonzero only where 
the two signals being convolved have overlapping support. This is shown in the bottom right 
panel of figure 2, where the full convolution in the frequency domain lies in a small subset of 
the total frequency range needed to represent the convolution in the time domain. Hence, we 
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can exploit the sparseness of the convolution in the frequency domain to obtain a discre-
tized convolutional operator that is significantly smaller than its equivalent representation 
in the time domain. To do this, we can simply apply a bandpass filter to the data array D 
that covers the support of the recorded signals in the frequency domain. When the signals 
are well sampled in the recorded time interval (that is, for sufficiently large Nt), the filtered 
data array in the frequency domain will typically have a length M � 2Nt − 1.

Algorithms 1 and 2 provide detailed procedures for implementing the discretized near-field 
operators N and N̂, respectively. Both implementations share a common first step of padding the 

Figure 2.  Two signals of length Nt and their convolution. Middle row: The convolution in the 
time domain has length 2Nt  −  1. The highlighted regions indicate two possible subintervals of 
length Nt that are returned in a truncated implementation of the discretized near-field operator. 
Bottom row: (left) The amplitude spectrum of signal 1 based on the 2Nt  −  1 samples needed 
to represent the convolution in the time domain. (right) The support of the convolution in the 
frequency domain lies in a small subinterval of length M � 2Nt − 1.
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data array D with zeros to the end of its time axis so that its new length is the next power of two greater 
than the length of the convolution 2Nt  −  1. Next, a forward FFT is applied once to the extended data 
array along its time axis. In algorithms 1 and 2, we use H to denote the Hermitian transpose and the 
notation desc :A → B to represent a transformation, where ‘desc’ is a brief descriptor of what the 
transformation does. To obtain low-rank approximations of N and N̂, we define two functions that 
perform their forward and adjoint operations, which we name ‘ forward’ and ‘ adjoint’, respectively, 
in algorithms 1 and 2. These two functions are then used to define a linear operator, whose SVD 
can then be estimated for the K largest singular values and corresponding vectors. We note that in 
algorithm 1, the convolution computed in the frequency domain as length N, but the transformation 
back to the time domain returns only the first 2Nt  −  1 samples. Because we initially zero-pad the 
end of the time axis of the data array D, the full convolution lies in the first 2Nt  −  1 samples of the 
computed convolution. Note that the total number of forward and inverse FFT operations performed 
in algorithm 1 is Nr + Ns + 3, while algorithm 2 performs just one forward FFT.

Algorithm 1.  (Time domain).

   set N  =  2n such that N  >  2Nt  −  1

   fft: D ∈ RNr×Nt×Ns → D̂ ∈ CNr×N×Ns

   def forward(x):
       reshape x:

       x ∈ R(2Nt−1)Ns×1 → x ∈ R(2Nt−1)×Ns

       fft: x ∈ R(2Nt−1)×Ns → x̂ ∈ CN×Ns

       initialize y = 0 ∈ R(2Nt−1)×Nr

       for i  =  1:Nr

         ĉ = D̂(i, ·, ·)x̂
         ifft: ĉ ∈ CN×Ns → c ∈ R(2Nt−1)×Ns

         sum over sources:
         y(·, i) = sum(c, axis  =  2)
       reshape y:

       y ∈ R(2Nt−1)×Nr → y ∈ R(2Nt−1)Nr×1

       return y

   def adjoint(y):
       reshape y:

       y ∈ R(2Nt−1)Nr×1 → y ∈ R(2Nt−1)×Nr

       fft: y ∈ R(2Nt−1)×Nr → ŷ ∈ CN×Nr

       initialize x = 0 ∈ R(2Nt−1)×Ns

       for j   =  1:Ns

         ĥ = D̂(·, ·, j)H ŷ
         ifft: ĥ ∈ CN×Nr → h ∈ R(2Nt−1)×Nr

         sum over receivers:
         x(·, j) = sum(h, axis  =  2)
       reshape x:

       x ∈ R(2Nt−1)×Ns → x ∈ R(2Nt−1)Ns×1

       return x

   set A  =  LinearOperator(forward, adjoint)
   U, s, V  =  svd(A, K)
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Algorithm 2.  (Frequency domain).

   set N  =  2n such that N  >  2Nt  −  1

   fft: D ∈ RNr×Nt×Ns → D̂ ∈ CNr×N×Ns

   bandpass filter:

   D̂ ∈ CNr×N×Ns → D̃ ∈ CNr×M×Ns

   def forward(x̂):
    reshape x̂:

    x̂ ∈ CMNs×1 → x̂ ∈ CM×Ns

    initialize ŷ = 0 ∈ CM×Nr

       for i  =  1:Nr

         ĉ = D̃(i, ·, ·)x̂
         sum over sources:
         ŷ(·, i) = sum(ĉ, axis  =  2)
       reshape ŷ:

       ŷ ∈ CM×Nr → ŷ ∈ CMNr×1

       return ŷ

   def adjoint(ŷ):
       reshape ŷ:

       ŷ ∈ CMNr×1 → ŷ ∈ CM×Nr

       initialize x̂ = 0 ∈ CM×Ns

       for j   =  1:Ns

         ĥ = D̃(·, ·, j)H ŷ
         sum over receivers:

         x̂(·, j) = sum(ĥ, axis  =  2)
       reshape x̂:

       x̂ ∈ CM×Ns → x̂ ∈ CMNs×1

       return x̂
   set Â  =  LinearOperator(forward, adjoint)

   Û, s, V̂  =  svd( Â, K)

5.  Numerical examples

In this section, we perform several numerical examples applied to imaging scatterers to dem-
onstrate the effectiveness of the improved time- and frequency-domain implementations of 
the discretized near-field operator compared to its truncated implementation. For the truncated 
implementation, we follow algorithm 1 with the exception that the first Nt samples of the 
computed convolution are returned in both the forward and adjoint operations. For the time-
domain implementations, we test the dependence of the imaging algorithm for several values 
of the time parameter τ . In each example, the length of the recording interval T is specified. 
The test functions are evaluated in the time interval [−T , T] for the for case of the full convo-
lution, and in the interval [0, T] for the case of the truncated convolution. For the frequency-
domain implementation, we apply the same bandpass filter to the test functions as for the data 
array D in the computation of the SVD.
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For simplicity, we limit the numerical examples we present to the reconstruction of two-
dimensional scatterers embedded within homogeneous background media. The method is 
easily generalized to three space dimensions and to inhomogeneous background media. 
Consequently, the test functions for all imaging experiments presented hereafter are com-
puted as

Ψz,τ (i, k) =
χ1,2(k∆t − τ − c−1

0 ‖xi − z‖2)

2π
√

k2∆t2 − c−2
0 ‖xi − z‖2

2 + ε
,

Figure 3.  (a) The full-aperture imaging experiment and (b) the limited-aperture 
imaging experiment for the starfish-shaped scatterer. Sources are indicated by stars and 
receivers by triangles. The right panels show a map of the experiment indicating the 
particular source (large, cyan star) that generated the scattered data shown in the left 
panels. Band-limited white noise in the frequency range [0.25, 1.25] has been added to 
the signals so that the computed SNR = 4.
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where the pulse functions χ1,2 are set to zero whenever their arguments are negative. We have 
again added the small positive number ε to the denominator for numerical stability. The pulse 
function is taken to be either

χ1(t) = sin(4t)e−1.6(t−3)2

or the Ricker pulse

χ2(t) = [1 − 2π2ν2(t − 0.1)2]e−π2ν2(t−0.1)2
.

All numerical computations are performed on a computer equipped with a 2.8 GHz quad-core 
Intel Core i7 processor and 16 GB of 1600 MHz DDR3 memory. The machine precision is 
ε = 2 × 10−16. This parameter remains fixed throughout all numerical computations.

5.1.  Starfish-shaped scatterer

Our first imaging experiment reconstructs a starfish-shaped scatterer using the same scat-
tered wave and acquisition data as was used in [8]. In this case, the scatterer represents a 

Figure 4.  Power spectra for the starfish imaging experiment. The power spectrum 
is averaged over all recordings of the scattered wave for (a) the noise-free case and 
(b) after adding band-limited white noise in the frequency range [0.25, 1.25] so that 
the computed SNR = 4. (c) The mean power spectrum of the test functions with time 
dependence given by χ1.
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perturbation in the model wave speed, for which the background wave speed is c0  =  1 and 
c  =  2 inside the scatterer. We interrogate the scatterer under two different acquisition scenar-
ios. In the first case, 16 sources and receivers are co-located around the scatterer, representing 
an ideal, full-aperture acquisition setup (figure 3(a)). In the second case, we place five sources 
in the lower-left corner below the scatterer and seven receivers in the upper-right corner above 
the scatterer, representing a limited-aperture acquisition setup that only measures transmitted 

Figure 5.  Estimated singular values for the full-aperture (left column) and limited-
aperture (right column) imaging experiments for the starfish-shaped scatterer. Each 
column gives the estimated singular values based on the numerical implementation 
of the discretized near-field operator. The truncated convolution under-represents the 
discretized near-field operator, as evidenced by the more rapid decay of the singular 
values. The noisy data are used in all cases.
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waves (figure 3(b)). In both imaging experiments, we sample the model with a 61 × 61 point 
uniformly spaced sampling grid and interrogate the scatterer using the pulse function χ1 (the 
dominant wavelength is shown in the right panels of figure 3 for scale). The scattered wave is 
recorded in the time interval [0, 18] using a step size ∆t = 2.34 × 10−2 for a total of Nt  =  769 
time samples. Consequently, the test functions are evaluated in the interval [−18, 18] for the 

Figure 6.  Reconstructions of the starfish-shaped scatterer for the full-aperture imaging 
experiment and noisy data with SNR = 4. ((a)–(c)) Reconstructions based on the 
truncated convolution in the time domain with τ = 0, τ = 3, and τ = 8. ((d)–(f)) 
Reconstructions based on the full convolution in the time domain with τ = 0, τ = 4, and 
τ = −25. When τ = −25, the test functions partially lie outside the support [−18, 18] 
and the method fails. (g) Reconstruction based on the frequency-domain approach. The 
regularization parameter α = 1 × 10−2 in all cases.
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time- and frequency-domain implementations that use the full convolution, and in the inter-
val [0, 18] for the truncated implementation. The left panels of figure 3 show examples of the 
recorded scattered wave. To test the robustness of the imaging algorithm to noisy measure-
ments, we add band-limited white noise in the frequency range [0.25, 1.25] to the recorded data 
so that the computed signal-to-noise ratio (SNR) is 4, as defined by

Figure 7.  Reconstructions of the starfish-shaped scatterer for the limited-aperture 
imaging experiment and noisy data with SNR = 4. ((a)–(c)) Reconstructions based on 
the truncated convolution in the time domain with τ = 0, τ = 3, and τ = 5.3. ((d)–(f)) 
Reconstructions based on the full convolution in the time domain with τ = 0, τ = −2, 
and τ = 18. When τ = 18, the test functions completely lie outside the support [−18, 18] 
and the method fails. (g) Reconstruction based on the frequency-domain approach. The 
regularization parameter α = 1 × 10−2 in all cases.
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SNR :=
Psignal

Pnoise
,

where P is the average power (i.e. the mean-square amplitude). The mean power spectrum 
of the recorded signals before and after adding the band-limited white noise is shown in  
figures 4(a) and 4(b), respectively, and the mean power spectrum of the test functions is shown 
in figure 4(c). Note that the frequency bands of the data and the test functions overlap signifi-
cantly, as this ensures an optimal reconstruction of the target. Figure 5 shows the K largest sin-
gular values of the truncated SVD used to compute the time and frequency domain solutions 
(13) and (14), respectively. As we expect, the singular values decay faster for the truncated 

Figure 8.  (a) The full-aperture imaging experiment and (b) the single-sided imaging 
experiment for the two box-shaped scatterers. Sources are indicated by stars and 
receivers by triangles. The right panels show a map of the experiment indicating the 
particular source (large, cyan star) that generated the scattered data shown in the left 
panels. No noise is added to the signals.
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implementation, indicating that the near-field operator is under-represented. The time to com-
pute the truncated SVD for each implementation is indicated in its respective panel.

Figures 6 and 7 show the obtained reconstructions for the full-aperture and limited-aperture 
starfish imaging experiments using the three different implementations of the discretized near-
field operator. For the truncated implementation, it is clear how the time parameter τ  influ-
ences the reconstruction of the scatterer boundary. In particular, for three different values of 
τ , we obtain three completely different images. The time- and frequency-domain implemen-
tations that use the full convolution readily give the desired result, which is consistent with 
the true boundary of the scatterer. As expected, the time-domain implementation fails when 
τ  is set such that the test functions lie outside the convolution interval [−18, 18]. In figure 6, 
the full-aperture acquisition allows the linear sampling method to accurately reconstruct the 
boundary of the starfish-shaped scatterer, whereas in figure 7, we see the method correctly 
identified the lower-left ray of the starfish, but largely failed to reconstruct the rest of the scat-
terer. The diagonal smearing present in figure 7 is characteristic of a limited-aperture acquisi-
tion, in which the geometry of a scatterer is not well constrained (a detailed investigation of 
limited-aperture imaging using the linear sampling method was carried out in [11]). In both 
imaging experiments, the linear sampling method proved reasonably robust to the noisy data, 
so long as a small regularization term was added to the solutions (13) and (14).

5.2.  Box-shaped scatterers

Our second imaging experiment aims to reconstruct the boundaries of two box-shaped scat-
terers of different sizes. In this case, the scatterers represent a large contrast in the model 
wave speed in order to induce strong multiple scattering. Here, the background wave speed 
is c0  =  2 km s−1 and c  =  0.343 km s−1 inside the scatterers (figure 8). As before, we inter-
rogate the scatterers under two different acquisition scenarios. In the first case, we place 24 
co-located sources and receivers in a circle around the scatterers, again representing an ideal, 
full-aperture acquisition setup (figure 8(a)). In the second case, we place 12 co-located sources 
and receivers along a line at the top of the model, representing a single-sided surface acquisi-
tion geometry (figure 8(b)). In both imaging experiments, we sample the model in space with 
a 51 × 51 point uniformly spaced sampling grid and interrogate the scatterers using the pulse 

Figure 9.  Power spectra for the two-box imaging experiment. The power spectrum is 
averaged over all recordings of (a) the scattered wave and (b) the test functions with 
time dependence given by χ2.

A C Prunty and R K Snieder﻿Inverse Problems 35 (2019) 055003



22

function χ2 with a dominant frequency ν = 25 Hz (the dominant wavelength is shown in 
figure 8 for scale). The scattered waves are recorded in the time interval [0 s, 2 s] using a step 
size ∆t = 4.0 × 10−2 s for a total of Nt  =  501 time samples. Consequently, the test functions 
are evaluated in the interval [−2 s , 2 s] for the time- and frequency-domain implementations 
that use the full convolution, and in the interval [0 s , 2 s] for the truncated implementation. 
We do not add any noise for these experiments. The left panels of figure 8 show examples of 

Figure 10.  Estimated singular values for the full-aperture (left column) and single-
sided (right column) imaging experiments for the two box-shaped scatterers. Each 
column gives the estimated singular values based on the numerical implementation 
of the discretized near-field operator. The truncated convolution under-represents the 
discretized near-field operator, as evidenced by the more rapid decay of the singular 
values.
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the recorded scattered waves for the two acquisition geometries. The mean power spectra of 
the recorded data and test functions are shown in figure 9. Note again that the frequency bands 
of the data and the test functions overlap significantly, as this ensures an optimal reconstruc-
tion of the target. Figure 10 shows the K largest singular values of the truncated SVD used 
to compute the time and frequency domain solutions (13) and (14), respectively. Again, we 

Figure 11.  Reconstructions of the two box-shaped scatterers for the full-aperture 
imaging experiment. ((a)–(c)) Reconstructions based on the truncated convolution in 
the time domain with τ = 0 s, τ = 0.2 s, and τ = 0.5 s. ((d)–(f)) Reconstructions based 
on the full convolution in the time domain with τ = 0 s, τ = −2 s, and τ = 1.8 s. When 
τ = 1.8 s, the test functions lie partially outside the support [−2 s , 2 s] and the method 
fails. (g) Reconstruction based on the frequency-domain approach. The regularization 
parameter α = 0 in all cases.
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Figure 12.  Reconstructions of the two box-shaped scatterers for the single-sided 
imaging experiment. ((a)–(c)) Reconstructions based on the truncated convolution in the 
time domain with τ = 0 s, τ = 0.3 s, and τ = 0.75 s. ((d)–(f)) Reconstructions based 
on the full convolution in the time domain with τ = 0 s, τ = 0.75 s, and τ = −4 s.  
When τ = −4 s, the test functions lie completely outside the support [−2 s , 2 s] and 
the method fails. (g) Reconstruction based on the frequency-domain approach. The 
regularization parameter α = 0 in all cases.
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observe that the singular values decay faster for the truncated implementation, indicating that 
the near-field operator is under-represented. The time to compute the truncated SVD for each 
implementation is indicated in its respective panel.

Figures 11 and 12 show the obtained reconstructions for the full-aperture and single-sided 
imaging experiments for the two box-shaped scatterers using the three different implementa-
tions of the discretized near-field operator. Again, we observe that the truncated implementa-
tion is strongly dependent on the choice of the time parameter τ  to reconstruct the boundaries 
of the scatterers, whereas the time- and frequency-domain implementations that use the full 
convolution readily give the desired result. As expected, the time-domain implementation fails 
when τ  is set such that the test functions lie outside the convolution interval [−2 s , 2 s]. In 
figure 11, the full-aperture acquisition allows the linear sampling method to accurately recon-
struct the boundaries of the box-shaped scatterers, whereas in figure 12, we see the method 
identified the top-left box, but largely failed to reconstruct the lower-right box. Again, due to 
the limited-aperture data acquisition, the geometries of the scatterers are not well constrained.

6.  Conclusions

We have shown in the appendix that the blowup behavior of solutions to the near-field equa-
tion is due to division by a spatially dependent function with compact support that localizes 
the source of the observed field. This general proof gives valuable insight into how the blowup 
behavior will depend on different types of source functions, and consequently how the linear 
sampling method may be applied to other imaging problems. For example, our generalized 
formulation shows that the linear sampling method could be applied to localizing microseis-
mic events or underground explosions.

We have presented a physical framework in which the time parameter τ  corresponds to the 
focusing time of the Herglotz wave function. Furthermore, our numerical experiments dem-
onstrate how the length of the recorded time interval determines the range of values that τ  can 
assume. Provided the scattered wave is adequately represented in the recorded time interval, 
our experiments show that the focusing time can be safely assumed zero without loss of gener-
ality. The frequency-domain implementation should be preferred for practical applications, as 
it gives qualitatively similar results as the time-domain implementation and offers additional 
computational savings.

A practical concern for the linear sampling method is how one can effectively separate 
the desired scattered wave from the recorded total wave. In principle, one could predict the 
unperturbed wave field recorded at the receivers and subtract it from the data, but this requires 
accurate knowledge of the background medium which is not available in many applications. 
In time-lapse studies, one could subtract the wave fields recorded at different periods in time 
to obtain the perturbed wave field caused by changes in the medium. However, this applica-
tion is prone to any errors in the acquisition deployment that influences the repeatability of the 
experiment. It is therefore of practical interest to understand how the linear sampling method 
tolerates errors in the acquisition as well as in the assumed background medium.

A promising aspect of the linear sampling algorithm is that it is embarrassingly parallel, 
since the solution of the near-field equation at each sampling point is independent of the solu-
tion at every other sampling point. Thus, if one has the computational resources available, the 
sampling algorithm could easily be distributed over a computing cluster. Our future work will 
investigate possible approaches to making the linear sampling method more computationally 
efficient as it is applied to larger-scale imaging problems. Additionally, it would be interest-
ing to compute and visualize the total wave field of the inverse focusing problem, since this 
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would either validate or reject our interpretation of τ  as the focusing time of the Herglotz 
wave function.
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Appendix

Here, we give a proof of the blowup behavior of solutions to the near-field equation (8). We 
introduce two important generalizations that broaden the applicability of the linear sampling 
method to applications other than localizing scatterers. First, we generalize the notion of record-
ing wave fields due to different known sources to the notion of recording different realizations 
of a wave field that passes through a given medium. For example, us(·, ·, xs) denotes a realiza-
tion of the scattered wave due to a particular source at xs ∈ Γs. For a different source location, 
we observe a different realization of us. Hence, we replace the idea of integrating over a known 
acquisition surface Γs with the more general idea of integrating over all possible realizations of 
an observed wave field. This generalization is powerful, since we no longer need to know the 
source locations xs. This has important applications in passive imaging, for example, in which 
unknown, ambient sources interrogate the medium. We denote by Ω the set of all possible real-
izations of the recorded wave (in practice, of course, we only record a subset of Ω). Second, we 
generalize the source from a scatterer to any source function S that can be written as countable 
sum of separable functions in space and time; that is,

S(x, t;µ) =
∑

i

Ri(x)Θi(x, t;µ)

for some unknown functions Ri and Θi. Here, we assume the source function has terms Ri 
which depend only on space and not on time or the realization µ ∈ Ω that we measure. Hence, 
the terms Ri effectively localize the source function and represent its amplitude as a function 
of space, which in general depends on the physical properties of the source. On the other 
hand, we allow the time dependence of the source function (given by the functions Θi) to 
depend on both space and realization. For example, the location of a scatterer in a medium is 
fixed, but the time at which the scatterer acts a source function depends on how the scatterer 
is interrogated. We assume that each function Ri has compact support Di ⊂ R3 such that sets 
Di are pairwise disjoint and that D = ∪iDi gives the total spatial support of S. For a given 
realization µ ∈ Ω, expression (9) determines that a wave u generated by such a source has the 
representation

u(x, t;µ) =
∑

i

∫

R

∫

Di

G0(x, t − t′;η)Ri(η)Θi(η, t′;µ) dη dt′.

The function wϕ of the inverse problem can be written as a linear combination of all possible 
realizations of the recorded data:
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wϕ(x, t) =
∫

R

∫

Ω

u(x, t − t′;µ)ϕ(t′,µ) dµ dt′.

The wave fields u and wϕ are given equivalently in the frequency domain by

û(x;ω,µ) =
∑

i

∫

Di

Ĝ0(x;η,ω)Ri(η)Θ̂i(η;ω,µ) dη,� (A.1)

and

ŵϕ(x;ω) =
∫

Ω

û(x;ω,µ)ϕ̂(ω,µ) dµ,� (A.2)

respectively, where ω  is the angular frequency. If we substitute (A.1) into (A.2) and inter-
change the order of integration, we obtain

ŵϕ(x;ω) =
∑

i

∫

Di

Ĝ0(x,η;ω)Ri(η)

(∫

Ω

Θ̂i(η;ω,µ)ϕ̂(ω,µ) dµ

)
dη.

For notational convenience, we introduce the source functions Ŝ(i)
ϕ  as

Ŝ(i)
ϕ (η;ω) :=

∫

Ω

Θ̂i(η;ω,µ)ϕ̂(ω,µ) dµ,� (A.3)

so that the integral representation for ŵϕ becomes

ŵϕ(x;ω) =
∑

i

∫

Di

Ĝ0(x,η;ω)Ri(η)Ŝ(i)
ϕ (η;ω) dη.

Suppose we wish to find the contribution to ŵϕ from a single point z in space. We sample the 
wave field ŵϕ using the delta distribution δz = δ(η − z) and obtain

ŵϕ(x; z,ω) =
∑

i

∫

Di

δ(η − z)Ĝ0(x,η;ω)Ri(η)Ŝ(i)
ϕ (η;ω) dη.� (A.4)

Note that η is the integration variable over the spatial supports Di of the source function S that 
generated the wave field u. It follows from (A.4) that if z �∈ Di for any i = 1, 2, . . ., then the 
wave field u is identically zero everywhere, and consequently so is wϕ. Otherwise, if z ∈ Di 
for some i = 1, 2, . . ., we have

ŵϕ(x; z,ω) = Ĝ0(x, z;ω)Ri(z)Ŝ(i)
ϕ (z;ω).� (A.5)

The test function (7) can be written in the frequency domain as

Ψ̂(x; z,ω) = Ĝ0(x, z;ω)ζ̂(ω),� (A.6)

where the function ζ̂ ∈ C2(R) is chosen such that it has overlapping support with the observed 
field û. We can obtain the near-field equation be forcing equality between the sampled scat-
tered wave (A.5) and the test function (A.6) on the receiver surface Γr :

Ĝ0(xr, z;ω)Ri(z)Ŝ(i)
ϕ (z;ω) = Ĝ0(xr, z;ω)ζ̂(ω), z ∈ Di,

i.e. since Ri(z) �= 0 for z ∈ Di,
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Ŝ(i)
ϕ (z;ω) =

ζ̂(ω)

Ri(z)
, z ∈ Di.� (A.7)

Substituting the definition of the source function Ŝ(i)
ϕ  (A.3) back into the left-hand side of 

equation (A.7), we obtain the integral equation
∫

Ω

Θ̂i(z;ω,µ)ϕ̂(ω,µ) dµ =
ζ̂(ω)

Ri(z)
, z ∈ Di,

or, in the time domain,
∫

R

∫

Ω

Θi(z, t − t′;µ)ϕ(t′,µ) dµ dt′ =
ζ(t)
Ri(z)

, z ∈ Di.� (A.8)

Note that if the observed field u has finite energy (i.e. is square integrable in the sense of 
Lebesgue), so does its source function S. In particular, the functions Θi are square integrable. 
Therefore, the integral operator on the left-hand side of equation (A.8) admits a singular-value 
decomposition [18]. If we denote this singular-value decomposition by (σn,φn,ψn), where σn  
are the singular values and φn and ψn are the corresponding left- and right-singular vectors, 
respectively, then a solution to equation (A.8) can be written as

ϕz =

∞∑
n=1

1
σn

〈
φn,

ζ

Ri

〉

L2(R)
ψn,

where 〈·, ·〉L2(R) denotes the standard L2 inner product. It follows that in the limit as z → ∂Di, 

the function Ri(z) → 0 and the coefficients 〈φn, ζR−1
i 〉L2(R) become uniformly unbounded 

(i.e. unbounded for all n ∈ N). In fact, the function Ri(z) = 0 for all z ∈ R3 \ Di. Thus, any 
solution ϕz to equation  (A.8)—and consequently to the near-field equation  (8)—becomes 
unbounded as z → ∂Di, and remains unbounded in general for all z ∈ R3 \ D. Thus, the 
blowup behavior of solutions to the near-field equation  is due to division by the spatially 
dependent functions Ri with compact support Di.

Note that if we do not know the background medium exactly, then we cannot write the test 
function Ψz using expression (A.6), since the unperturbed Green function G0 is unknown. 
Suppose instead we approximate the Green function by another function H. Then equa-
tion (A.7) becomes

Ŝ(i)
ϕ (z;ω) =

Ĥ(xr, z;ω)ζ̂(ω)
Ri(z)Ĝ0(xr, z;ω)

,

which is a deconvolution of H and G0 in the frequency domain.
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