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Abstract Waves that propagate between two receivers can be extracted by cross correlating noise
recorded at these receivers if the noise is generated by sources on a closed surface surrounding the
receivers. This concept is called seismic interferometry. Of all these noise sources, those for whom the travel
time difference for propagation to the two receivers is in the stationary phase zone, give the dominant
contribution. In this paper we analyze the stationary phase properties when one receiver is at a caustic for
waves leaving the other receiver. A simple model for a waveguide and a general treatment of caustics show
that, at a caustic, the curvature of the travel time difference at the stationary phase zone vanishes. As a result
the stationary phase region is considerably wider at a caustic than at other points, and it is more likely that
noise sources are present in the stationary phase region. This explains why it is easier to extract waves from
seismic interferometry when the receivers are at caustics such as antipodal receivers on the Earth.

1. Introduction

Seismic interferometry is a technique where one retrieves waves that propagate between two receivers by
cross correlating random wave fields recorded at these two receivers. As a result, one of these receivers acts as
a source, even though no physical source is present; for this reason one speaks of a virtual source [Bakulin and
Calvert, 2006]. Under optimal conditions the retrieved waves are the impulse response or Green’s function. In
order to extract the Green’s function, sources must, strictly speaking, radiate energy homogeneously along a
closed surface that surrounds the receivers. The principle of seismic interferometry is discussed in a number
of review papers [Curtis et al., 2006; Larose et al., 2006; Snieder and Larose, 2013].

Mathematically, the principle of seismic interferometry for acoustic waves is given by equation (32) of
Wapenaar and Fokkema [2006]:

G(rA, rB, 𝜔) − G∗(rA, rB, 𝜔) = − 2i𝜔
𝜌c ∮ G(rB, r, 𝜔)G∗(rA, r, 𝜔)d2r , (1)

where G is the Green’s function, the asterisk denotes complex conjugation, 𝜌 is the mass density, c the velocity,
and 𝜔 the angular frequency. Because of the complex conjugation, the phase of G(rB, r, 𝜔) and G∗(rA, r, 𝜔) in
the integrand is subtracted, which corresponds, in the time domain, to a subtraction of arrival times.

According to equation (1), one needs sources all along a closed surface that surrounds the receivers. These
sources can be true noise sources, reflection points, or scatterers. The latter two source types act as secondary
sources. In practice, one does not need sources everywhere to retrieve the arrival of waves that propagate
between the receivers. The dominant contribution to the interferometric integral (1) comes from stationary
phase regions [Snieder, 2004; Snieder et al., 2006, 2008]. These are areas where the phase of the integral (1)
does not change to first order with the location of the source on the enclosing surface. (The stationary phase
regions are also called coherency zones [Larose, 2006] or end-fire lobes [Roux et al., 2004]).

In practice, it has proven to be relatively easy to extract surface waves from seismic interferometry [Campillo
and Paul, 2003], and this technique has revolutionized crustal surface wave tomography [Campillo et al., 2011;
Ritzwoller et al., 2011]. It has proven to be more difficult to extract body waves from the cross correlation of
noise [Draganov et al., 2009; Nakata et al., 2011] than it is for surface waves. Assuming that noise sources are
only present at the Earth’s surface, stationary phase zones are much larger for surface waves than for body
waves [Forghani and Snieder, 2010]. As a result, it is more likely for sources to be located in the stationary
phase regions of surface waves than it is for body waves. In addition, the ability to extract body waves and
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Figure 1. Definition of geometric variables for receivers on the x axis
and sources on the dashed line x = −D.

surface waves by cross correlation of ambi-
ent noise also depends on the degree to
which these wave types are present in the
noise field. The seismic noise is strongest
in the microseismic band where it is dom-
inated by surface waves [Schulte-Pelkum
et al., 2004; Stehly et al., 2006], although
body waves are also present in seismic
noise [Gerstoft et al., 2008; Zhang et al.,
2009]. A comprehensive theory of the gen-
eration of seismic noise is given by Traer and
Gerstoft [2014].

Reflected body waves have been retrieved
from teleseismic waves using deconvolu-
tion [Bostock and Rondenay, 1999; Bostock
et al., 2002; Kumar and Bostock, 2006] and

cross correlation [Ruigrok et al., 2011]. Seismic interferometry has also been used to extract and enhance
refracted waves from active shot experiments [Mikesell and van Wijk, 2011] and core-diffracted waves from
earthquakes [Bharadwaj et al., 2014]. Moho-reflected waves, both PmP and SmS, have been extracted from
the cross correlation from ambient noise [Zhan et al., 2010; Poli et al., 2012a]. Recently, a number of studies
have shown that body waves that propagate deep in the Earth can be extracted by cross correlation of either
ambient noise or earthquake coda [Poli et al., 2012b; Nishida, 2013; Boué et al., 2013; Lin and Tsai, 2013; Lin
et al., 2013]. Some of these studies use averaging provided by array measurements to reconstruct the body
wave arrivals, but Lin and Tsai [2013] retrieved body waves for individual station pairs located at antipodes.
The large amplitudes of retrieved teleseismic waves at a distance of about 150∘ near the triplication of core
phases [Nishida, 2013; Boué et al., 2013] suggest that the retrieval of body waves in seismic interferometry is
enhanced when receivers are located near caustics.

The purpose of this paper is to show how the vicinity of caustics near receivers assist in the extraction of
waves from seismic interferometry. Boué et al. [2014] postulate that reverberations in the Earth facilitate the
extraction of body waves because of the large stationary phase regions for such wave paths. In this paper
we explore and elucidate this postulate for the related problem of the extraction of waves near caustics by
seismic interferometry. We present in section 2 a model of a waveguide as a simple prototype of a velocity
structure that produces caustics. In section 3 we show numerically how the rays and travel times behave in this
model and show how the stationary phase region changes at a caustic. We extend this to general caustics in
section 4. We show in section 5 how the large stationary phase zone at caustics affects the integration over
sources and discuss the implications for the interferometric retrieval of waves near caustics in section 6.
Appendix A contains mathematical details of ray theory in the waveguide model.

2. Caustics in a Waveguide

We present the behavior of seismic interferometry at caustics with a simple 2-D example of waves that
propagate in a waveguide. In this model the wave velocity c depends on depth only and is given by

1
c(z)

= 1
c0

(
1 − 1

2
q2z2

)
, (2)

where c0 and q are positive constants. We consider the geometry shown in Figure 1 where rays propagate
from a source at location S = (−D, z) to receivers at locations A = (0, 0) and B = (L, 0) that are located on the
axis of the waveguide. As shown in Appendix A, these rays are approximately given by

z(x) = z
sin q(−x)

sin qD
(ray SA) , (3)

z(x) = z
sin q(L − x)
sin q(L + D)

(ray SB) , (4)
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Figure 2. Rays propagating from a source at A to a caustic at B.

As expected, the rays oscillate around the axis of
the wave guide. When the rays cross the wave
guide axis, they go through a caustic. This hap-
pens periodically over each propagation distance
𝜋∕q, and we show in Appendix A that a ray prop-
agating over a distance X along the x axis is at a
caustic when

sin qX = 0 (caustic) . (5)

This means, for example, in equation (3), that at
a caustic sin qD = 0. In the vicinity of the caustic

sin qD → 0; hence, to analyze the ray behavior at a caustic, we set sin qD = 𝜀. For an initial ray position z = 𝜀a,
equation (3) states that in that case z(x) = −a sin qx. This means that at the caustic (𝜀 = 0), rays with nonzero
ray deflection connect the source and receives on the x axis. This corresponds to the fact that at a caustic,
nearby rays connect the same points, see the sketch in Figure 2. We make this statement more precise in
expression (15).

We focus in this work on stationary phase principles in seismic interferometry. For the stationary phase anal-
ysis we study the variation of the travel time as a function of the source position z. We denote the nth-order
variation of the travel time with z as t(n):

t = t(0) + t(2) + O(z3) . (6)

The zeroth-order variation t(0) is the travel time for the ray starting at z = 0 that propagates along the x axis.
The first-order variation t(1) vanishes, which is consistent with Fermat’s theorem [Aldridge, 1994; Snieder and
van Wijk, 2015]. The second-order variation t(2) is, by definition, proportional to z2. This variation gives the
curvature of the travel time with the z coordinate of the starting point of the ray. If follows from expressions
(A7) and (A8) in Appendix A that for the rays SA and SB, the zeroth- and second-order travel time variations
are given by

t(0)SA = D
c0

and t(2)SA =
qz2

2c0 tan qD
, (7)

t(0)SB = L + D
c0

and t(2)SB =
qz2

2c0 tan q(L + D)
, (8)

According to expression (1), one cross correlates in seismic interferometry waves recorded at receivers A and
B to retrieve the waves that propagate between these receivers. Cross correlation corresponds, in the time
domain, to a subtraction of travel times. For this reason we can subtract the travel times from the source S
to the receivers A and receiver B to estimate the contribution of a source at location S to the interferometric
integral (1). Following expression (7), this difference is to zeroth order in z given by

t(0)SB − t(0)SA = L
c0

. (9)

This is just the travel time of a wave that propagates along the x axis from A to B. According to expressions (7)
and (8), the second-order contribution of the travel time is given by

t(2)SB − t(2)SA =
qz2

2c0

(
1

tan q(L + D)
− 1

tan qD

)
. (10)

Using trigonometric identities, this can be written as

t(2)SB − t(2)SA =
qz2

2c0

sin qL
sin q(L + D) sin qD

. (11)
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Figure 3. Rays ending at the points A and B when: AB is 500 m (a) before the caustic, (b) at the caustic, and (c) beyond
the caustic. Note the exaggeration of the scale along the vertical axis.

Following equation (5), sin qL = 0 when B is at a caustic for waves launched in A because these points are
separated by a distance L. Under these conditions expression (11) states that

t(2)SB − t(2)SA = 0 (caustic) . (12)

This means that the curvature of the travel time as a function of z for waves traveling from S to A and from S to
B, respectively, is equal. According to the classic stationary phase analysis applied to interferometry, it is this
difference t(2)SB −t(2)SA that determines the amplitude and phase of the waves inferred from seismic interferometry
[Snieder, 2004]. This quadratic term vanishes at a caustic, which means that the asymptotic evaluation of the
integration (1) over sources now depends on the third- or higher-order dependence of the travel time on
source position z [Bender and Orszag, 1978]. Because the problem in Figure 1 is symmetric in z, the third-order
term in the travel time expansion (6) vanishes, which means that when B is at a caustic for rays leaving A,
the travel time varies to leading order as the fourth power of the source position: t = t(0) + t(4). Rather than
asymptotically evaluating the resulting integral, we illustrate this situation with a numerical example.

3. Numerical Example

In the numerical example we use expression (2) with c0 = 1500 m/s and q = 1∕1000 m. According to expression
(5) the first caustic occurs when L = 𝜋∕q = 3141 m. Sources are located 1200 m to the left of the first receiver:
D = 1200 m. Figure 3a shows rays leaving a sample source at z = 50 m that propagate to the receivers when
receiver B is located 500 m before the first caustic: L = 2641 m.

We compute the travel time for each ray by numerically integrating expression (A6) along the ray. The travel
time tSA for the rays SA as a function of source position z is shown by the black line in Figure 4, while the travel
tSB for rays SB is indicated by the blue line. The difference tSB − tSA of the travel times is indicated by the red
line. At this scale the travel time curves are lines that appear to be straight. This is not very informative for the
stationary phase analysis of the interferometric integral (1) because the stationary phase analysis depends on
the variation of the travel time difference with the source position z. To show this variation, we subtract from
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Figure 4. Travel times for the rays in the left side of Figure 3 that
end at point A (black line) and point B (blue line) as a function
of the z coordinate of the source when AB is 500 m before the
caustic. Red line shows the difference in these travel times.

each of these curves the travel time for a source
at z = 0 resulting in the reduced travel time:

treduced(z) ≡ t(z) − t(z = 0) . (13)

The reduced travel times for the rays in Figure 3a
are shown in Figure 5a. In this case the rays prop-
agating to both receivers have a positive cur-
vature with z (black and blue curves) indicating
that travel times grow with increasing distance
from the axis of the wave guide. The travel time
difference has a positive curvature as well (red
curve). Such a positive curvature also occurs in
the case of velocity structures that do not form
caustics, and a stationary phase evaluation of
the interferometric integral (1) is similar to the
evaluation shown by Snieder [2004]. The dom-
inant contribution to this integral comes from

the stationary phase zone for the red curve. For waves with a period T the stationary phase region is defined as
the region where the reduced travel time difference (red curve) for rays SA and SB is less than about a quarter
wavelength:

|treduced,SB(z) − treduced,SA(z)| < T∕4 . (14)

For symmetry reasons the stationary phase region always includes the sources at z = 0 and its width is
determined by the curvature of treduced,SB(z) − treduced,SA(z).
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Figure 5. Travel times relative to the travel time at z = 0 for the rays in Figure 3 that end at point A (black line) and point
B (blue line) as a function of the z coordinate of the source position. Red line shows the difference in these travel times.
(a) Rays with AB 500 m before the caustic, (b) when AB is at the caustic, and (c) for AB 500 m beyond the caustic.
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The rays in Figure 3b illustrate the case when L = 3141 m. In this case receiver B is at a caustic for rays leaving
receiver A, but neither receiver A nor receiver B are at a caustic for rays leaving the source S. At the caustic
the ray-geometric amplitude is infinite, but since neither receiver is at a caustic of rays leaving the source S,
the ray-geometric wave fields that are cross correlated both have finite amplitude. The wave that propagates
from A to B is, however, at a caustic, and therefore has a large amplitude. This amplitude is not infinite because
the wavefield at a caustic is finite, only the ray-geometric approximation diverges.

How does the interferometric integral (1) reproduce the large amplitude at caustics? As shown in Figure 3b,
the ray propagating from the source to B (blue line) is for the leftmost part SA virtually identical to the ray that
propagates from the source to A. From A onward, the ray then propagates from A to B. For this source position,
the travel time difference of rays that propagate from S to B and from S to A is equal to the travel time of waves
that propagate from A to B. So the shown source in Figure 3b is in the stationary phase zone of the receivers
A and B even though it is not located on the x axis. Effectively, the stationary phase zone is in this case much
broader than it is when B is not in a caustic for waves launched at A.

Away from caustics, as shown in Figures 3a and 5a, the ray that propagates from S to A does not continue as
the ray that propagates from A to B. The only exception is when the source is located on the x axis at z = 0, in
that case rays propagate along the x axis from S to A and B which limits the stationary phase zone to a narrow
area around z = 0. But when B is at a caustic for waves leaving A, as shown in Figure 3b, sources for z ≠ 0 also
launch waves that almost exactly go through receiver A before traveling to receiver B. This effectively gives a
much larger stationary phase region, which produces the large amplitude of the wave recorded at the caustic.
It reflects the fact that point B is at a caustic when to leading order in the take-off direction, the endpoint of
rays that leave A does not change (Figure 2).

A different way to look at this situation is to consider the reduced travel time shown in Figure 5b. In this
case, the travel time curves for receivers A and B (blue and black lines) again have a positive curvature.
Near the stationary phase point z = 0, the curvature of the black and blue lines is virtually identical. As a
result, the difference of the travel times (red curve) has a vanishing curvature at the stationary phase zone:
𝜕2(treduced,SB − treduced,SA)∕𝜕z2 = 0. This cancelation of the curvature of the second-order travel time variation
with z at the receivers A and B is predicted by equation (12). A second-order stationary-phase analysis, such as
that used by Snieder [2004] predicts an infinite amplitude. Such a second-order stationary-phase analysis cor-
responds to extracting the ray-geometric amplitude, which is indeed infinite. But a proper stationary phase
analysis takes the first leading order variation into account [Bender and Orszag, 1978], which is in this case of
fourth order. The red curve in Figure 5b indeed shows a fourth-order variation with z. Because of the slow vari-
ation of the reduced travel time with z, the stationary phase condition (14) now corresponds to a much wider
stationary phase region than in Figure 3a. This wider stationary phase region produces the large, but finite,
amplitude that is characteristic of waves as a caustic.

Figures 3c and 5c show the rays and reduced travel times for a receiver separation L = 3614 m. In this case,
receiver B is 500 m beyond the caustic for rays leaving A. Consequently, the ray propagating to receiver B
(Figure 3c) now does not propagate through receiver A. The curvature of the travel times, as shown by the
black and blue lines in Figure 5c are different. The curvatures of these travel time curves now have an opposite
sign, and the difference of the travel times (red curve in Figure 5c) has a negative curvature too. According to
expression (24.38) of Snieder and van Wijk [2015], this change in curvature corresponds, after integration over
z, to a phase shift exp(i𝜋∕2). In the time domain this phase shift corresponds to a Hilbert transform [Aki and
Richards, 2002]. The Hilbert transform occurs when a wave goes through a caustic where the Maslow index
increases by 1 [Chapman, 2004]. The red travel time curves in Figure 5 show that the travel time difference has
a positive curvature before the caustic (red line in Figure 5a) and a negative curvature beyond the caustic (red
line in Figure 5c). Since the travel time difference changes curvature continuously, there must be an interme-
diary point where the curvature vanishes. As shown by the red line in Figure 3b, the curvature changes sign
exactly at the caustic.

4. General Caustics

The previous example was for the special case of the wave guide (2) for the geometry of Figure 1. The principles
carry over to a more general caustic as shown in Figure 6. These cases also include structures with asymmetric
velocity profiles such as a SOFAR channel. (This is the Sound Fixing and Ranging acoustic waveguide in the
ocean that allows sound to propagate over large distances [Dietrich et al., 1980]). Suppose a ray propagates
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Figure 6. The perturbation of a ray path near a caustic.

along path 1 from S1 to A and continues to B.
One can perturb the take-off angle 𝛾 and launch
a wave along path 2. When B is at a caustic, the
ray along another path 2 still goes through B, this
is the situation depicted in Figure 2. In fact, at
a caustic, the travel time of the waves does, to
second order, not change with the take-off angle
[Berry and Upstill, 1980]:

𝜕2tAB

𝜕𝛾2
= 0 (caustic) (15)

In an interferometric experiment, an infinitesi-
mal change in the take-off angle that changes

path 1 into path 2, corresponds to a change in the source position from S1 to S2 (Figure 6). For both source
positions, the rays travel through receiver A to receiver B; hence, tSB − tSA = tAB, and equation (15) thus states
that at a caustic the travel time difference tSB−tSA = tAB does not change to second order with the source posi-
tion. At a general caustic in two dimensions, the travel time difference tSB − tSA thus has a vanishing curvature
with respect to the source location, which is the behavior discussed in the previous section. The conclusion
of that section thus carry over to a general caustic in two dimensions.

In three dimensions there are two take-off angles 𝛾1 and 𝛾2, and the condition for a caustic is [Berry and
Upstill, 1980]

det
𝜕2tAB

𝜕𝛾i𝜕𝛾j
= 0 (caustic) . (16)

Since the change in each take-off angle corresponds to a change in source coordinates, expression (16) is
equivalent to

det
𝜕2tAB

𝜕si𝜕sj
= 0 (caustic) , (17)

where s1 and s2 are changes in the source coordinates that correspond to changes in the two take-off
angles. In the stationary phase analysis of the interferometric integral (1) the final result is proportional to

1∕
√

det(𝜕2tAB∕𝜕si𝜕sj) (expression (24.42) of Snieder and van Wijk [2015]). At a caustic, where expression (17)

holds, a second-order stationary-phase analysis thus predicts an infinite amplitude. For a general caustic, the
contribution from the stationary point comes from the contributions in the source position that vary to the
third order or higher. This variation is related with the topology of the caustic and is different for a fold, a cusp,
a swallowtail, and other types of caustics. The resulting amplitude and diffraction pattern at the caustic also
depends on the topology of the caustic [Berry and Upstill, 1980; Nye, 1999].

On a spherically symmetric Earth the antipode is always at a caustic. To see this we use a system of spherical
coordinates with the north pole at the source. When the angles 𝜃 and𝜑 in this system of spherical coordinates
are used to characterize the take-off angles of a ray, the determinant (17) at the antipode is given by

||||||||||

𝜕2t
𝜕𝜃2

𝜕2t
𝜕𝜃𝜕𝜑

𝜕2t
𝜕𝜃𝜕𝜑

𝜕2t
𝜕𝜑2

||||||||||
=

||||||||
𝜕2t
𝜕𝜃2

0

0 0

||||||||
= 0 . (18)

The first identity follows from the fact that at the antipode the travel time does not depend on the azimuth
of the take-off direction, so that 𝜕t∕𝜕𝜑 = 𝜕2t∕𝜕𝜑2 = 0. The second identity implies that the antipode is
indeed a caustic. Physically speaking, at the antipode, rays arrive with identical travel times from all azimuths.
Note that aspherical Earth structure causes triplications in the antipodal caustics, this is shown for surface
waves by Wang et al. [1993]. At such a triplicated caustic the amplitude is still large, but it is not clear what the
implications are for the interferometric reconstruction of waves at antipodal stations.

5. A Simple Example of Stationary Phase Integration

As discussed in the previous section, for interferometry at caustics, the stationary phase zones are wider than
at other locations, which increases the probability that noise sources are located in the stationary phase zone.
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Figure 7. Times T2(x) (blue) and T4(x) (red) defined in
equation (19).

But does this mean that one needs a smaller num-
ber of sources? We address this question in this
section with a simplified model for the evaluation
of the interferometric integral (1) by summing the
contributions from a limited number of sources.

We define travel time differences that are proto-
types of the travel time differences shown by the
red curves in Figures 5a and 5b. In the example,
we define the following travel times as a function
of a dimensionless variable x (defined as distance
divided by wavelength):

T2(x) = x2 and T4(x) =
x4

x2 + 8
. (19)

These travel times are shown in Figure 7. The travel
time T2(x) is parabolic and is similar to the red curve
in Figure 5a, while T4(x) varies near the stationary

point x = 0 as x4, as does the travel time difference shown by the red curve in Figure 5b. Note that for large
values of x, both functions behave as x2. We use these functions on the interval −x0 < x < x0 with x0 = 8 and
mimic the interferometric integral by defining

Fn(x) =
(

1 − (x∕x0)2
)

cos Tn(x) , (20)

for n = 2 and n = 4. These functions are shown in Figure 8. Note that both functions are oscillatory but have
a stationary phase region at x = 0. Away from a caustic (blue curve), the function behaves as x2 near the
stationary point, while at a caustic (red curve), the function behaves as x4. As a result the stationary phase
region is larger for the red curve than for the blue curve. Note that the oscillatory behavior of the two functions
away from the stationary phase region is identical.

The true value of the integrals ∫ x0
−x0

F2(x)dx and ∫ x0
−x0

F4(x)dx is shown by the horizontal blue and red lines in
Figure 9, respectively. For the case of a caustic (red line and symbols), the integral is larger than it is away from
a caustic (blue line and symbols). This corresponds to the larger area of the stationary phase region of the red
curve in Figure 8 than of the blue line in that figure.

In seismic interferometry, the integration in expression (1) is usually carried our implicitly by using noise that
is generated by a number of randomly distributed sources. In our example we mimic this by evaluating the
integrals ∫ x0

−x0
Fn(x)dx by a Monte Carlo integration over N points that are randomly chosen along the interval

-8 -6 -4 -2 0 2 4 6 8

F
(x

)

-1

-0.5

0

0.5

1

Figure 8. Functions F2(x) (blue) and F4(x) (red) defined in
equation (20).

−x0 < x < x0. The resulting estimates are shown
in Figure 9 as a function of the number of sampling
points N for F2(x) (blue dots) and F4(x) (red dots).

For both functions the Monte Carlo estimates
approach the true values of the integrals as the
number of sampling points N increases. Note that
even for this simple problem one needs a fairly large
number of sampling points (sources) to accurately
estimate the interferometric integral. This is consis-
tent with the findings of Fan and Snieder [2009] who
showed that one needs several sources per wave-
length in seismic interferometry. They also showed
that one needs more sources when the sources
have random locations instead of a regular distri-
bution of sources. Perhaps surprisingly, they also
showed that one also needs a large number of
sources for strongly scattering media.
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Figure 9. True values of the integrals ∫ F2(x)dx (blue horizontal
line) and ∫ F4(x)dx (red horizontal line), as well as estimates
from Monte Carlo sampling using N randomly chosen points.

The fluctuations of the Monte Carlo estimates
in Figure 9 around the true value are compa-
rable for the two functions. The reason is that
these fluctuations are due to the random sam-
pling of the oscillatory parts of the functions
F2(x) and F4(x). The contribution of the oscil-
latory parts should integrate to zero, but with
an inadequate sampling this does not happen.
This oscillatory behavior of the functions F2(x)
and F4(x) in Figure 8 is similar; hence, the fluc-
tuations in the Monte Carlo estimates behave
similarly as well. However, because of the larger
value of the integral of F4(x), the relative size of
the fluctuations is less for F4(x) than for F2(x).

In seismic interferometry, a finite number of
noise sources lead to deviations of the extracted
Green’s functions from the real one. If these devi-
ations are of the same order as the Green’s func-
tion itself, the coherency of the extracted wave-

form is lost. This is less likely to happen at a caustic because at these locations the waves are stronger than at
other locations. In terms of the integrand of the interferometric integral (1) this large amplitude corresponds
to a wide stationary phase region.

6. Conclusions

The special example in section 3 and its generalization to general caustics in section 4 show that when receiver
B is at a caustic for rays leaving receiver A, the travel time difference in the interferometric integral (1) has a
vanishing curvature at the stationary point. This causes a slow variation of the travel time difference compared
to a stationary point with a nonzero curvature (compare the red curve in Figure 5b with the red curves in
Figures 5a and 5c). As a result, the stationary phase zone of the interferometric integral (1) is much wider at a
caustic than at other locations.

This increased width of the stationary phase zone at a caustic has consequences for the extraction of body
waves. First, for a homogeneous distribution of sources, a wider stationary phase zone contains more sources
than a narrower stationary phase zone. Therefore, more sources (either real or secondary sources) contribute
to the extraction of the wave field at a caustic than at other locations. As a result, the amplitude of the wave
field extracted from seismic interferometry is larger as well. This large amplitude corresponds to the large
amplitude of the waves at a caustic. The example of Figure 9 shows that the absolute errors in the extracted
waves for a limited number of sources are about equal for a regular stationary phase integration and for the
stationary phase integral at a caustic. The relative errors are, however, smaller for waves at a caustic than at
other locations because of the larger number of sources in the stationary phase zone.

It has been argued earlier that reverberations Boué et al. [2014] and scattering [Snieder and Fleury, 2010]
create additional stationary phase zones, which makes it more likely that sources are present in the stationary
phase zones. This is similar to the widening of stationary phase regions at caustics that we show in this work.
The creation of new stationary phase zones by reverberation or scattering, and the widening of stationary
phase zones at caustics both make it more likely that sources are present in regions that contribute to the
interferometric integral.

It has been argued earlier that the stationary phase zone for body waves is much smaller than it is for surface
waves [Forghani and Snieder, 2010]. The ability to extract body waves from seismic interferometry depends
on a number of factors that include the distribution of scatterers and noise sources, the attenuation in the
Earth, the presence of reverberations, and as we show in this work, receivers near caustics. It is the interplay
and possible combination of these factors that determine our ability to retrieve body waves from seismic
interferometry.
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Figure A1. Definition of geometric variables used for the
computation of a ray.

Appendix A: Computation of the
Rays and Travel Times

The rays satisfy the equation of kinematic ray
tracing

d
ds

(1
c

dr
ds

)
= ∇

(1
c

)
, (A1)

where s is the arc length along the ray. Since the
example of the waveguide is illustrative only, we
make a number of approximations to simplify
the problem and bring out the essential physics.
We consider rays that propagate nearly parallel
to the axis of the waveguide. In that case we can
replace the s derivatives in expression (A1) by x

derivatives. We replace 1∕c in the left hand side by 1∕c0. Taking the z component of the result and using
expression (2) in the right-hand side gives

d2z
dx2

= −q2z . (A2)

The used approximations are valid when(dz
dx

)
≪ 1 and q2z2 ≪ 1 . (A3)

In this problem we consider rays that propagate from a general point P to a point Q on the x axis, see Figure A1.
The general solution of equation (A2) is a superposition of cos q(xQ − x) and sin q(xQ − x). For the rays shown
in Figure A1, the solution is given by

z(x) = zP

sin q(xQ − x)
sin q(xQ − xP)

. (A4)

When zP = 0, the ray moves along the axis of the waveguide (z(x) = 0), except when sin q(xQ − xP) = 0. In that
case rays that start in the center of the waveguide oscillate along the x axis and converge on point Q. In that
case the point Q is at a caustic; hence, the condition for being at a caustic is

sin q(xQ − xP) = 0 (caustic) . (A5)

For the rays in Figure 1, (xQ, zQ) = (−D, z). For the ray ending at receiver A, (xP, zP) = (0, 0), while for the ray
ending at receiver B, (xP, zP) = (L, 0). Inserting this in the solution (A4) gives equations (3) and (4).

The travel time is given by t=∫ (1∕c)ds. Using the velocity profile from equation (2) and ds =
√

1+ (dz∕dx)2 dx,
one obtains

t = 1
c0 ∫

xQ

xP

(
1 − q2z2∕2

)√
1 + (dz∕dx)2 dx . (A6)

A Taylor expansion of expression (A6) in z shows that the zeroth and second-order dependence of the travel
time on z is given by

t(0) =
xQ − xP

c0
and t(2) = 1

2c0 ∫
xQ

xP

(
(dz∕dx)2 − q2z2

)
dx (A7)

For the ray (A4) the second-order travel time variation is given by

t(2) =
qz2

P

2c0 tan q(xQ − xP)
. (A8)

The conditions (A3) used for the validity of the used ray estimates imply with equation (A6) that the travel
time must be close to the travel time (xQ − xP)∕c0 along the x axis. This means that the reduced travel time,
defined in expression (13) must satisfy |treduced| ≪ t(z = 0). A comparison of Figures 4 and 5 shows that in the
examples used |treduced|∕t(z = 0) ∼ 1% ≪ 1, so that the requirements (A3) for the used ray approximations
are indeed satisfied.
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