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The effects of topography on three dimensional surface-wave scattering and surface-wave conversions is treated in
the Born approximation. Surface-wave scattering by topography is compared with surface-wave scattering by a
mountain root model. The interference effects between surface waves scattered by different parts of a heterogeneity are
analysed by considering Fraunhofer diffraction for surface waves. For a smooth heterogeneity a relation is established
between the interaction terms and the phase speed derivatives. The partial derivatives of the phase speed ¢ with respect

to the topography height & for Love (L) and Rayleigh (R) waves are
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Phase speed perturbations due to topography can amount to 1-2% and cannot be ignored in surface-wave studies.

1. Introduction

Observations of teleseismic surface waves dem-
onstrate that surface-wave scattering is an im-
portant process. Levshin and Berteussen (1979),
and Bungum and Capon (1974) showed, using
observations from NORSAR, that distinct multi-
pathing of surface waves occurs for periods below
40 s. A formalism to describe the three-dimen-
sional scattering of surface waves by buried het-
erogeneities was presented in Snieder (1986). (This
is referred to as paper 1.)

There is, however, no reason to assume that
surface waves are scattered by buried heterogenei-
ties only, since topography variations also cause
surface-wave scattering. Even for very idealised
models the effects of topography turn out to be
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very complicated. Asymptotic results for a narrow
mountain ridge on a homogeneous two-dimen-
sional half-space are given by Sabina and Willis
(1975, 1977). A survey of numerical methods which
have been used to study the effects of topography
on seismic waves is given by Sanchez-Sesma (1983).
Bullit and Toksoz (1985) used ultrasonic Rayleigh
waves in an aluminum model to investigate the
effects of topography on three-dimensional surface
waves. Because of the complexity of the problem
this paper is restricted to topography variations
that are weak enough to render the Born ap-
proximation valid.

The linearised scattering of elastic waves by
surface héterogeneities has received considerable
interest. The basic theory for this is outlined in
Gilbert and Knopoff (1960) for a homogeneous



half-space, and by Herrera (1964) for a layered
medium. Hudson (1977) applied the theory to the
generation of the P-wave Coda, while Woodhouse
and Dahlen (1978) considered the effect of topog-
raphy on the free oscillations of the Earth. A
completely different approach was used by Steg
and Klemens (1974) who analysed Rayleigh waves
in solid materials, which they treated as a lattice
instead of a continuum.

This paper provides an explicit formalism to
analyse three-dimensional surface-wave scattering
by topography in a continuous elastic medium. A
formalism for the linearised scattering of three-di-
mensional elastic waves is presented in section 2.
It is shown in section 3 how surface-wave scatter-
ing by topography can be accommodated in the
theory of paper 1. (An appendix is added with a
proof that the theory of paper 1 is unaffected if
the heterogeneity is nonzero at the surface.) Be-
cause of the linearisations these results are only
approximations. The validity of the Born ap-
proximation is discussed in Hudson and Heritage
(1982). In the treatment of the scattering by
topography the stress is assumed to behave lin-
early with depth over the topography. This impo-
ses another restriction on the validity of the results
presented here, which is discussed in section 4.
The interaction terms due to the topography are
analysed in section 5, where they are quantita-
tively compared with the surface-wave scattering
by a mountain-root structure.

The expressions for the scattered surface waves
contain integrals over the heterogeneity. Inter-
ference effects make the analytic evaluation of
these integrals complicated, even for idealised
scatterers. In section 6 a formalism is derived for
Fraunhofer diffraction by surface waves, which is
applied in section 7 to a Gaussian mountain.

It is well known that smooth heterogeneities do
not cause surface-wave scattering (Bretherton,
1968), but they do cause variations in the phase
speed and the amplitude. In section 8 a heuristic
argument is used for the relation between the
interaction terms and the phase speed variations.
It is shown in section 9 that this leads to the
partial derivatives of the phase speed with respect
to the density, P-wave speed and S-wave speed as
obtained from variational principles (Aki and
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Richards, 1980). Furthermore, the partial deriva-
tives of the phase speed with respect to the topog-
raphy are derived.

The results presented here are valid under cer-
tain restrictions. Firstly, the heterogeneity must be
weak enough to make the Born approximation
valid (Hudson and Heritage, 1982), and to allow a
linearisation of the stress over the topography
height. Secondly, the far field limit is used
throughout. Thirdly, a plane geometry is assumed,
it is shown in Snieder and Nolet (in preparation)
that this condition can easily be relaxed. Fourthly,
the slope of the topography has to be small.
Lastly, it is assumed that the interaction with the
body-wave part of the Green’s function can be
ignored. Body waves and surface waves are shown
to be coupled by strong topography variations in
Hudson (1967), Greenfield (1971), Hudson and
Boore (1980) or Baumgardt (1985). The locked
mode approximation (Harvey, 1981) can in princi-
ple be used to take this coupling into account,
without using the body-wave Green’s function.

Throughout this paper the summation conven-
tion is used both for vector or tensor indices, as
well as for mode numbers. Vector and tensor
components are denoted by Roman subscripts,
while Greek indices are used for the mode num-
bers. The dot product which is used is defined by

[7-3]=pta; (1.1)
where * denotes complex conjugation.

2. Derivation of the equations for the scattered
wave

The equation of motion combined with the
elasticity relations can be written as

LY )

In this expression u; is the i-th component of the
displacement, and F; is the force which excites the
wavefield. The (differential) operator L is defined
by

L= —szsij = 84Cinm jOm (2.2)

where ¢ is the elasticity tensor. The surface
boundary condition is given by

n;7,;=0 at the surface (2.3)
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n is the normal vector pointing outwards from the
medium, and 7;; is the stress tensor

T i = Cijklaku, (2.4)

‘I

It is well known how surface-wave solutions
can be obtained from (2.1) and (2.3) if the medium
is laterally homogeneous and the surface is flat.
Aki and Richards (chapter 7, 1980) treated this
problem in great detail. They showed that in that
case the solution was given by

u’=GF (2.5)
which is an abbreviated notation for
ul(F) = [ Gy, (F, ) E(#)d’r’ (2.6)
The Green’s function (G) satisfies

ij(F, t"’) =8,8(rFr—F) (2.7)

In this expression L° is the operator L for a
laterally homogeneous medium.

If lateral heterogeneities are present, or if the
surface is not flat, scattering of elastic waves oc-
curs. These scattering effects are treated here in a
linearised way, i.e., it is assumed that both the
lateral inhomogeneities of the medium, and the
topography variations are small. In that case the
density and the elasticity tensor can be written as

p(x, y, z2)=p"(2) +ep'(x, y, 2) (2.8)
&(x, y, 2)=c%2) +ec (%, y, 2) (2.9)
The (small) parameter ¢ is added to make explicit

that the perturbations are small. Let the topogra-
phy be given by

(2.10)

The — sign has been added because z is counted
positively downward, and h is the topography
height above z = 0. The functions ¢° and p° define
together with a zero stress boundary condition at
z =0 a laterally homogeneous background
medium, which is perturbed by the heterogeneities
¢! and g'. Since the perturbations are small the
wave field can be written as a perturbation series
in €

z= —¢h(x, y)

u=u"+eu" +0(e?) (2.11)
In this expression #! denotes the Born approxima-
tion to the scattered wave.

Hudson (1977) derived expressions for the
scattered wave in the Born approximation. He
showed that the wave scattered by the medium
heterogeneities (o' and ¢'), and the topography
variation is given by

ul(r) { fG,j(r )0 (F)*G, (7, 7)dv’

~ (36,7, 7)) i (F)

X (8,G, (7, 7,))dv’

+ [, (7, #)R(7)p*(7) 3Gy (', 7,)dS"
= (3,6, (7 7)) B (7)€ ()

x(3,Gu(7, )ASH|F(7)  (212)

The volume integrals are over the volume of the
reference medium (z > 0), while the surface in-
tegrals are to be evaluated at the surface of the
reference medium (z = 0). The differentiations are
taken with respect to the 7’-coordinates. Hudson
(1977) derived this result in the time domain,
(2.12) is the same expression in the frequency
domain. It has been assumed here that the wave
field is excited by a point force F in 7. A more
general excitation can be treated by superposition.
It is shown in paper 1 how a moment-tensor
excitation can be incorporated.

To derive this result three assumptions have to
be made:

(1) the heterogeneity is so weak that multiple
scattering can be ignored, i.e., that the Born ap-
proximation is valid.

(2) The slope of the heterogeneity has to be
small, since in Hudson’s derivation it is assumed
that (vh) = 0(e).

(3) The stress should behave linearly over the
mountain height, i.e., it is assumed that

(—h) =7(0) — hd,7(0) (2.13)
is a good approximation.

Using the Dirac §-function, we can rewrite
(2.12) as



ul(7) = [G, (7, #)[o +he'8(2)]

x«;ZGj,(f', F)E(7)dv’

—f(a,,,G,.j(;, F ) e + A8 (27))]
x(anle(’_‘” Fs))F;(;s)dV, (214)

The upshot of this calculation is that topogra-
phy variations in this approximation act on the
scattered waves as if both the mass of the moun-
tain (hp°), and the total elasticity of the mountain
(hc®) are compressed to a 8-function at the surface
of the reference medium. For the mass term this is
intuitively clear, because for surface waves which
penetrate much deeper than the mountain height
the precise mass distribution is not very im-
portant. For the elasticity term this is less obvious,
because it is not clear what the implications are of
‘compressing’ the total elasticity of the mountain
in a §-function.

3. A formalism for surface wave scattering

Up to this point the theory was developed for
an arbitrary elastic medium, and for the complete
Green’s function. This means that all sorts of
complex scattering phenomena can be dealt with.
(For example (2.14) could be used to describe the
scattering of body waves by anisotropic regions,
etc.)

From this point on we restrict ourselves to the
surface wave part of the Green’s function in an
isotropic medium. It is shown in paper 1 that the
far field Green’s function can conveniently be
expressed as a dyad of polarisation vectors. Using
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Fig. 1a. Geometry for the direct wave.

229

Fig. 1b. Geometry for the scattered wave.

these polarisation vectors we can show that the
direct wave is given by

ek, X+a/4)

W[ﬁ”(a, $).F]

a’(F)=p"(z, ¢)

(3.1)

and the scattered wave is for an arbitrary distribu-
tion of scatterers

@(F) = [ [5°(z, 42)

itk Xzt 7/4)

1/2
(34.%)

ei(k,z\"+'l1'/4)
1/2
w
(3%x)

X[P(z,, ¢1).Fldxdy, (32)

XV (%55 ¥,)

See Fig. (la,b) for the definition of variables.
Because of the summation convention a double
sum over excited modes (»), and scattered modes
(o) must be applied. The modes are coupled by
the interaction matrix V°". The only difference
with the results in paper 1 is that the depth
integrals over the heterogeneity are included in the
interaction terms V7,
The polarisation vector for Love waves is

P(z,¢)=1(2)2 (3.32)
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and for Rayleigh waves

(2, ) =r1(2)A+ir(z2)2 (3.3b)
Where /;, r; and r, are the surface-wave eigen-
functions defined in Aki and Richards (1980).

These eigenfunctions are assumed to be nor-
malised according to

8¢,U I =1 (no summation) (3.4)

In this expression I} is the kinetic energy integral.
For Love waves

IL,=1,2 f pl2dz (3.5)
and for Rayleigh waves
L=172[p(r}+r?)dz (3.5b)

It was shown in the previous section how surface
irregularities could be treated as a §-function het-
erogeneity at z = 0. Therefore the expression for
the interaction coefficients ('°”) of paper 1 can be
used. (In paper 1, (3.2) was derived for buried
scatterers. An appendix is added to this paper
with a proof that perturbations at the surface do
not affect this result.)

Since the scattered wave (2.14) consists of a
contribution of the perturbation of the medium
parameters, and of a contribution of topography
variations, the interaction terms (¥°”) can be de-
composed in the following way

Ve =B+ S (3.6)

B°” describes the interaction terms due to the p!
and ¢' heterogeneity, while S°” describes the
scattering due to the surface irregularities. The B°”
terms can be expressed in the surface-wave eigen-
functions /;, r, and r,. Bg} is used to denote the
scattering from the »-th Love wave to the o-th
Rayleigh wave by ¢' and p', and a similar notation
is used for other pairs of interacting modes. It was
shown in paper 1 that in this notation the interac-
tion terms for an isotropic medium are given by

By = [Lisrp0? - (3,15)(8.1)n']dz cos ¢

—k,k, f 151Wd z cos 2¢ (3.7a)

B, = f [rerzde? + (korg = 8,r0)(3,12)pt]dz sin ¢

—k k, f rel2pdz sin 2¢ (3.7b)

By = —BY (3.7¢)
B = [[rero? = (kors + 0,07 )(kyrf + 0,1 R
— kok,rirput = 2(8,r9)(3,7 )] dz
+f[’1°"1pplw2 ~ (kors — a,r’)

X (k,ry —9,r7)pt]dz cos ¢

—kok, [riridz cos 2¢ (3.7d)
In these expressions 9, denotes the depth deriva-
tive, and ¢ is the scattering angle (Fig. 1b)

=0, ¢ (3.8)

Since these relations hold for an isotropic medium
the interaction terms are expressed in the per-
turbations of the Lame parameters (A and p').

The expressions (3.7a—-d) can be used for the
calculation of the interaction terms due to topog-
raphy by substituting

p'(x, y, z)-2h(x, y)p°(2)8(z2)

and making the same substitution for A and p. In
the depth integrals in (3.7a-d) the surface-wave
modes then only have to be evaluated at z = 0. At
that point the vertical derivatives take a particu-
larly simple form. Aki and Richards (1980) showed
that at z=0

a.5,=0

3.r, = kr, (3.9
EEAY

0, kX

= ===
HEp U 2u° !
Using this, the topography interaction terms are
given by
Sty = h(I513p%? cos ¢ — k,k,I517u° cos 2¢)

(3.10a)

St = h(rflip’? sin ¢ — k k,rfIp° sin 2¢)
(3.10b)



STr = —SkL (3.10¢)
3X0 + 240
Ser =h| rory 0,2 __ k kv 0____’,0’.
RR 2P w ol 2+ 2,0 171
+r7rip%? cos ¢ — k k,rrip’ cos 2¢| (3.10d)

where all quantities have to be evaluated at the
surface of the reference medium (z = 0).

4. An error analysis of the stress linearisation

The linearisation in the topography in the de-
rivation of Hudson entails two approximations.
The Born approximation requires that the scattered
wave is sufficiently weak, this is discussed in Hud-
son and Heritage (1982). The other approximation
which is made requires -that the stress behaves
linearly over the topography height (2.13). An
impression of the magnitude of this error can be
obtained by verifying this condition for the unper-
turbed Love waves and Rayleigh waves. This of
course gives only a necessary condition for the
validity of the stress linearisation, and not a suffi-
cient condition, because the stress in the perturbed
medium may behave differently. The error made
by the linearisation is defined here as

(= k) = (=R, (z=0)
' T3i(z= ~h)

x 100%
(4.1)

The eigenfunctions are calculated for the M7
model of Nolet (1977). As a representative exam-
ple, the error made by linearising 7,, for the
fundamental mode as a function of period is shown
in Fig. 2 for several values of the topography. The
other stress components, and the error for the
higher modes behaves similarly. It is quite arbi-
trary to decide how large an error is acceptable. A
relative error of 20% is used here as a maximum
since the error made by the stress linearisation is
only part of the total error. With this criterium it
follows that for a mountain height of 2 km the
error is unacceptably large for periods shorter
than 12 s. In general, for realistic values of the
large scale topography, the linearisation of the

INTERACTION TERMS (10" '0km M 2)
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Fig. 2. Relative error for 7,, (defined in (4.1)) for the funda-
mental Rayleigh mode for several values of the topography
height (given in kilometers).

stress poses no problems for periods larger than
15s.

5. The topography interaction terms

In this section the topography interaction terms
per unit area (S°”) are shown for a point topogra-
phy with a height of 1 km. Since the topography
interaction terms are linear in the mountain height
(3.10a—d), results for a mountain of arbitrary
height can be found by rescaling. The M7 model
of Nolet (1977) was used again as a reference
medium. The topography interaction terms are
a simple function of the scattering angle, and
the same convention as in paper 1 is used to de-

PERIOD (SEC)
5
4 Ry —110
3t Ry — Ry
2t
1 Ry - R1tO}
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2
Ry - R1 (3

3
-4 Ly —L1@2 Ry — LM
-5 1 i 1 i 1

20 40 80———80 100

FREQUENCY (mH2)

Fig. 3. Topography fundamental mode interaction terms for a
mountain height of 1 km.
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Fig. 4. Topography Love wave interaction terms for a moun-
tain height of 1 km.

note the different azimuth terms. For example,
Sryer, D) denotes. the sin ¢ coefficient for the
conversion from the fundamental Love mode to
the first higher Rayleigh mode, S . g, (0) indi-
cates the isotropic part of the scattering of the
fundamental Rayleigh mode to itself, etc.

Figure 3 shows the different azimuth compo-
nents of the fundamental mode topography inter-
action terms. These terms all rapidly increase with
frequency. The interaction terms are given in units:
of (m~2), and should be integrated in (3.2) over
the ‘surface of the topography to give the total
scattering coefficients.

Just as with surface-wave scattering by a moun-

. tain root model (paper 1), the fundamental mode

interactions dominate  the interactions involving
higher modes. As a representative example, the
L,y < L, interaction terms are shown in Fig. 4.
It can be seen in Fig. 3 that S ., (1)
= =8 1, (2), the same holds for the R; < R,
interactions, and for the R, « L, conversion. It

turns out that a similar property holds for the.
interactions with higher modes too. This can be.

verified in Fig. 4 which shows the L « L, topog-
raphy interaction terms. Therefore, for each con-
version L, « L, the ‘cos.¢’ coefficient is almost
opposite to the ‘cos 2¢° coefficient. The reason for

this can be seen by rewriting (3.10a-d) in the
following way

S§y = hk k,1917p°(c ¢, cos ¢ — B2 cos 2¢)

(5.1a)
& = hk k,relip"(c,c, sin ¢ — B2 sin 2¢)
(5.1b)
= Sxr (0)
+hk k,rrip’(c,c, cos ¢ — B cos 2¢)
(5.1¢)

In these expressions ¢, is the phase speed of mode
v, and B is the shear-wave velocity at the surface
of the reference medium. For deep modes (long
periods) the topography interaction terms are small
(Fig. 4), while for shallower modes (shorter peri-
ods) the phase speed of both Love and Rayleigh
waves is close to the shear-wave velocity in the top
layer. This explains that for all cases of impor-
tance

5(1) = -s(2) (5.2)
This implies for Love waves
StL = St1(1)(cos ¢ — cos 2¢) (5.3)

which means that the L « L radiation pattern has
zero’s approximately for

¢$=0° and ¢= £120° (5.4)

so that the scattering in the forward direction is
weak, and back-scattering is favoured.

For R « L topography scattering, (5.2) implies
that

= S (1)sin ¢(1 — 2 cos ¢) (5.5)

which means that the radiation pattern for R <« L
conversion by topography has zero’s for

$=0° ¢=+60° and ¢=180° (5.6)

For Rayleigh waves a similar analysis cannot
be made because of the isotropic term Sgg(0).
However, it can be seen in Fig. 3 that (at least for
the fundamental mode) this term is relatively small,
so that the radiation pattern due to the topogra-
phy for R, « R, scattering is not too different
from L, « L, scattering.

That this is indeed the case can be verified in
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Fig. 5a. Radiation pattern for R, « R; scattering for a period
of 20 s. Dashed line is scattering by topography of 1 km height,
thin line is scattering by a mountain root, thick line is the sum.
The direction of the incoming wave is shown by an arrow.

Fig. 5a—c, where the dashed line shows the radia-
tion patterns for the fundamental mode interac-
tions by topography for a period of 20 s. Note
that the L, « L, topography scattering-and the
R, « R, topography scattering is very weak in the
forward direction. The L, « L, topography radia-
tion pattern has a zero near ¢ = 120°, while the
R, « L, topography radiation pattern has a node
near ¢ = 60°. Observe that the R, < R, topogra-

SCATTERING AMPLITUDE (10 10 m2)

2 \J T T T T T

-2, 1 1
-2, -1 0 1 2

Fig. 5b. Radiation pattern for L, « R, scattering for a period
of 20 s. Lines defined as in Fig. 5a.
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SCATTERING AMPLITUDE (1010 m -2)

-2. -1, 2,

Fig. 5c. Radiation pattern-for L, « L, scattering for a period
of 20 s. Lines defined as in Fig. 5a.

phy radiation- pattern differs mostly from the
L, <L, pattern in the weaker back-scattering.
For other periods the topography radiation pat-
terns are very similar because the different azimuth
terms behave similarly as a function of frequency.

Figure 5a—c shows the relative importance of
scattering by topography to the scattering by
buried heterogeneities for a period of 20 s. These
figures of course depend strongly on the type of
heterogeneity which is considered,. on the moun-
tain height, and on frequency. Therefore these
figures are only a rough indication of the relative
importance in general. In this case a mountain
height of 1 km 'is used, and the mountain root
model shown in-paper 1 is used for the buried
scatterer. (The mountain'root model is taken from
Mueller and Talwani (1971), and consists of a
light, low velocity heterogeneity between 30 and
50 km depth, perturbing the medium in that re-
gion with approximately 10%. The structure of a
mountain root depends in general both on the
height of the mountain, as well as on the horizon-
tal extent. This dependence is ignored here by
using the same mountain root model, irrespective
of the topography.)

In all three fundamental mode interactions the
topography scattering is of the same order of
magnitude as the scattering by the mountain root.
For periods shorter than 20 s the surface waves
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are so shallow that the topography scattering tends
to dominate. It can be seen in Fig. 5a-c that
usually the topography interaction (S), and the
mountain root interaction (B) are of the same
sign, because the sum of the two terms is larger
than each term separately. (The only exception is
L, « L, scattering at a right angle.) It turns out
that this is also the case for the radiation patterns
involving higher modes.

That the topography scattering and the
scattering by the mountain root enhance each
other is caused by the fact that both the topogra-
phy and the presence of the mountain root give
rise to a thickening of the waveguide (the crust).
Therefore, these effects are in a sense similar. The
difference is that the mountain root heterogeneity
results in a perturbation of the medium itself,
while the topography affects the surface boundary
condition. This gives rise to the different shapes of
the radiation patterns, and shows that one should
be careful in modelling subsurface heterogeneities
with variations of the free surface, as suggested by
Bullit and Toksoz (1985).

6. Fraunhofer diffraction of surface waves

The interaction terms which were calculated in
the previous section were given: per unit area. To

—
r

mode @
X2

4

—
s
s

Fig. 6. Geometry for Fraunhofer diffraction.

obtain the scattered wave (3.2), an integration
over the heterogeneity should be performed. A
crude estimate of the strength of the scattered
wave can be obtained by multiplying the interac-
tion terms with the horizontal extent of the inho-
mogeneity. This will, however, overestimate the
strength of the scattered wave because this proce-
dure ignores interference effects which tend to
reduce the scattered wave.

To incorporate these interference effects, let us
consider a localized scatterer which has a horizon-
tal extension which is small compared to the
source—scatterer distance, and the scatterer-re-
ceiver distance. This means that in the notation of
Fig. 6

|F|l< X and |7| < X} (6.1)

In that case the phase of the integrand in (3.2) can
be linearised in | 7 |. Furthermore, the variation of
the geometrical spreading factors over the scatterer
can be ignored, because these variations are of
relative order |7 |/X,,,. In that case the scattered
wave can be written as

ei(k,Xg+1r/4) ei(k,x{’+ﬂ/4)

Tﬂl’
T 1/2 T 1/2
(3k8)"  (Fhx?)

X[ﬁ"(zs, ¢1)-F] (6.2)
where T, is the total interaction coefficient

w(r)=p"(z,, $2)

To" = fe—i«k,;,+k.mf)Vw(;)ds (6.3)
S

This means that the total interaction term is given
by the two-dimensional Fourier transform of the
heterogeneity.

The wavenumber of the incoming wave is given
by
kir= -7k, (6.4)

and the scattered wave has wavenumber

kM =Pk, (6.5)

Therefore the Fourier transform (6.3) is to be
evaluated at the wavenumber corresponding to the
wavenumber change in the scattering event

(Ak)” =k —kin (6.6)

The magnitude of this wavenumber can easily be



expressed in the scattering angle ¢
Ak = (k2 + k2 =2k, k, cos ¢) (6.7)

If the scatterer exhibits cylinder symmetry, the
azimuth integration in the Fourier integral can be
performed. If one uses the integral representation
of the Bessel function it follows that

T =2a [ “rly (MK )V (r)dr (6.8)
0

So that for a scatterer with cylinder symmetry the
total scattering coefficient is just the Fourier—Be-
ssel transform of the heterogeneity.

7. Application to a Gaussian mountain

In this section Fraunhofer diffraction by an
idealised Gaussian shaped mountain is consid-
ered. This means that it is assumed here that
Vor(7)=V"exp —r2/L? (7.1)
Of course a Gaussian mountain cannot satisfy the
conditions (6.1). However, the tail of the scatterer
contributes little to the integral, and this error is
simply ignored. For a Gaussian mountain the
integral (6.8) can be performed analytically.
Abramowitz and Stegun (1970) gave an expression
for the Fourier—Bessel transform of a Gaussian.
Using this result one finds

Tov — ,”LZVGV
xexp| — 3(k2 + k2 — 2k ,k, cos ¢) L?]
(1.2)

The term wL*V°" is the integral of the heterogene-
ity over the volume of the scatterer. The exponent
term describes the interference effects of different
parts of the scatterer. For interactions of the
fundamental mode with the higher modes, &, and
k, are different so that the exponent is always
negative. This term therefore leads to a weakening
of the interactions of the fundamental mode with
the higher modes.

It is interesting to consider this interference
term in some more detail for unconverted waves

k,=k,=k (7.3)

(This condition is almost satisfied for the interac-
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tion of the fundamental Love mode with the
fundamental Rayleigh mode, since their wave-
numbers are usually not too different.) In that
case the interference term is given by

exp[ —1(kL)*(1 - cos ¢)]

If the scatterer is wide compared to the wave-
length of the surface wave (i.e., kL > 1), this term
is very small except for ¢ = 0, so that the radiation
pattern is strongly peaked in the forward direc-
tion. This effect is known in the theory of scattering
of electromagnetic waves as the Mie-effect (Born
and Wolf, 1959). In Fig. 7 this effect is shown for
R, « R, scattering by topography at a period of
20 s. To appreciate the dependence of the shape of
the radiation pattern on the width of the moun-
tain, the radiation patterns are normalised. For a
small mountain (L = 0), the forward scattering is
comparable to the back-scattering. As the width of
the mountain (2L) increases to values comparable
to the wavelength of the Rayleigh wave (70 km),
the radiation pattern has only one narrow lobe in
the forward direction.

The strength of the scattered wave for R, « R;
scattering at a period of 20 s by topography of 1
km height can be seen in Fig. 8. This figure
includes the topography only, the contribution
from the mountain root is not taken into account,

NORMALIZED SCATTERING AMPLITUDE

05

-1.0

-1.0 -0.5 ] 05 1.0

Fig. 7. Normalised topography scattering amplitude Ty, . g,
for a Gaussian mountain for a period of 20 s. Half width L is
indicated in kilometers. Incoming wave is shown by an arrow.
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Fig. 8. Topography scattering amplitude Ty . g, for a Gaus-
sian mountain of 1 km height at a period of 20 s. Half width L
is indicated in kilometers. Incoming wave is shown by an
arrow.

because the degree of compensation depends on
the size of the mountain too. One should therefore
be careful with the interpretation of this figure,
since the presence of a mountain root affects the
forward scattering drastically (Fig. 5a—c). Further-
more, the strength of the topography scattering
depends on the mountain height.

For this particular example it can be concluded
that for mountains with a half width less than 30
km the R, « R, scattering at 20 s is extremely
weak. However, for larger mountains the forward
scattering increases rapidly with the mountain size.
For mountains with a half width larger than 70
km the total topography interaction coefficient is
larger than 0.4. This means that the scattered wave
(as it follows from this calculation) is not small
compared to the direct wave, which signals the
breakdown of the Born approximation. This con-
firms the NORSAR observations that surface
waves with a period shorter than 20 s are strongly
scattered (Bungum and Capon, 1974). It will be
clear that a mountain complex like the Alps, which
has a half width much larger than 70 km, and
which has a pronounced root (Mueller and
Talwani, 1971) will severely distort the propa-
gation of surface waves with a period shorter than
20 s.

8. Scattering by a band heterogeneity revisited

The perturbation theory derived in this paper
and in paper 1 is valid for ‘weak inhomogeneities’.
The inhomogeneity has to be weak because of the
requirement that the scattered waves are small
compared to the direct wave. Now suppose we
want to apply the theory to a weak and smooth
heterogeneity with ‘a large horizontal extent.
Smooth means in this context that

|3gn' | < | kp' | (8.1)

where 9y is a horizontal derivative, and & is the
horizontal wavenumber of the mode under consid-
eration. A similar condition is assumed to hold for
X, p' and h. This condition implies that the
heterogeneity varies little on a scale of a horizon-
tal wavelength.

For a heterogeneity with a large horizontal
extent, the integrals for the scattered wave may
diverge with the size of the heterogeneity, even if
the inhomogeneity is relatively weak. This diver-
gence is an effect of the truncation of the per-
turbation series (Nayfeh, 1973), since the sum of
all orders is necessarily finite. Physically this can
be understood in the following way. If a wave
propagates through a region with a weak and
smooth heterogeneity, the only effect of the inho-
mogeneity is to perturb the local wavenumber.
Instead of a solution exp (ikyx) for a laterally
homogeneous medium, the laterally heterogeneous
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Fig. 9. Geometry for surface wave scattering by a band hetero-
geneity.



medium has a solution exp if*(k,+ 6k)dx. In
that case it can be shown with WKBJ theory that
reflections and wave conversions are negligible
(Bretherton, 1968; Woodhouse, 1974). This means
that the Born approximation, which splits the
total wave in a direct wave and a scattered wave,
does not make much sense physically because in
reality there is just one phase shifted transmitted
wave.

We discuss this for the band heterogeneity
model shown in Fig. 9. It was shown in paper 1
that the total wave in case of propagation through
a band heterogeneity is given by

#(7) = D5 () S [ 57(0). ]

(34%)

2ie (¥R,
x[1+ T fXL 14 (x)dx]

o ei(k,x,+1r/4) _ _
+ X 2iep"(z,) ————; [ 7°(0). F]

rv#+o -
(F5k.)
X ik, —ko)x
xf ® © v Ver(x)dx
x (k,(x,—x)+kyx)
(8.2)

Figure 9 defines the geometric variables in this
expression. For convenience the modal summation
has for once been made explicit. The unconverted
waves are taken together with the direct wave. The
last term in (8.2) describes the converted waves.
The interaction terms are to be evaluated in the
forward direction (¢ = 0).

From this point on we shall only concern our-
selves with the unconverted wave, since the last
integral in (8.2) is negligible for a smooth hetero-
geneity. (This is because of the oscillation of the
exponent term in the integrand.) For simplicity
the index » will be suppressed, but it should be
kept in mind that a sum over all unconverted
modes is implied.

If the heterogeneity is weak, and not too wide,
we can approximate
1+ -szer(x)dx = exp%i—e-fV(x)dx (8.3)
so that the only effect of the heterogeneity is a
phase shift of the transmitted wave.

237

If the heterogeneity is weak and smooth, but
wide, the interval (x;, xg) can be divided in thin
subintervals. By increasing the number of these
subintervals they can be made arbitrarily thin, so
that (8.3) can be used for each subinterval. How-
ever, the transmission coefficient of a combination
of subintervals is in general not related in a simple
way to the transmission coefficients of the subin-
tervals.

Rayleigh (1917) addressed this problem by con-
sidering the reflection and transmission in a
medium consisting of many layers with equal re-
flection and transmission coefficients. Let r, and
t, denote the reflection and transmission coeffi-
cient of n of these layers. Rayleigh (1917) showed
that in that case
s (8.4)

1—r,r,

l

n+m

Therefore the transmission coefficient of the com-
bination of two substacks is the product of the
transmission coefficient of each substack, pro-
vided the reflection coefficients are small.

For a smooth heterogeneity the reflection coef-
ficients are indeed small (Bretherton, 1968), so
that the transmission coefficient of a stack of
subintervals is the product of the transmission
coefficients of each subinterval. Therefore the
phase shifts introduced by each subinterval should
be added.

This means that, under the restriction that the
heterogeneity is smooth, the (divergent) Born ap-
proximation should be replaced by

. pxn ‘o pxg

1+ %iifn V(x)dx--> exp—zkij;L V(x)dx (8.5)
This renormalisation procedure yields a finite re-
sult for a wide and smooth heterogeneity, and is
consistent with results from WKBJ theory
(Bretherton, 1968). Morse and Feshbach (1953)
gave in paragraph 9.3 a rigorous proof of (8.5) for
scattering by a potential in the 1-D Schrodinger
equation.

9. The partial derivatives of the phase speed with
respect to topography

If the expressions (8.2) and (8.5) are combined,
the following expression results for the uncon-
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verted wave

. T 2 (xR
exp 1[kX+ 4—¢T/—V(—x-)daej

XL
1/2
(5
x[p(0).F] (9.1)
(The modal summation is not made explicit, and
the parameter € is suppressed.) It follows from
this expression that the interaction terms V are
closely related to the wavenumber perturbation
due to the heterogeneity

M=%Wﬂ | 9.2)

#une(7) =P (2,)

and the relative phase speed perturbation is given

by
[%F—%Wﬂ (9.3)

These results are derived for a smooth band het-
erogeneity. However, since the phase speed de-
pends only on the local properties of the medium,
these results can be used for an arbitrary medium
with heterogeneities which vary smoothly in the
horizontal direction.

The interaction terms V contain a contribution
of the buried heterogeneities and a contribution of
the topography variations. As an example, con-
sider the phase speed perturbation for Rayleigh
waves by a buried heterogeneity. In that case V in
(9.3) follows from (3.7d) with ¢ = 0. ‘

dc R 1
[T] ~ el Jazl-pat(ri+ 1)
+(kry+ 0,5’ N + (2k2r12 +2(3,r,)°

+(kry— 3,,)) ] (9.4)

The factor 4cUI, could be added because of the
normalisation condition (3.4). Equation 9.4 is equal
to expression (7.78) of Aki and Richards (1980),
where the Rayleigh-wave phase speed perturba-
tions are calculated with a variational principle.
The scattering theory thus produces the same re-
sult in a roundabout way, confirmingthat small
variations in the phase speed are treated correctly.
For Love waves a similar result can be derived
from (3.7a).

Since the interaction terms for topography
scattering are known, the partial derivatives of the

- phase speed with respect to the topography height

(h) can be calculated too. For Love waves one
finds by inserting (3.10a) (with ¢ = 0) in (9.3) that

[%]L= —’2p0112(c2 —B%)h

while (3.10d) vields for Rayleigh waves

[-@-c—r=—2p°[rzzc?+r12 c2—4( —-B—z)ﬁz)]h
a
(9.5b)

(9.5a)

[

In these expressions all variables are to be
evaluated at the surface. With the normalisation
condition (3.4), this finally gives the partial deriva-
tives of the phase speed with respect of the topog-
raphy height. For Love waves this leads to

[lac L -1

—_— = 072 2 _ 2 _ .
an| ~arf (e -8) (=0 (6

and for Rayleigh waves

Joc
cdh

=1 2 B’

= el p [rzzc2 +ri| - 4(1 ) B?
(z=0) (9.6b)

The partial derivatives of the phase speed with
respect to topography height are shown in Fig. 10
for the fundamental modes, calculated with the
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Fig. 10. Phase speed derivative with respect to topography for
the fundamental Love mode (L) and for the fundamental
Rayleigh mode (R).



M7 model of Nolet (1977). It can be seen that the
effect of topography on the phase speed is largest
for periods of about 20 s. For large periods the
penetration depth of the surface waves is so large
that the topography has little effect. For short
periods the surface waves only sample the top
layer. In that case, a thickening of the top layer by
topography does not influence the phase speed.
The relative phase speed perturbation for a
topography of 1 km is of the order of 0.5%. This
means that for realistic values of the topography
(up to several kilometers) this effect cannot be
ignored. Since the topography is in general well
known, this effect can easily be taken into account
in inversions using phase speed observations
(Nolet, 1977; Cara et al., 1980; Panza et al., 1980).

10. Summary

Surface-wave scattering by topography can be
incorporated in the linearised surface-wave
scattering formalism of paper 1. An error analysis
shows, however, that for realistic values of the
large scale topography (1-5 km) the theory breaks
down for periods shorter than 15 s. Furthermore,
steep slopes cannot be handled by the theory.

The radiation pattern for scattering by topogra-
phy shows that the scattering in the forward direc-
tion is relatively weak. A comparison with the
radiation pattern for a ‘mountain root model’
shows that scattering by topography, and scatter-
ing by a mountain root in general enhance each
other. The reason for this is that both effects lead
to a thickening of the crustal waveguide.

For scattering by an extended heterogeneity,
interference effects between waves radiated from
different parts of the scatterer lead to an enhance-
ment of the forward scattering (Mie effect). Fur-
thermore, these interference effects lead to a rela-
tive weakening of the interaction of the funda-
mental mode with the higher modes, compared to
the interactions among the fundamental modes.

For a heterogeneity which is smooth in the
horizontal direction a relation is established be-
tween the interaction terms and the variations in
the phase speed. The partial derivatives of the
phase speed with respect to the medium parame-
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ters, as they are known from variational princi-
ples, can be obtained from the scattering theory
too. In an analogous way the partial derivatives of
the phase speed with respect to topography are
obtained.

This is important for the efficient calculation of
surface-wave seismograms, and for applying
travel-time corrections for the topography. Fur-
thermore, the phase-speed variations due to topog-
raphy could cause surface-wave focussing and de-
focussing effects. Ray-tracing techniques, as devel-
oped by Gjevik (1974), Babich et al. (1976) or
Gaussian beams (Yomogida and Aki, 1985), could
be used to investigate this.

The equivalence between topography and
surface perturbations of the medium parameters
shows that (in this approximation) the inverse
problem has a non-unique solution. This poses no
problems for the holographic inversion scheme
presented in paper 1, since the topography is in
general well known. Therefore the surface waves
scattered by the topography can be calculated,
and subtracted from the recorded surface waves.
The remaining scattered surface waves are
scattered by the heterogeneity under the topogra-
phy, so that given enough data the inversion
scheme of paper 1 could be used to map the
heterogeneity under the topography.
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Appendix
Surface perturbations of medium parameters

Suppose that the density and the elastic para-
meters are perturbed all the way up to the surface,
but that there is a flat topography (4 =0). As
shown in paper 1 the scattered wave satisfies in
the interior

Lo = - [1%° (A1)
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Linearising the boundary condition (2.3-4) yields
for the perturbed quantities at z=10

0 1_ 1 0
nicijklakul = —n,C; 04 (A2)

The r.h.s. of (A1) can be considered as a surface
traction exciting the scattered wave. With a repre-
sentation theorem (Aki and Richards, 1980), (A1)
and (A2) can be solved for %'

ul(F) = = [G,(F, F) L (F)ud(¥)av"

— [G, (7, P )1k i (78,42 (7)S”
(A3)

Using the representation (2.2) for L', (2.6) for the
direct wave, and applying a partial integration
leads to

ul(F) = [G,(F, #)0(#) G (¥, F) F(7,)dV"

~ (3,6, (7. 7)) chmus(7")
X (8,G (7', 7)) F,(7,)dV’

+fn?nGij(;’ ;’)c}mnk(;’)
><(anle(F,’ ;s))E(;s)dS’
_fn?nGij(;’ ;’)c}njnk(;,)

X(anle('_‘” Fs))E(;s)dS’ (A4)

The third term denotes the ‘surface terms’ which
have been suppressed in paper 1 by considering
only buried scatterers. As it turns out, this term is
cancelled by the last term in (A4), which is the
contribution to the scattered wave from the per-
turbed boundary conditions (A2). (This follows
from the symmetry properties of the elasticity
tensor: ¢;,,,x = €y, jax-) Therefore only the volume
terms in (A4) contribute, and surface perturba-
tions of the medium can be allowed without any
modification.
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