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Abstract—Seismic interferometry is widely applied to retrieve

wavefields propagating between receivers. Another version of

seismic interferometry, called inter-source interferometry, uses the

principles of seismic reciprocity and expands interferometric

applications to retrieve waves that propagate between two seismic

sources. Previous studies of inter-source interferometry usually

involve surface-wave and coda-wave estimations. We use inter-

source interferometry to estimate the P-waves propagating between

two sources rather than the estimation of surface waves and coda

waves. We show that the recovered arrival times are dependent on

the accuracy of the earthquake catalog of the two sources. Using

inter-source interferometry, one can recover the waveform of the

direct body waves and potentially reconstruct the waveform of

coda waves, depending on the source-receiver geometry. The

retrieval of these waveforms is accurate only when the wavefield is

sampled with approximately 4 receivers per wavelength in the

stationary phase zone. We show that using only receivers inside the

stationary phase region for inter-source interferometry introduces

the phase error of approximately 0.3 radians. In our study, we show

an example of the P-wavefield reconstruction between two earth-

quakes using the seismic records from an array along San Andreas

Fault. The retrieved P waves give a qualitative estimation of the

thickness of the low-velocity zone of San Andreas Fault of

approximately 4 km.

Keywords: Seismic interferometry, inter-source interferome-

try, Fresnel integral, body waves, fault zone, San Andreas Fault.

1. Introduction

Seismic interferometry is a technique to estimate

the Green’s function or the wavefield that accounts

for wave propagation between receivers. The inter-

receiver technique has been developed for many

applications using ambient noise (Shapiro et al. 2005;

Draganov et al. 2007), traffic and oilfield production

noise (Nakata et al. 2011; Miyazawa et al. 2008), and

earthquakes or active sources. The principles of

seismic interferometry are explained in several

review papers (Curtis et al. 2006; Larose et al. 2006;

Wapenaar et al. 2010; Snieder and Larose 2013).

In general, one can retrieve the Green’s function

between receivers using cross-correlation, deconvo-

lution, and cross-coherence of the signals recorded at

receivers (Snieder et al. 2009; Nakata et al. 2011).

Although applications of seismic interferometry are

usually based on cross-correlation (Shapiro et al.

2005; Miyazawa et al. 2008; Mordret et al. 2010;

Asano et al. 2017), some applications also use

deconvolution (Vasconcelos and Snieder 2008b, a;

Nakata et al. 2013; van Dalen et al. 2015; Pianese

et al. 2018), cross-coherence (Prieto et al. 2009;

Nakata et al. 2011), and convolution (Curtis and

Halliday 2010; Entwistle et al. 2015). These data

processing methods for Green’s function retrieval

have diverse advantages and disadvantages (Snieder

et al. 2009). One has to select the process that is best

suited to particular data and research requirements. In

theory, cross-correlation of ambient seismic noise

interferometry suppresses strong amplitudes of

earthquakes. In this study, we implement cross-cor-

relation for Green’s function retrieval because, unlike

in the case of noise interferometry, we use real

earthquakes, and the cross-correlation correctly han-

dles the strong amplitudes of the waves that are

excited by these earthquakes.

Recovering the Green’s function using inter-re-

ceiver interferometry, in particular with the retrieval

of surface waves from ambient noise cross-correla-

tion, has become an accepted technique (Shapiro

et al. 2005). For practical reasons, the receivers used

are usually installed on the Earth’s surface. A version

of seismic interferometry, called inter-source
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interferometry (Curtis et al. 2009), addresses this

limitation because it yields the waves that propagate

between two sources, which may be located in the

subsurface.

Inter-source interferometry, or the virtual receiver

method (VRM), is a technique to estimate the

Green’s function that accounts for wave propagation

between two earthquakes, one of which acts as a

virtual receiver. The Green’s function retrieved from

the inter-source technique is the wavefield measured

through the dynamic strain induced by the wavefield

at one of the earthquakes excited by the other earth-

quake (Curtis et al. 2009). Even though the theory of

inter-source interferometry for Green’s function

retrieval requires receivers on a closed surface sur-

rounding the earthquakes, the dominant contribution

of the retrieved Green’s function comes from the

receivers located inside the stationary phase zones of

the pair of sources (Snieder 2004; Curtis et al. 2009).

Inter-source interferometry as introduced by

Curtis et al. (2009) has been applied in several

studies. One application involves the monitoring of

micro-seismic events by observing the change in the

source mechanism inversion of the Green’s function

retrieved from these events (Matzel et al. 2016;

Morency and Matzel 2017). Other applications of

inter-source interferometry include the improvement

of crustal structure tomography using inter-event

interferometry (Shirzad et al. 2019), the localization

and identification of the geometry of the

metastable olivine wedge (Shen and Zhan 2020), and

the determination of the shear-wave velocity in dif-

ferent source clusters (Eulenfeld 2020). In addition,

Schuster (2009) uses interferometry to convert VSP

data into surface seismic data and thus extracts the

waves that propagate between active sources at the

surface. Curtis and Halliday (2010) use inter-source

interferometry as a part of a new form of interfer-

ometry called source-receiver interferometry.

Poliannikov et al. (2012) image a subduction slab

using virtual responses between earthquakes located

inside the slab. Liu et al. (2016) turn non-transient

sources such as drill-bit noise into virtual receivers,

imaging the redatumed reflection responses close to

targeted areas.

Previous studies of inter-source interferometry

usually estimate the Green’s function using the cross-

correlation of surface waves, measuring the disper-

sion of the waves. However, the estimation of body

waves using seismic interferometry involves stricter

requirements on the source-receiver geometry than

the extraction of surface waves (Forghani and Snieder

2010; Nakata et al. 2011). Since inter-source inter-

ferometry can yield the waves that propagate between

earthquakes, this technique has the potential to

extract the body waves that propagate between these

earthquakes.

In order to construct the Green’s function using

seismic interferometry, one has to satisfy the theo-

retical requirements on the source or reciever

distribution. Fan and Snieder (2009) have derived

sampling criteria for inter-receiver interferometry.

Due to seismic reciprocity, which allows for the

exchange of the source and receiver positions, the

same criteria holds for the inter-source technique.

However, noise sources in the inter-receiver inter-

ferometry tend to have better spatial distribution than

that of receivers in inter-source interferometry

(Fig. 1a and d). At the global scale, dominant noise

sources (e.g., oceanic waves) are omnipresent, while

smaller-scale noise sources (e.g., traffic and cultural

noises) are concentrated at particular locations such

as roads and construction sites. In inter-source inter-

ferometry, the reconstruction quality of the retrieved

waves depends on the spatial distribution of surface

receivers. Thus, the applicability of inter-source

interferometry depends on the geometry of the used

receiver array (Fig. 1d).

Instead of measuring the arrival time and the

dispersion of surface waves, we seek to retrieve body

waves that can be characterized by the following

information: (1) the arrival time of the direct wave,

(2) the waveform of the direct wave, and (3) the

waveform of coda waves. In our study, we test to

what extent we can recover this information; we also

identify the required sampling criteria (i.e., sampling

density and station locations) for the retrieval of this

information using inter-source interferometry. We

present the Green’s function retrieval from the cross-

correlation of (1) 2D synthetic acoustic waves excited

from two sources in a homogeneous medium with an

embedded scatterer and (2) earthquake seismograms

recorded at an array deployed along San Andreas
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Fault. The retrieval uses inter-source interferometry

and receivers located in the stationary phase zones.

We first introduce the basic equations of cross-

correlation based interferometry and the data pro-

cessing steps. We further demonstrate the Green’s

function retrieval using different stationary phase

zones and sampling density for the synthetic model.

Next, we show a field example of Green’s function

reconstruction of P waves and the qualitative esti-

mation of the low-velocity zone thickness of the San

Andreas Fault (SAF) using the reconstructed P

waves. Finally, we explain the reason why we can

recover parts of the waveform, yet cannot recover the

arrival time and the full waveform of body waves

using inter-source interferometry; we also discuss the

application of the inter-source technique with field

examples.

2. Theory of Cross-Correlation Based Interferometry

Using the Fourier convention f ðtÞ ¼R
FðxÞeixtdx and assuming a far-field integration

boundary oriented perpendicularly to wave

propagation, Wapenaar and Fokkema (2006) have

derived seismic interferometry for acoustic waves:

GðxA; xB;xÞ � G�ðxA; xB;xÞ

� � 2ix
qc

I
GðxB; x;xÞG�ðxA; x;xÞd2x;

ð1Þ

where GðxA; xB;xÞ is the frequency-domain repre-

sentation of the Green’s function that accounts for the

wave propagation from xB to xA, q is the mass den-

sity, c is the wave velocity, x is the angular

frequency, and the asterisk denotes the complex

conjugation. The factor ix corresponds to a differ-

entiation in the time domain.

In the frequency domain, the wavefield

uðxA; x;xÞ excited from a point source at x and

recorded at xA is the Green’s function GðxA; x;xÞ
convolved with the source-time function Wðx;xÞ.
The cross-correlation of the wavefields measured at

xA and xB is, in the frequency domain, given by

CBA ¼ uðxB; x;xÞu�ðxA; x;xÞ

¼ jWðx;xÞj2GðxB; x;xÞG�ðxA; x;xÞ:
ð2Þ

Integrating the cross-correlation in Eq. (2) over a

closed surface that includes uncorrelated sources on

Figure 1
Cartoon of a inter-receiver interferometry with noise or active sources on a closed surface, b inter-source interferometry with receivers on a

closed surface, c inter-source interferometry with receivers in stationary phase zones (pink areas), and d inter-source interferometry with

surface receivers in one stationary phase zone
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the closed surface surrounding the receivers (Snieder

et al. 2007) gives
I

CBAd2x ¼ hjWðx;xÞj2i
I

GðxB; x;xÞG�ðxA; x;xÞd2x;

ð3Þ

where hjWðx;xÞj2i is the average of the spectrum of

the squared source-time functions. In practice, we

carry out the integration by stacking all sources on

the closed surface (Fig. 1a). Inserting the integration

of cross-correlation of Eq. (3) into Eq. (1) yields:

�
GðxA; xB;xÞ � G�ðxA; xB;xÞ

�
hjWðx;xÞj2i

� � 2ix
qc

I
CBAd2x;

ð4Þ

where GðxA; xB;xÞ � G�ðxA; xB;xÞ denotes the dif-

ference of the causal and acausal parts of the Green’s

function that accounts for wave propagation between

receivers at xA and xB. Equations (1)–(4) represent

the theory of cross-correlation based inter-receiver

interferometry. With source-receiver reciprocity, the

equations also hold for inter-source interferometry as

Curtis et al. (2009) show that one can estimate the

same Green’s function that accounts for the wave

propagation between two sources at the same xA and

xB locations, using the records at receivers on a

closed surface (Fig. 1b) or surface receivers located

in the stationary phase zone (Fig. 1c and 1d). In our

study, we define the width of the stationary phase

zone as the region where the phase change of the

interferometric integral compared to the point where

the phase is at an extremum is a specified fraction of

the dominant period. In our study, we use a quarter of

the dominant period (Appendix A). The width of the

phase zone depends on the source-receiver geometry

and is explained in the following sections.

As shown by Curtis et al. (2009), inter-source

interferometry for moment tensor sources MA and

MB at locations xA and xB, respectively, gives an

interferometric measurement

v ¼ MB
ipMA

mqo
B
po

A
q GimðxB; xAÞ : ð5Þ

As shown by Aki and Richards (2002), the dis-

placement generated by a moment tensor source MA

at xA is given by

umom
i ðxÞ ¼ MA

mqo
A
q GimðxB; xAÞ; ð6Þ

where G denotes the elastic wave Green’s tensor.

According to expression (5), inter-source interfer-

ometry thus extracts

v ¼ MB
ipo

B
p umom

i ðxBÞ: ð7Þ

Since the moment tensor MB
ip is symmetric, this can

also be written as

v ¼ MB
ipe

mom
pi ðxBÞ; ð8Þ

where emom
pi ¼ ð1=2Þ opumom

i þ oiu
mom
p

� �
is the strain

field. This means that inter-source interferometry

gives the projection of the strain field at xB onto the

moment tensor MB that is associated with elastic

waves excited by a moment tensor source MA at

location xA.

3. Synthetic Model and Green’s Function Retrieval

In a 2D synthetic example, we compute acoustic

wavefields in a homogeneous model with a single

embedded scatterer. As shown in Fig. 2, two seismic

sources are located at depths of 3 km and 7 km with a

horizontal separation of 3 km. The scatterer is located

at a depth of 7 km with a horizontal separation of 3

and 6 km from the two sources, respectively. In our

model, 801 receivers are located on the surface with a

Figure 2
Cartoon of 2D synthetic model used to compute acoustic wave-

fields. The model includes two sources and a scatterer. The

stationary phase zones for the direct and scattered waves propa-

gated between the two sources are Z1 and Z2, respectively. The

receiver separation is 25 m and is not drawn to scale
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uniform separation distance of 25 m between recei-

vers. The wave velocity of this medium is 4 km/s and

the frequency range is 1–10 Hz; thus, the shortest

wavelength of this model is 400 m. Figure 2 is a

sketch of our synthetic model with two 5 km-wide

stationary phase zones; Z1 and Z2 represent the zones

for the direct wave between two earthquakes and the

scattered wave from the scatterer, respectively.

We use the cross-correlation based method to

construct the Green’s function between two seismic

sources. We first compute the cross-correlation of full

wavefields excited from the two sources that are

recorded at all receivers located in the two stationary

phase zones. Next, we apply a Gaussian taper to the

cross-correlated traces at the receivers before com-

puting the integration of cross-correlations; the

tapering minimizes the truncation artifacts resulting

from the truncation of the integration interval (Bur-

dick and Orcutt 1979). The tapering employs a

Gaussian window, wðxÞ ¼ e�ðx�x0Þ2=2r2 , where x is the

receiver location away from the center of the sta-

tionary phase zone (x0) and r is 40% of the width of

the receivers array located within the stationary phase

region. For a meaningful comparison, we use Eq. (4)

to match the integrated correlogram with the direct

forward-modelled wavefield between the two sources

convolved with the source-time function. To recover

the Green’s function, one needs to take the time

derivative of the integrated correlogram and decon-

volve with the squared source-time function. In order

to avoid a deconvolution, we follow Eq. (4) and

compare the scaled time derivative of the correlation

(the right hand side of Eq. (4)) with the Green’s

function’s convolved with the power spectrum of the

source-time functions (the left hand side of Eq. (4)).

Because our comparison uses normalized waveform,

we do not account for the constants 2, mass density,

and wave velocity in Eq. (4).

The ability to accurately reconstruct the Green’s

function depends on (1) the location of the receiver

array and (2) the sampling density of the array. We

test the ability to reconstruct the Green’s function

using inter-source interferometry, given these two

requirements. We first show the comparison between

the forward-modeled and the interferometric wave-

fields when we use all 801 receivers on the surface

for inter-source interferometry. Using all the

receivers, the waveform extraction is accurate, except

for an early arrival at 0.25 s (Fig. 3). This early

arrival at 0.25 s with an amplitude of approximately

2.5% of the direct arrival is the contribution from the

cross-correlation of scattered waves and has the same

arrival time for all receivers (Fig. 4). Snieder et al.

(2008) show that a full aperture of receiver array can

eliminate the early arrival at 0.25 s. Since we use a

limited aperture with receivers only at the surface, we

cannot completely eliminate this early arrival.

As the wavefield reconstructed by inter-source

interferometry depends on the receiver array location,

we test Green’s function retrieval using cross-corre-

lation of the wavefields recorded at receivers located

in different stationary phase zones. Figures 5 and 6

compare the forward-modeled wavefield and the

interferometric Green’s function retrieved using only

receivers in the stationary phase locations, Z1 and Z2,

respectively. Figure 5 illustrates that we can only

retrieve the direct wave when we use receivers in the

stationary phase zone (Z1) of the direct wave. By

contrast, Fig. 6 shows the same comparison, using

stations located in the stationary phase zone (Z2) of

the scattered wave, indicating that in this case, we can

only retrieve the scattered wave. Notice from Figs. 5

and 6 that the limited aperture of the used receiver

array located inside the stationary phase zone leads to

Figure 3
Comparison between the forward-modeled wavefield convolved

with the source wavelet (blue) and the Green’s function retrieved

from the inter-source technique (VRM) with a time derivative

correction (red), using all 801 receivers. The amplitude of the two

traces are normalized
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a small phase distortion between the forward-mod-

elled and interferometric wavefields.

We show in Appendix A that the small phase

distortion in Fig. 5 is due to an integration over

receivers that is limited to the stationary phase zone.

We also show in the appendix that the stationary

phase integral converges slowly in the sense that one

needs to integrate over an interval that is much larger

than the width of the stationary phase zone as defined

earlier, and that an integration over the stationary

Figure 4
Cross-correlation of wavefields recorded at each individual receiver. The bottom-left plot magnifies the area in the red rectangle, showing

weak waves that arrive consistently at 0.25 s at all receivers

Figure 5
Comparison between the forward-modeled wavefield convolved

with the source wavelet (blue) and the Green’s function retrieved

from the inter-source technique (VRM) with a time derivative

correction (red), using receivers located in stationary phase region

for inter-source path (Z1). The amplitudes of the traces are

normalized

Figure 6
Comparison between the forward-modeled wavefield convolved

with the source wavelet (blue) and the Green’s function retrieved

from the inter-source technique (VRM) with a time derivative

correction (red), using receivers located in stationary phase zone

for source-scatterer path (Z2). The amplitudes of the two traces are

normalized using the amplitude of the scattered wave
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phase zone—defined as the region where the maxi-

mum phase delay is a quarter of a period—leads to a

phase error of about 0.273 radians. This phase error

does not depend on the distance between the sources.

In addition to the different receiver array loca-

tions, we also test the connection between the

sampling density of the station array and the retrieved

Green’s function using inter-source interferometry by

lowering the number of stations and thereby

increasing the station spacing inside the two station-

ary phase zones (Z1 and Z2). The comparison of the

forward-modeled and the retrieved traces in Fig. 7

involves stations located in the two stationary phase

zones (Z1 and Z2). Using 41 stations with a uniform

station spacing of 100 m in each zone, we can recover

both the direct and the scattered waves (Fig. 7a). By

contrast, Fig. 7b shows the retrieved direct and

scattered waves with oscillations prior to the arrival

of these waves, using 5 stations in each zone with a

uniform station spacing of 1 km. The direct and

scattered waves in Fig. 7 are well-reconstructed using

the different station spacing because the width of the

stationary phase locations is well-covered. In the case

of Fig. 7b, the retrieved signal is under-sampled away

from the stationary phase regions as the station

spacing is much larger than the smallest wavelength

of this synthetic model (400 m). Thus, the oscillations

prior to the direct and scattered waves are not com-

pletely eliminated, compared to the retrieved signal

in Fig. 7a. Similar to Figs. 5 and 6, Fig. 7 shows a

phase distortion between the forward-modelled and

interferometric wavefields due to the limited aperture

of the used receiver array located inside the stationary

phase zones. We explain the detail of the phase shift

in Appendix A. One can mitigate this phase distortion

using all receivers on the surface (Fig. 3), but this is

usually not possible with realistic surface array.

In this section, we showed that one can recon-

struct the waveform of direct body waves, which

accounts for the wave propagation between two

sources, using inter-source interferomety and seismic

records of receivers located in the stationary phase

zones. The reconstruction is accurate only when the

wavefield is sampled with sufficient spatial sampling

Figure 7
Comparison between the forward-modeled wavefield convolved with the source wavelet (blue) and the Green’s function retrieved from the

inter-source technique (VRM) with a time derivative correction (red), using receivers located in Z1 and Z2. The amplitude of the two traces

are normalized. 7a and 7b have uniform receiver spacings of 100 and 1000 m, respectively, in the stationary phase zones
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density. For the direct summation of the cross-cor-

related wavefields over field array receivers, one

requires 4 sampling points in a wavelength because

two sampling points are not adequate to numerically

integrate an oscillatory function when using a sum-

mation over the sampling points; as shown in the top

function in Fig. 8, these sampling points of an inte-

grated oscillatory function might be located at zero

crossings of the integrand and would thus erroneously

suggest that the function vanishes. However, using

techniques such as interpolations of the integrand

prior to the summation of the integrand (Entwistle

et al. 2015) or Filon-Trapizoidal rule for numerically

integrating oscillatory integral functions (Tuck 1967),

one can reduce the number of required sampling

points and only needs more than 2 sampling points in

a wavelength. With only the direct integration of the

cross-correlations over receivers, one needs at least 4

points per wavelength to numerically integrate such

an oscillatory function, although even in that case the

numerical quadrature might not be very accurate.

4. Green’s Function Retrieval Using Seismograms

Recorded near the San Andreas Fault (SAF)

Section 3 shows that for the direct summation of

the cross-correlated wavefields over array receivers,

one requires at least 4 receivers located within the

stationary phase locations to reconstruct the wave-

form of the direct body waves. Here, we exemplify

the recovery of direct body waves using the inter-

source method and seismic records from two earth-

quakes recorded at a seismic array inside the

stationary phase locations of the two earthquakes.

We select two earthquakes from the U.S. Geo-

logical Survey comprehensive earthquake catalog

(Guy et al. 2015). The first earthquake (Md ¼ 1:48)

occurred on July 11, 2014 at 6:56am with depth of

approximately 1 ± 1.4 km. The second earthquake

(Md ¼ 2:47) occurred on July 11, 2014 at 12:14 pm

with depth of approximately 4 ± 0.2 km. We use the

seismograms of the two earthquakes recorded at an

array installed in Peachtree Valley, San Andreas

Fault (SAF). The array consists of 116 ZLand nodes,

along 3 line arrays (Fig. 9). For the interferometry,

we use the seismic records of the two local earth-

quakes from the line array along the SAF (Line 3);

seismograms of the earthquakes start at the origin

times of the earthquakes from the catalog (Fig. 10).

The seismograms are bandpassed between 1 and 3 Hz

to accommodate the station spacing of the array and

the sampling criteria.

In this study, we perform inter-source interfer-

ometry using the waves arriving in the P-wave time

windows. We first manually pick the arrival times of

P and S waves from the shallow earthquake of each

station. Then, we visually pick the P-wave arrival

time of the deeper earthquake and determine the local

P-wave velocity from the picked P-wave arrivals;

assuming straight ray paths between the sources and

the surface receivers and using the moveout along the

array (local P-wave velocity approximately 4.8 km/s).

We assume that the wave-velocity ratio Vp=VS is

constant. Thus, we can estimate the arrival times of S

waves for the deeper earthquake and separate the P-

and S-wave time windows of the two earthquakes.

The windows we use in our interferometric study are

from the origin times of the earthquakes up to the S-

wave arrivals. We then apply a Hanning taper of 2

Figure 8
Different numbers of spatial samples for an integrated oscillatory

function
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periods on both ends of the P-wave signals. Here, all

of the seismic stations of the SAF data set are visually

located in the stationary phase zone of the two

selected earthquakes (Fig. 11). The station spacing of

approximately 200 m is less than a quarter of the

wavelength for the highest-frequency waves in the

selected 1–3 Hz bandpass (k=4 is approximately 400

m). The station spacing of the SAF data set thus

satisfies the sampling requirement. Since the data at

stations 5 and 40 are missing, we cross-correlate the

waves in the tapered P-wave windows for stations 6–

39 (Fig. 10). Next, we stack the tapered P-wave

windows and then taper the sum of the windows,

using the Gaussian taper that accounts for approxi-

mately 40% of the width of the receivers array used.

The two tapers minimize the truncation effects

(Burdick and Orcutt 1979). The final process is to

take the time derivative of the stacked tapered cross-

correlated P-waves. Assuming step functions for the

source-time function and using the P-wave seismic

records, this provides an estimate of the P-waves that

propagate between the two selected earthquakes

(Fig. 12a).

Using receivers only along a line, the interfero-

metric P-waves (Fig. 12a) provide a qualitative

estimation of the P-wave propagation between the

two sources. The interferometric signal in Fig. 12a

consists of (1) a direct arrival at approximately 2.5–3

s and (2) a later arrival after approximately 3 s. The

timing of the direct arrival is consistent with the

expected arrival time determined from the earthquake

catalog and the local P-wave velocity of the area.

We recognize the large uncertainty in the depth of

the selected earthquakes from the catalog, and this

high uncertainty may contribute to the error of the

wave retrieval using inter-source interferometry

because when the depth of the earthquakes is sig-

nificantly different from the depths in the catalog, the

receiver array may not adequately sample the sta-

tionary phase zone of the interferometric integral. To

test the effect of the depth sensitivity on the inter-

ferometric P-wave retrieval, we use a synthetic

homogeneous model with two sources at the same

locations of the two selected SAF earthquakes and

surface receivers, including the Line 3 (L3) array of

200 m station spacing (Fig. 13a). Figure 13b shows

that although the L3 array does not cover the whole

Figure 9
Map view of seismic line arrays (white triangles) along and across San Andreas Fault and earthquakes (circles). Blue and red circles represent

the shallow and deeper earthquakes, respectively
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stationary phase zone of the two earthquakes, we can

reconstruct the same waveforms using the records

from the L3 array and the full line surface array. By

contrast, varying the depth of the shallow earthquake,

we can retrieve the similar waveforms but with dif-

ferent phases of the direct arrivals (red and blue

dashed lines on Fig. 13b. The depth uncertainty only

affects the phase shift of the waveforms but does not

reshape the waveform.

Since we verified that the depth uncertainty of the

selected earthquakes does not affect the shape of the

retrieved waveform, we speculate that the recovered

later arrival after approximately 3 s is a guided wave

traveling inside the low-velocity fault zone of the

SAF. To investigate whether the fault-zone wave

guide qualitatively produces the observed waveform

characteristics, we simulate the wave propagation

between a source and a receiver in a 3-layer model,

both of which are located in the middle slow-velocity

layer. This is a crude model (Fig. 14) for the host

rock and the slow-velocity layers of the SAF (Li

et al. 2004; Jeppson and Tobin 2015). The elastic

model is the plan view of the SAF and accounts for

P-S wave conversions. We use a source-time function

given by a Ricker wavelet with the dominant fre-

quency at 3.3 Hz. Assuming the two earthquakes

Figure 10
Seismic records of a shallow earthquake and b deeper earthquake from the line array along SAF (Line 3 in Fig. 9). The records are bandpass-

filtered at 1–3 Hz and start at the origin times of the two earthqaukes from the USGS catalog. Station 1 is the farthest receiver from the two

earthquakes

Figure 11
Cross-section of the selected earthquakes and seismic array along

the SAF
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occurred inside the fault zone of the SAF, we model

the source and receiver inside the low-velocity zone

with horizontal and vertical separation distance of 12

km and 350 m, respectively (Fig. 14). The horizontal

distance of 12 km is approximately the same sepa-

ration distance between the two earthquakes

(Fig. 11). The vertical distance of 350 m is arbitrarily

chosen to be less than the smallest fault-zone

Figure 12
a Inter-source interferometry of 1–3 Hz bandpass-filtered P-waves. Vertical red line indicates the expected arrival time of the direct P waves

determined from the earthquake catalog and the local P-wave velocity. Numerical simulations of wave propagation in a 3-layer model

between a source and a receiver with a thickness of the low-velocity layer of b 800 m, c 2.4 km, and d 4.2 km

Figure 13
a Synthetic model to compute acoustic wavefields. The model includes surface receivers with receiver spacing of 200 m and two sources

located at the same depth of the selected earthquakes from the SAF. The errorbar indicates the depth uncertainty of the shallow earthquake

from the earthquake catalog. The green receivers indicate the location of Line 3 (L3) array along the SAF in Fig. 9. b The inter-source

interferometric waveforms reconstructed using all surface receivers and the true depth of the shallow earthquake (solid black), L3 receiver and

the true depth of the shallow earthquake (solid green), L3 receiver and the shallow earthquake located at the surface (dashed blue), L3 receiver

and the shallow earthquake located at the lower end of the errorbar in a (dashed red)
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thickness of the SAF, which is less than 1 km (Li

et al. 1990, 2004; Korneev et al. 2004; Holdsworth

et al. 2011; Zoback et al. 2011; Jeppson and Tobin

2015). This arbitrarily chosen vertical distance also

minimizes reflection interference effects from the two

boundaries of the slow-velocity layers in our 3-layer

model (Fig. 14). We simulated the wavefield with a

2D spectral element method (Tromp et al. 2008) for

low-velocity layers with a thickness from 700 m to 7

km. The 2D simulation cannot be expected to quan-

titatively explain the waveforms; it is a crude model

to explain the qualitative features of the extracted

waveforms.

Examples of the wavefield with the middle layer

thickness of 800 m, 2.4 km, and 4.2 km, respectively,

are shown in Fig. 12; the wavefields are bandpass-

filtered between 2.5 Hz and 3.8 Hz to account for the

dominant frequency of the interferometric signal at

approximately 3.2 Hz. The modeled seismograms

(Fig. 12b, c, d) illustrate that a low-velocity zone

with a thickness of 4 km best explains the qualitative

features of the extended wavetrains obtained from

inter-source interferometry (Fig. 12a). Figure 12

suggests that the later arrival is likely to consist of

guided waves travelling in the damage zone of SAF

with a thickness of approximately 4 km. The crude

model used cannot be expected to lead to a fit of the

synthetic waveforms with the waves extracted with

the VRM, but the qualitative similarity between the

wavefields estimated by the interferometry and the

numerical simulation illustrates that inter-source

interferometry can qualitatively estimate the

wavefield, which accounts for the wave propagation

between two earthquake sources.

5. Discussion

Body waves contain three pieces of information:

1) the arrival time of the direct wave, 2) the wave-

form of the direct wave, and 3) the waveform of the

coda wave. Using inter-source interferometry, one

can reconstruct the direct wave and the coda of a

body wave that propagates between two seismic

sources, but the retrieved arrival time of the direct

body wave may not be accurate.

The retrieved arrival time depends on the differ-

ence between the origin time of the two sources,

which comes from the earthquake catalog. Using

inter-source interferometry, one cross-correlates

earthquake seismograms with start time at the origins

as recorded in the event catalog. However, the origin

time information taken from the catalog cannot be

assumed to be precise, and errors in the origin time

lead to errors in the arrival time of the extracted

direct wave. In addition, the depth uncertainty of the

selected two earthquake and the limited aperture of

used seismic array also contribute to the phase shift

of the retrieved waveform (Sects. 3, 4, Fig. 13, and

the Appendix) and thus maps the phase error to the

errors in the arrival time retrieval.

We can reconstruct the waveform of the direct

body wave by using receivers located within the

stationary phase zone of the two sources. Retrieving

this waveform offers a variety of benefits. For

example, by selecting two earthquakes occurring in a

fault or subduction zone, and using the inter-source

technique, we can reconstruct the waveform of the

direct body wave that travels along the zones and is

influenced by the structure of these zones (Fig. 15);

the direct wave travels in the low-velocity zone of the

fault zone or subduction zone. This direct wave helps

to define properties such as the width (thickness) and

the wave velocity of the zones, for example by using

fault-zone guided wave as a diagnostic of structure of

fault zones (Li et al. 1990).

Using VRM, one needs an adequate sampling

density of receivers to reconstruct waveforms of

direct body waves. In practice, if the waves propagate

Figure 14
Numerical model of 3 layers used to simulate 2D wave propagation

between a source and a receiver in a low-velocity layer (red) The

yellow arrow indicates the direction in which the wave motion is

recorded
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horizontally along surface receivers, one needs ade-

quate sampling points of 4 samples/wavelength to

directly integrate the interferometric wavefield (Fan

and Snieder 2009). However, additional processes

prior to the integration of oscillatory functions such

as interpolation and Filon-Trapezoidal rule (Entwistle

et al. 2015; Tuck 1967) can reduce the sampling

requirements and one only needs more than 2 sam-

pling points in a wavelength to adequately sample the

interferometric wavefields. This sampling density can

be larger if the wave arrives at an angle to the

receivers because only the wavelength along the

surface contributes to the wave reconstruction; the

required receiver spacing changes to k=sinðiÞ, where
k and i denote the wavelength and the incident angle

of the wavefront to the receiver array, respectively.

As Eq. (1) illustrates, to recover the waveform of

coda waves using inter-source interferometry, one

needs receivers on a closed surface surrounding the

sources. Because the dominant contribution of

Green’s function retrieval comes from the receivers

located inside stationary phase zones, one can

reconstruct scattered waves using surface receivers

only if scatterers are located below seismic events

(Fig. 16a). However, one needs underground recei-

vers rather than surface receivers to recover the

waveform of coda waves if scatterers are located

above the events (Fig. 16b). Although Fig. 16 shows

a sketch with a scatterer, one can apply similar rea-

soning when retrieving coda waves from a reflector

(e.g., core-mantle boundary and Moho discontinuity).

Our synthetic examples show that to retrieve the

waveform of direct body waves, one needs to use

surface receivers located in the stationary phase zone

of the selected sources with enough sampling density.

These limitations apply to any advances of inter-

source interferometry. Curtis and Halliday (2010)

apply inter-source interferometry as an operation for

source-receiver interferometry, which estimates the

Green’s function accounted for the wave propagation

between a virtual source and a vitual receiver. The

operation requires the stationary phase zone to be

parallel to the virtual source and a set of sources

located on the closed surfaces surrounding the virtual

Figure 15
Cartoon of the map view of the fault-zone-guided waves that

travels in a fault zone of the SAF. The shown fault zone width is

not to scale. The cartoon is the plan view of the numerical model in

Fig. 14

Figure 16
Cartoon of receiver locations needed for the retrieval of coda

waves. a and b have a scatterer (red) located below and above two

seismic events (blue)

Figure 17
Different geometries of source-receiver interferometry, modified

from Fig. 5 in Curtis and Halliday (2010). a source-receiver

geometry with two closed surfaces: S surrounding a virtual receiver

and S’ surrounding a virtual source. b source-receiver geometry

with limited surface receiver coverage controlled by the stationary

phase zones of sources on the surface S and the virtual source.

c similar source-receiver geometry to b but with more sparsely

distributed sources on the surface S, leading to a larger surface

receiver coverage. Pink hyperbolae denote the stationary phase

zones
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receiver (Fig. 17). Thus, the geometry of the sources

and the virtual source control the size and the location

of the stationary phase zone and the surface receiver

coverage. Depending on the distribution of the sour-

ces, we may need a large aperture for the stationary

phase zone and the surface coverage, or we may need

the entire surface array if the set of sources are very

sparsely distributed away from the virtual source

(Fig. 17c). The requirement for surface receiver

coverage also applies to other interferometric

advances. For example, in the virtual source method

application, the surface coverage controls the geom-

etry of the target area and source-receiver positions as

well as the resolution of the reconstructed wavefields

(Bakulin and Calvert 2006).

In Sect. 4, we illustrate a field example of inter-

source interferometry of P waves recorded from two

earthquakes in the SAF area, in which the recorded

seismograms of the example satisfy the stationary

phase location and sampling criteria. Because we lack

seismic wavefields across the SAF and only use

seismograms from the array along the fault (Line 3,

Fig. 9) for the inter-source method, we can only

qualitatively reconstruct the P wavefield accounting

for the wave propagation between the two earth-

quakes. The retrieved wavefield and the wave

simulation using a 2D fault model suggest that the

damage zone of the SAF is approximately 4 km thick.

The thickness inferred from the interferometric

waveform is different than the thickness of the SAF

damage or fault zone that is estimated to be less than

1 km, in previous studies of the nearby areas of

the SAF (Li et al. 1990, 2004; Korneev et al. 2004;

Holdsworth et al. 2011; Zoback et al. 2011; Jeppson

and Tobin 2015). The difference in the thickness

estimates may be from the diversity of our investi-

gated seismic frequency of 1-3 Hz compared to the

other studies. Korneev et al. (2004) investigate the

fault zone guide wave of the SAF areas at approxi-

mately 3-8 Hz while the investigated trap waves of Li

et al. (1990) contain frequency contents approxi-

mately below 100 Hz. Although Li et al. (2004) study

trapped waves with a frequency content below 5 Hz

(similar frequency content to our study), the investi-

gated guided waves are part of the S coda which is

different to our investigated P coda. Thus, the dif-

ference in the frequency content and the wave types

considered may explain the difference of the esti-

mated thickness of the SAF damage zone. Other

explanations for our different estimates for the

thickness may be found in the following studies of

nearby SAF areas and other strike slip faults: 1) the

shallow structure of the SAF may contain local flower

structures and splay faults that expand approximately

up to 1-3 km (Unsworth et al. 1997; Delong et al.

2010) and 2) off-fault deformations may occur and

extend up to 1-2 km away from the primary rupture

zone (Zinke et al. 2014; Vallage et al. 2015; Gold

et al. 2015). In addition, the 1-3 Hz bandpass-filtered

wavefield of the selected deeper earthquake recorded

at receivers across the SAF (Line 1 and 2, Fig. 9)

illustrates a high energy and complicated waveforms

in a band with a width of approximately 4 km across

the SAF (Fig. 18), supporting the thickness deter-

mined by the interferometric wavefield.

In our SAF example, we used the inline receivers

only and only have receivers with a limited aperture.

As a result, we can only recover the qualitative

waveform but do not retrieve the complete waveform

of the P wavefield. Halliday and Curtis (2008) show

that using an in-line array for interferometry of sur-

face waves induces phase shifts compared to the true

Green’s function. Seismic interferometry implicitly

involves integration of oscillatory integrals where the

dominant contribution comes from the stationary

phase point. According to expression (24.40) of

Snieder and van Wijk (2015), each stationary phase

integral gives a phase contribution expð�ip=4Þ,
where the sign is determined by the curvature of the

phase function. Leaving out the stationary phase

integration in the transverse direction gives a phase

error of �p=4. Since we only seek to compare the

character of the waveforms qualitatively, this phase

error is not significant.

Our work shows that inter-event interferometry of

two earthquakes cannot recover the complete wave-

form of coda waves but can retrieve the waveform of

the direct body waves, and the accuracy of the

retrieved arrival time of the direct waves depends on

the accuracy of the earthquake catalog. The lack of

transverse receiver array also contributes to the

incomplete recovery of the direct body waves.

However, in active-source explorations, particularly

on land, one has a well-defined catalog of the
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locations and timing of active sources. Using inter-

source interferometry and well-cataloged active

sources, one can better recover the arrival time of the

direct body waves with smaller timing errors, com-

pared to the uses of global or local earthquakes.

6. Conclusion

Although one can reconstruct a body wave prop-

agating between two seismic sources (e.g.,

earthquakes) using inter-source interferometry, the

retrieved arrival time of the direct body wave

depends on the difference between the origin times of

the earthquakes that are extracted from the earth-

quake catalog, and parts of the catalog could be

inaccurate. Moreover, we show that the depth

uncertainty influences the phases of the retrieved

direct arrival and maps the error to the retrieved

arrival time. Thus, the retrieved arrival time may be

useful only if the origin times and depths of the used

events in the catalog are accurate. However, when

one knows the source-time function of at least one of

the sources (the virtual sensor), the waveforms of the

direct and coda waves, which are part of the body

wave propagated between the two sources, can be

recovered using the inter-source method with recei-

vers on a closed surface.

The retrieval of the waveforms of the direct and

coda waves can also be approximated using surface

receivers located in the associated stationary phase

zones, but one can retrieve coda waves using surface

receivers only if the waves are scattered and reflected

below the shallowest source. Theoretically, one needs

receivers in the stationary phase zone, which is a

patch on the surface, to recover the direct or coda

waves but in practice one may use receivers along a

line array.

To reconstruct accurate body waves propagated

between two sources using inter-source interferome-

try, one needs to satisfy two conditions: (1) using

receivers inside the stationary phase location and (2)

the sampling criteria of approximately 4 samples/

wavelength for the direct summation of interfero-

metric wavefields over receivers. In this paper, we

illustrate an example of direct P-wave reconstruction

using the inter-source method and real-earthquake

wavefields from the SAF satisfying the two require-

ments. Using finite-element modelling and a

simplified seismic velocity model for the SAF region

with a slow-velocity fault zone embedded in a

homogeneous medium, we test the effect of different

Figure 18
Seismograms with 1–3 Hz bandpass filter of the selected deeper earthquake in Fig. 11, recorded at receivers across the SAF (Line 1 and 2,

Fig. 9). The red arrow shows the approximately wide region that straddles the SAF where the waveforms show an increase in complexity
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fault zone thicknesses on the waveform character. We

find that a fault zone thickness of approximately 4 km

is needed to qualitatively match the wavetrains of the

P waves recovered using VRM. The width of the fault

zone determined from the interferometric waveform

and our modelled solution is consistent with the

distance over high-energy, highly scattered, and

complicated waveforms manifested on recordings

from surface receivers across the fault.
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Appendix A: Phase Shift and Fresnel Integral

In Sect. 3, we show that one can reconstruct direct

and scattered body waves using receivers in the sta-

tionary phase zones. Using an array with a limited

aperture in the stationary phase region, the phase of

the recovered waveforms differs slightly from the

forward-modelled waveforms (Figs. 5, 6, and 7).

When we use the source-receiver geometry in

Fig. 2, we can determine the time differences

between the direct arrivals of the two sources at each

receiver. We define the size of the stationary phase

zone (SPZ) using a faction of the dominant period

Tdominant of our synthetic signals, where Tdominant ¼
0:25 s. In Sect. 3, our SPZ covers the receivers within

Tdominant=4 from the maximum time difference

(Fig. 19).

Figure 20 shows the direct wave that propagates

between the two sources in Fig. 2, and the waves

extracted from inter-source interferometry take only

receivers into account with a delay time Tdominant=4

relative to the delay time at the stationary phase zone.

One should note the slight phase change between the

two waveforms. We show in this appendix that this

phase error is associated with limiting the used

receivers to the stationary phase region.

Consider the source-receiver geometry in Fig. 21.

Seismic interferometry for waves in a 2D homoge-

neous medium gives

GðrA; rB;xÞ � G�ðrA; rB;xÞ

� i

4pq

I

S0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

rSArSB

r

eikðrSA�rSBÞdS0;
ð9Þ

where GðrA; rB;xÞ � G�ðrA; rB;xÞ is the difference

between the causal and acausal parts of the Green’s

Figure 19
Time differences between the direct arrivals of the two sources at

each surface receiver in Fig. 2. The graph on the bottom left corner

is the enlarged version of the area inside the black box

Figure 20
The forward-modeled and the interferometric waveforms of the

direct body waves
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function accounting for the wave propagation

between the points A and B, x is the angular fre-

quency, q is the mass density, k is the wave number,

and S is the source position on a surface S0 (Fan and

Snieder 2009). We can approximate the term rSA �
rSB in Eq. (9) using a second-order Taylor series:

rSA � rSB � ðLA � LBÞ þ
1

2

�
1

2LA
� 1

2LB

�

x2: ð10Þ

Using this second order Tayor expansion for the

phase and replacing the geometrical spreading in

Eq. (9) by 1=
ffiffiffiffiffiffiffiffiffiffi
LALB

p
, the integral in expression (9) is

in the stationary phase approximation (Snieder and

van Wijk 2015) given by

GðrA; rB;xÞ � G�ðrA; rB;xÞ

� i

4pq
eikðLA�LBÞ

ffiffiffiffiffiffiffiffiffiffi
LALB

p
Z þ1

�1
exp

ik

2

1

LA
� 1

LB

� �

x2
� �

dx ;

ð11Þ

where we replaced the integration over a closed

surface by an integration over the transverse x-coor-

dinate. The integral in the right-hand side is of the

same form as the Fresnel integral (Sandoval-Her-

nandez et al. 2018), which is defined as

FðXÞ ¼
Z X

0

exp i
p
2

x0
2

� �
dx0 : ð12Þ

This integral is complex and is shown in the complex

plane in Fig. 22 where the the origin corresponds to

the integral for X ¼ 0, and the asymptotic point 0:5þ
0:5i is reached for X ! 1. This graphical represen-

tation is called the Cornu spiral. The many windings

of this spiral around the asymptotic point reflect that

the Fresnel integral converges slowly.

The real part of the integrand of the Fresnel

integral (12) is shown in Fig. 23. The oscillatory

nature of this integrand explains the shape of the

Cornu spiral and the slow convergence of the Fresnel

integral: the alternating positive and negative values

of the integrand lead to the slow spiraling of the

Fresnel integral in the complex plane, and one needs

Figure 21
Source and receiver positions in interferometry. x is the half-width

of the stationary phase zone

Figure 22
Fresnel integral from t ¼ 0 to t ! 1 in the complex domain

(blue). Black and red asterisks represent the integral over a large

part of surface receivers and surface receivers located in the

stationary phase zone, respectively

Figure 23
Real part of the integrand of the Fresnel integral (12) for

�5\x0\5. Black dot denotes the first position where the real

part changes from positive to negative values
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to integrate over a large interval for the integral to be

close to its asymptotic value for X ! 1.

In the waveforms of Fig. 20 the summation over

receivers was limited to receivers that have a delay

time of less than a 1/4 of the dominant period. That

corresponds to a phase delay of less than p=2. In the

Fresnel integral (12), this integration interval corre-

sponds to the upper limit X ¼ 1. As shown by the

black dot in Fig. 23, this upper limit is at the point

where the real part of the Fresnel integral has its first

zero crossing. (This is actually the rationale for

restricting the integration to delay times less than 1/4

of the dominant period.) Since the real part of the

integrand of the Fresnel integral changes sign, the

real part of the Fresnel integral has a maximum at this

point, and hence this upper limit corresponds to the

rightmost point of the Cornu spiral that is indicated

by the red star in Fig. 22.

The important point to note is that the phase of the

Fresnel integral for X ¼ 1 differs from the phase of

the integral computed for its asymptotic value for

X ! 1; the phase angle for the red star in Fig. 22

differs by about 0.273 rad from the phase angle for

the black star. This phase difference leads to the

phase difference in the waveforms shown in Fig. 20.

The phase difference in the waveforms corresponds

to about 0.201 rad. This is slightly less than the phase

difference of 0.273 rad predicted above. This dis-

crepancy is caused by the fact that the argument in

this appendix ignores the decay of the interferometric

integral that is due to variations of the geometrical

spreading in the integration. Furthermore, the analy-

sis in this appendix is applicable in the frequency

domain, whereas the time-domain waveforms in

Fig. 20 contain contributions from a range of fre-

quencies. However, the main points from this

appendix are that (1) the interferometric integral

converges slowly and (2) truncating this integral can

leads to phase errors of about 0.3 rad. Tapering of the

interferometric integral will lead to a faster conver-

gence of the integral. Since the phase error does not

depend on the distance between the sources at loca-

tions A and B, the impact of the phase error on

estimated velocities decreases with increasing dis-

tance between the sources.
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