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The effectsof topographyon threedimensionalsurface-wavescatteringandsurface-waveconversionsis treatedin
the Born approximation.Surface-wavescattering by topography is compared with surface-wavescattering by a
mountainroot model.Theinterferenceeffectsbetweensurfacewavesscatteredby differentpartsof aheterogeneityare
analysedby consideringFraunhoferdiffraction for surfacewaves.For a smoothheterogeneitya relationis established
betweentheinteractiontermsandthephasespeedderivatives.Thepartial derivativesof thephasespeedc with respect
to thetopographyheight h for Love (L) and Rayleigh(R) wavesare

(z~’O)

F iac1~ —1 0 2 2 2’ 2 / ~2\ \1[—jjJ=~-~-~or
2c +r1 c —4 1—-—-~ $ (z’O)

Phasespeedperturbationsdue to topographycan amountto 1—2% andcannotbeignored in surface-wavestudies.

1. Introduction very complicated.Asymptoticresultsfor a narrow
mountain ridge on a homogeneoustwo-dimen-

Observationsof teleseismicsurfacewavesdem- sional half-spaceare given by Sabinaand Wiffis
onstratethat surface-wavescattering is an im- (1975,1977).A surveyof numericalmethodswhich
portant process.Levshin and Berteussen(1979), havebeenusedto studythe effectsof topography
and Bungum and Capon (1974) showed, using on seismicwavesis givenby Sanchez-Sesma(1983).
observationsfrom NORSAR, that distinct multi- Bullit andToksoz(1985)usedultrasonicRayleigh
pathingof surfacewavesoccursfor periodsbelow wavesin an aluminum model to investigate the
40 s. A formalism to describethe three-dimen- effectsof topographyon three-dimensionalsurface
sional scatteringof surfacewavesby buried het- waves.Becauseof the complexity of the problem
erogeneitieswaspresentedin Smeder(1986). (This this paper is restricted to topographyvariations
is referredto aspaper1.) that are weak enough to render the Born ap-

There is, however,no reasonto assumethat proximationvalid.
surfacewavesare scatteredby buriedheterogenei- The linearised scatteringof elastic waves by
ties only, since topographyvariations also cause surfaceheterogeneitieshas receivedconsiderable
surface-wavescattering. Even for very idealised interest.The basic theory for this is outlinedin
models the effectsof topographyturn out to be Gilbert and Knopoff (1960) for a homogeneous
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half-space,and by Herrera (1964) for a layered Richards,1980). Furthermore,the partial deriva-
medium. Hudson(1977)appliedthe theoryto the tivesof the phasespeedwith respectto the topog-
generationof the P-waveCoda,while Woodhouse raphyare derived.
and Dahlen(1978)consideredtheeffect of topog- The resultspresentedhere are valid undercer-
raphy on the free oscillations of the Earth. A tam restrictions.Firstly, the heterogeneitymustbe
completelydifferent approachwas usedby Steg weak enough to make the Born approximation
and Klemens(1974)who analysedRayleighwaves valid (HudsonandHeritage,1982),andto allow a
in solid materials,which they treatedasa lattice lineansationof the stress over the topography
insteadof a continuum, height. Secondly, the far field limit is used

This paper provides an explicit formalism to throughout.Thirdly, a planegeometryis assumed,
analysethree-dimensionalsurface-wavescattering it is shownin SniederandNolet (in preparation)
by topographyin acontinuouselasticmedium. A that this conditioncaneasilyberelaxed.Fourthly,
formalism for the linearisedscatteringof three-di- the slope of the topography has to be small.
mensionalelastic wavesis presentedin section2. Lastly, it is assumedthat the interactionwith the
It is shownin section3 how surface-wavescatter- body-wavepart of the Green’s function can be
ing by topographycan be accommodatedin the ignored.Bodywavesandsurfacewavesare shown
theoryof paper 1. (An appendixis addedwith a to becoupledby strong topographyvariationsin
proof that the theoryof paper 1 is unaffectedif Hudson (1967), Greenfield (1971), Hudson and
the heterogeneityis nonzero at the surface.)Be- Boore (1980) or Baumgardt (1985). The locked
causeof the lineansationstheseresultsare only modeapproximation(Harvey,1981) canin princi-
approximations.The validity of the Born ap- ple be used to take this coupling into account,
proximationis discussedin HudsonandHeritage without usingthe body-waveGreen’sfunction.
(1982). In the treatment of the scattering by Throughoutthis paperthe summationconven-
topographythe stressis assumedto behavelin- tion is usedboth for vector or tensor indices,as
early with depthover the topography.This impo- well as for mode numbers.Vector and tensor
sesanotherrestriction on the validity of the results componentsare denoted by Roman subscripts,
presentedhere, which is discussedin section4. while Greek indicesare used for the modenum-
The interactionterms due to the topographyare bers.The dot productwhich is usedis definedby
analysedin section 5, where they are quantita- —. —~ = * (1 1
tively comparedwith the surface-wavescattering 5p q i~
by a mountain-rootstructure. where* denotescomplexconjugation.

The expressionsfor the scatteredsurfacewaves
contain integrals over the heterogeneity.Inter- 2. Derivation of the equationsfor the scattered
ference effects make the analytic evaluationof wave
these integrals complicated, even for idealised
scatterers.In section6 a formalism is derivedfor The equation of motion combined with the
Fraunhoferdiffraction by surfacewaves,which is elasticity relationscanbe written as
appliedin section7 to a Gaussianmountain. L. = F 2 1

It is well known that smoothheterogeneitiesdo ~‘ ~‘

not cause surface-wavescattering (Bretherton, In this expressionu, is the i-th componentof the
1968),but they do causevariationsin the phase displacement,andF, is the forcewhich excitesthe
speedand the amplitude. In section 8 a heuristic wavefield.The (differential) operatorL is defined
argumentis used for the relation between the by
interactionterms and the phasespeedvariations. L.~= — p~

2~
1—

8flCjflm jam (2.2)
It is shown in section 9 that this leads to the
partial derivativesof the phasespeedwith respect where ë is the elasticity tensor. The surface
to the density,P-wavespeedand S-wavespeedas boundaryconditionis givenby
obtained from variational principles (Aki and n,’r,~= 0 at the surface (2.3)
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h is the normal vectorpointing outwardsfrom the Hudson (1977) derived expressionsfor the
medium, and is the stresstensor scatteredwave in the Born approximation.He

showed that the wave scatteredby the medium
= CiJklBkUl (2.4) heterogeneities(p’ and e1), and the topography
It is well known how surface-wavesolutions variationis given by

canbe obtainedfrom (2.1) and(2.3) if themedium
is laterally homogeneousand the surfaceis flat. u~(r)= {÷fG

11(~,~‘)p
1(~’)~2G~,(i’, ,,)dV’

Aid and Richards(chapter7, 1980) treated this
problemin greatdetail.They showedthat in that
casethe solution wasgiven by — f(8mGij(’.~~‘))“Jmnk(~’)

= GF (2.5) x (aflGk,(~’,?~))dv’

which is anabbreviatednotationfor

u~(~)= fG,,(r, i’)15(?’)d3r’ (2.6) + fG
1~(F,i’)h(F’)p°(F’)w

2G~,(F’,i)dS’

The Green’sfunction (G) satisfies _f(aG(r- F’))h(F’)Clmflk(F’)

L~JGfk(r,~‘)=8Ik3(~—~’) (2.7)

In this expressionL° is the operatorL for a x (aflGkl(F’, i~~)ds’)}F
1(i~)(2.12)

laterallyhomogeneousmedium.
If lateral heterogeneitiesare present,or if the The volume integralsare over the volume of the

surfaceis not flat, scatteringof elastic waves0C referencemedium (z > 0), while the surfacein-
curs.Thesescatteringeffectsare treatedherein a tegralsare to be evaluatedat the surfaceof the
linearisedway, i.e., it is assumedthat both the referencemedium(z = 0). Thedifferentiationsare
lateral inhomogeneitiesof the medium, and the takenwith respectto the ~‘-coordinates.Hudson
topographyvariationsare small. In that casethe (1977) derived this result in the time domain,
densityandtheelasticity tensorcanbewritten as (2.12) is the same expressionin the frequency

p(x, y, z) = p°(z)+ cp
1(x, y, z) (2.8) domain. It has beenassumedherethat the wave

field is excitedby a point force F in i~.A more
ë(x, y, z) = ë°(z)+ �c1(x, ~ z) (2.9) generalexcitationcanbetreatedby superposition.

The (small) parameterE is addedto makeexplicit It is shown in paper 1 how a moment-tensor
that the perturbationsare small. Let the topogra- excitationcanbe incorporated.
phy begiven by To derive this result threeassumptionshaveto

—�h(x,y) (2.10) be made:(1) the heterogeneityis so weak that multiple
The — sign hasbeenaddedbecausez is counted scatteringcan be ignored, i.e., that the Born ap-
positively downward, and h is the topography proximationis valid.
heightabovez= 0. The functionsë°andp°define (2) The slope of the heterogeneityhas to be
togetherwith a zero stressboundaryconditionat small, since in Hudson’sderivation it is assumed
z 0 a laterally homogeneousbackground that (vh) = 0(E).
medium,whichis perturbedby theheterogeneities (3) The stressshould behavelinearly over the
~ and p1. Since the perturbationsare small the mountainheight, i.e., it is assumedthat
wave field can be written as a perturbationseries

T(—h)——T(o)—ha~T(o) (2.13)

= i~0+ Eu1 + 0(�2) (2.11) is a good approximation.

In this expressionu~denotestheBorn approxima- Using the Dirac 8-function, we can rewrite
tion to the scatteredwave. (2.12)as
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u~(~)= fG,1(~,~‘)[p’ + hp08(zF)] -~

, Ax~~
2G

11(~’,~~)F,(~5)dv
2 x2

—f(amGjj(~,~‘))[Cjmnk+hC1mnk6(Z’)] ~2 ~

x(aflGkl(~’,~3))F,(~)dv’ (2.14)

The upshotof this calculationis that topogra- A A

phy variations in this approximationact on the ~l ~

scatteredwavesas if both the massof the moun-
tam (hp°),andthe total elasticityof the mountain mode V

(h~°) arecompressedto a 8-functionat thesurface
(p1of the referencemedium.For themasstermthis is

intuitively clear,becausefor surfacewaveswhich
penetratemuch deeperthan the mountainheight Fig. lb. Geometryfor thescatteredwave.

the precise mass distribution is not very im-
portant.Forthe elasticity termthis is lessobvious,
becauseit is notclearwhat the implicationsare of thesepolarisationvectorswe can show that the
‘compressing’the total elasticity of the mountain direct wave is givenby
in a 6-function.

e
1~”4~

u°(~)=~‘(z,4)) 1/2 [~(z
3, 4)).P]

3. A formalism for surfacewave scattering ~
(3.1)

Up to this point the theorywasdevelopedfor andthe scatteredwaveis for anarbitrarydistribu-
an arbitraryelasticmedium,andfor the complete tion of scatterers
Green’s function. This means that all sorts of
complex scatteringphenomenacan be dealtwith. e2+1T~~

4)

(For example(2.14) couldbe usedto describethe u1(i) = ffr(z, 4)2)

scatteringof body wavesby amsotropicregions, (~k,,X
2 )1/2

etc.)
From thispoint on we restrictourselvesto the e~~.X1+~/4)

surfacewave part of the Green’sfunction in an X V0~~(x0,~) 1/2

isotropic medium. It is shownin paper 1 that the (~k1,x1)
far field Green’s function can conveniently be
expressedas a dyadof polarisationvectors.Using x [p”(z~, 4)1).F]dx0dy0 (3.2)

See Fig. (la,b) for the definition of variables.
Becauseof the summationconvention a double

AA/
sumoverexcitedmodes(v), andscatteredmodes
(a) must be applied.The modesare coupledby
integralsover theheterogeneityareincludedin thethe interaction matrix V°”. The only differencexx
with the results in paper 1 is that the depth

interactiontermsV°~.
-~ The polarisationvectorfor Love wavesis

Fig. la. Geometryfor thedirect wave. ~“(z, 4)) = lç(z)2 (3.3a)
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andfor Rayleighwaves B~= f[ri0l~p¼,2+ (k0r~’— a~rfl(a~lfl,L1].dzsin ~RL

~(z, =r~(z)A+ir(z)2 (3.3b)

Where 11, r1 and r2 are the surface-waveeigen- — kakpfr1°1~’1.s’dz sin24 (3.7b)
functions defined in Aki and Richards (1980). B°’
These eigenfunctionsare assumedto be nor- Lit = BRL (3.7c)
malisedaccordingto B°~=f[r~~r~~p1w2_(k0ri°÷a~r2°)(k~rr+3~rfl)t’RR

8c~U~I’= 1 (no summation) (3.4)
— k0k~r1°r~,a’— 2(azr;)(azrfl,.I1]dz

In this expressionI~’is the kinetic energyintegral.
For Love waves +j [rGr~~p1w2— (k0r2°—

I~= 1/2fpl~dz (3.5a) x (k~r;— a~rfl,.~’]dzcos ~

and for Rayleighwaves —k0k~fri°r~i’dzcos2~ (3.7d)

I~= 1/2f p(r~+ r~)dz (3.5b) In theseexpressionsa~denotesthe depthderiva-

It wasshownin theprevioussectionhow surface tive, and~ is the scatteringangle(Fig. ib)
irregularitiescould be treatedas a 8-functionhet- 4 = — (3.8)
erogeneityat z = 0. Thereforethe expressionfor
the interactioncoefficients(V°”)of paper1 canbe Sincetheserelationshold for an isotropic medium
used. (In paper1, (3.2) was derived for buried the interaction terms are expressedin the per-
scatterers.An appendixis addedto this paper turbationsof the Lameparameters(A~and ~1)

with a proof that perturbationsat the surfacedo The expressions(3.7a—d) can be usedfor the
not affect this result.) calculationof the interactiontermsdue to topog-

Since the scatteredwave (2.14) consistsof a raphyby substituting
contribution of the perturbationof the medium p

1(x y, z)--->h(x, y)p°(z)8(z)
parameters,and of a contributionof topography
variations,the interactionterms(V°”)can be de- andmakingthe samesubstitutionfor A and~s.In
composedin the following way the depth integrals in (3.7a—d) the surface-wave

modesthenonly haveto beevaluatedat z = 0. At
V°’~= B°’~+ s°’ (3.6) that point the vertical derivativestake a particu-

B°”describesthe interactionterms dueto the larly simpleform. Aki andRichards(1980)showed
and ë1 heterogeneity,while S°~describes the that at z = 0
scatteringdueto the surfaceirregularities.TheB~ a~i,= 0
termscanbe expressedin the surface-waveeigen- air, = kr

2 (3.9)
functions11, r1 and r2. B°~is usedto denotethe
scatteringfrom the v-th Love wave to the a-th — kA°
Rayleighwaveby ~ and p

1, anda similarnotation z2 = A°+ 2~t0”l

is usedfor otherpairsof interactingmodes.It was
shownin paper1 that in this notationthe interac- Using this, the topographyinteractionterms are
tion termsfor an isotropic mediumare givenby givenby

S~j= h(li01~p0w2cos 4 — k
0k~1~’1~’jx°cos24)

Ba = f [içi~p’~ — (a2lfl(a~lfl,~]dz COS~ (3.lOa)

Sal,
_kakvfli°1~.L’dZcos 24 (3.7a) RL h(r~~1~’p0c,,2sin 4 — k0k~r1°l~’jx°sin24)

(3.lob)
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~ (3.lOc) 0

~ (3.lOd) ~ __________________

where all quantitieshaveto be evaluatedat the . PERIOD (SEC)
Fig. 2. Relativeerror for ç~(defined in (4.1)) for the funda-

surfaceof the referencemedium(z = 0). mental Rayleigh modefor severalvaluesof the topography

height (given in kilometers).

4. An error analysisof the stresslinearisation
stressposesno problemsfor periods larger than

The linearisationin the topographyin the de- 15 s.
rivation of Hudson entails two approximations.
TheBorn approximationrequiresthat thescattered
wave is sufficiently weak,this is discussedin Hud- 5. The topogra~thyinteractionterms
sonandHeritage(1982).Theotherapproximation
which is maderequires that the stressbehaves In this sectionthetopographyinteractionterms
linearly over the topography height (2.13). An perunit area(5°”)are shownfor a point topogra-
impressionof the magnitudeof this error can be phy with a height of 1 km. Sincethe topography
obtainedby verifying thisconditionfor the unper- interactiontermsare linearin themountainheight
turbed Love wavesand Rayleigh waves. This of (3.lOa—d), results for a mountain of arbitrary
course gives only a necessarycondition for the height can be found by rescaling.The M7 model
validity of the stresslinearisation,andnot a suffi- of Nolet (1977) was used again as a reference
cient condition,becausethestressin theperturbed medium. The topographyinteraction terms are
mediummay behavedifferently. The error made a simple function of the scatteringangle, and
by the lineansationis definedhereas the sameconventionas in paper 1 is usedto de-

e1= T31(z —h)—(—h)a0r31(z=0)xlOO% PERIOD (SEC)
r31(z = —h) — ~ 100 60 40 30 25 20 15 12.5 10

(4.1) ~ ‘ //// R1~—L1(2)

The eigenfunctionsare calculatedfor the M7 ~ Li -.--Li(i~,,/,/’ ~i — R~(l)

model of Nolet (1977). As a representativeexam-
ple, the error made by linearising r~ for the 2

fundamentalmodeasa functionof periodis shown ~ 1 — ~i 0)

in Fig. 2 for severalvaluesof the topography.The ~ _________

other stress components,and the error for the ~
higher modes behavessimilarly. It is quite arbi- ~
trary todecidehow largean error is acceptable.A -2 5 ~, ~

relative error of 20% is usedhereas a maximum Z 1

sincethe error madeby the stresslinearisationis
only part of the total error.With this criterium it L1 — L1 (2) ~ — I. iI’I

follows that for a mountainheight of 2 km the ~ e~ 8i~

error is unacceptablylarge for periods shorter FREQUENCY (mHZ)

than 12 s. In general,for realistic values of the Fig. 3. Topographyfundamentalmodeinteractiontermsfor a

large scale topography, the linearisation of the mountainheight of 1 km.
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PERIOD (SEC) this can be seenby rewriting (3.lOa—d) in the
100 60 40 30 25 20 15 12.5 10 following way

5 I
L

1 ~_L~(1)

4 S~= hk0k~l~’l~p°(c0c~cos4)— p
2 cos24))c~:I

3 (5.la)
L

2—L1(1)
~ 2 S~= hk0k~r;’1~’p°(C~C~sin 4)—~

2sin 24))
9

L

4 —I~(1)
15-.-—L1(1) (5.lb)

_____________________________ 13 .—Li (1)

s;~=s;~(0)
L5 ..~_Li(2I

-1 14 I~(Z +hk0k~r~’r1~p°(c0c~cos ~— $2 cos 24))
-2 L2.......Lt(Z (5.lc)

In theseexpressionsç is the phasespeedof mode
~ -4

L~—L1 ~ v, and P is the shear-wavevelocity at the surface
-5 _________________________________________________________________

20 40 60 80 100 of the referencemedium. For deep modes(long
FREQUENCY (mHZ) periods)thetopographyinteractiontermsaresmall

Fig. 4. TopographyLove wave interactiontermsfor a ~n~wi- (Fig. 4), while for shallowermodes(shorterpen-
tam heightof 1 irm. ods) the phasespeedof both Love andRayleigh

wavesis closeto the shear-wavevelocity in the top
layer. This explains that for all casesof impor-
tance

note the different azimuth terms. For example,
SR2L1 (1) denotes,the sin 4) coefficient for the s(1) —s(2) (5.2)
conversionfrom the fundamentalLove mode to This implies for Love waves
the first higherRayleigh mode, S~1~1(0) mdi- ~ S~(1)(cos4)— cos 24)) (5.3)
catesthe isotropic part of the scatteringof the
fundamentalRayleighmodetoitself, etc. which meansthat the L ~— L radiationpatternhas

Figure 3 shows the different azimuth compo- zero’sapproximatelyfor
nentsof the fundamentalmodetopographyinter-,
actionterms.Thesetermsall rapidly increasewith 4) 00 and 4) ±120° (5.4)
frequency.Theinteractiontermsare givenin units so that the scatteringin the forward direction is
of (m

2), and shouldbe integratedin (3.2) over weak,andback-scatteringis favoured.
the‘surface of the topography to give the total For R ~— L topographyscattering,(5.2) implies
scatteringcoefficients. that

Justaswith surface-wavescatteringby. a moun-
tain root model (paper1), the fundamentalmode S~ S~(1)sin4)(1 — 2 cos 4)) (5.5)
interactions dominate the interactions involving which meansthat the radiationpatternfor R ~— L
higher modes.As a representativeexample, the conversionby topographyhaszero’s for
LN ~— L

1 interactiontermsareshownin Fig. 4.
4)=0°, 4~±60°and 4)=180° (5.6)

It can be seen in Fig.. 3 that SL, — L, (1),
— SL ~- L, (2), the sameholds for the R1 ~— R~ For Rayleigh waves a similar analysiscannot

interactions,and for the R1 — L1 conversion.It be made becauseof the isotropic terth S~(0).
turns out that a similar property holds for the, However,it canbe seenin Fig. 3 that (at leastfor
interactionswith higher modestoo. This can be thefundamentalmode)this termisrelativelysmall,
verified in Fig. 4 which showsthe LN ~— L1 topog- so that the radiationpatterndue to the topogra-
raphy interactionterms.Therefore,for eachcon- phy for R1 ~— R1 scatteringis not too different
version LN ~— L~the ‘cos 4)’ coefficientis almost from L1 ~— L1 scattering.
oppositeto the‘cos24)’ coefficient.The reasonfor That this is indeedthe casecan be verified in
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SCATrERING AMPUTUDE (10 10m .2) SCATTERINGAMPLITUDE (10
10m -2)

2 I 2 2~’

Fig. 5a. Radiationpatternfor R
1 ~— R1 scatteringfor a period Fig. 5c. Radiationpatternfor L1 — L1 scatteringfor a period

of 205. Dashedline is scatteringby topographyof 1 km height, of 20 s. Linesdefinedasin Fig. 5a.
thin line is scatteringby amountainroot, thick line is thesum.
Thedirectionof theincomingwave is shownby anarrow.

phy radiation”pattern differs mostly from the
L1 ~ L~ pattern in the weaker back-scattering.

Fig. 5a—c, wherethe dashedline showsthe radia- For otherperiodsthe topographyradiationpat-
tion patternsfor the fundamentalmode interac- ternsareverysimilarbecausethedifferentazimuth
tions by topographyfor a period of 20 s. Note termsbehavesimilarly asa functionof frequency.
that the L1 ~— L1 topographyscatteringand the Figure 5a—c shows-the relative importanceof
R1 ~— R1 topographyscatteringis veryweakin the scattering by topography to the scattering by
forward direction. The L1 ~— L1 topographyradia- buriedheterogeneitiesfor a periodof 20 s. These
tion pattern has a zero near 4) = 1200, while the figures of coursedependstrongly on the type Of
R1 ~— L1 topographyradiation patternhasa node heterogeneitywhich is considered,.onthe moun-
near 4) = 600. Observethat the R1 ~ R1 topogra- tam height, and on frequency. Therefore these

figures are only a rough indication of the relative
SCATTERINGAMPLITUDE (10

10m-2 importancein general. In this case a mountain
2. I I height of 1 km is used,and the mountainroot

model shown in paper 1 is used for the buried
scatterer.(Themountain‘root model is takenfrom

i. Mueller and Taiwani (1971), and consistsof a
light, low velocity heterogeneitybetween30 and
50 km depth,perturbingthe mediumin that re-

0. gion with approximately10%. The structureof a
( mountain root dependsin general both on the

heightof the mountain,as well as on the horizon-
-‘ tal extent. This dependenceis ignored here by

usingthe samemountainroot model, irrespective
of the topography.)

p In all threefundamentalmodeinteractionsthe
-2. -2. -1. 0 1. 2. topographyscatteringis of the same order of
Fig. 5b. Radiationpatternfor L

1 ~— R1 scatteringfor a period magnitudeas the scatteringby the mountainroot.
of 20 s. Linesdefinedasin Fig. 5a. For periodsshorterthan 20 s the surfacewaves
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are so shallowthat thetopographyscatteringtends obtain the scatteredwave (3.2), an integration
to dominate. It can be seen in Fig. 5a—c that over the heterogeneityshould be performed. A
usually the topographyinteraction (S), and the crude estimate of the strength of the scattered
mountain root interaction (B) are of the same wave canbe obtainedby multiplying the interac-
sign, becausethe sumof the two termsis larger tion termswith thehorizontal extent of the inho-
than each term separately.(The only exceptionis mogeneity. This will, however,overestimatethe
L1 ~— L1 scatteringat a right angle.) It turns out strengthof the scatteredwave becausethis proce-
that this is also the casefor the radiationpatterns dure ignores interferenceeffects which tend to
involving highermodes. reducethescatteredwave.

That the topography scattering and the To incorporatetheseinterferenceeffects,let us
scatteringby the mountain root enhanceeach considera localizedscattererwhich hasa horizon-
otheris causedby the fact that both the topogra- tal extension which is small compared to the
phy and the presenceof the mountainroot give source—scattererdistance, and the scatterer—re-
rise to a thickeningof the waveguide(the crust). ceiverdistance.This meansthat in the notationof
Therefore,theseeffectsare in a sensesimilar. The Fig. 6
differenceis that the mountainroot heterogeneity I I ~< x~and I I << X~ (6.1)
results in a perturbationof the medium itself,
while the topographyaffectsthe surfaceboundary In that casethe phaseof theintegrandin (3.2) can
condition.Thisgives rise to the differentshapesof be linearisedin . Furthermore,the variationof
the radiationpatterns,andshowsthat oneshould thegeometricalspreadingfactorsover the scatterer
be carefulin modellingsubsurfaceheterogeneities can be ignored, becausethesevariations are of
with variationsof the free surface,as suggestedby relativeorder I ~ I/Xi°or2.In thatcasethescattered
Bullit andToksoz(1985). wave canbe written as

— - — e1,~°+?T,/4) ~
U

1(Tr) =pO(Zr, +2) 1 2 T°~ 1 2

6. Fraunhofer diffraction of surface waves (~k,, x
2°)/ (~- k,, x1°)/

The interaction terms which were calculated in x [i” (z~,4~) - (6.2)
the previoussectionwere given per unit area. To . . .

where7~is the total interactioncoefficient

flftldt’ 9
T°~= e1~kr+~V0P(~)dS (6.3)1~
This meansthat thetotal interactionterm is given

2 by the two-dimensionalFourier transformof the

heterogeneity.
Thewavenumberof theincomingwave is given

by

(6.4)

and the scatteredwavehaswavenumber

~1t=~k0 (6.5)1—~__ ~

mode v Therefore the Fourier transform (6.3) is to be
X1 evaluatedat thewavenumbercorrespondingto the

wavenumberchangein the scatteringevent
(~)OP~c~ut~in (6.6)

Fig. 6. Geometryfor Fraunhoferdiffraction. The magnitudeof this wavenumbercaneasily be
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expressedin thescatteringangle4’ tion of the fundamentalLove mode with the
fundamentalRayleigh mode, since their wave-1/2

= (k~+ k,,~— 2k
0k,,cos 4)) (6.7) numbersare usually not too different.) In that

If the scattererexhibitscylinder synimetry, the casethe interferenceterm is given by
azimuthintegrationin the Fourier integralcanbe exp[— ~( kL)2(1 — cos 4’)]
performed.If oneusesthe integral representation
of the Besselfunction it follows that If the scattereris wide comparedto the wave-

length of the surfacewave(i.e., kL>> 1), this term
T°”= 2ir1 rJo(~k0Pr)V0P(r)dr (6.8) is verysmallexceptfor 4’ = 0, so that theradiation

0
patternis strongly peakedin the forward direc-

So that for a scattererwith cylinder symmetrythe tion. Thiseffectis knownin thetheoryof scattering
total scatteringcoefficient is just the Fourier—Be- of electromagneticwavesas the Mie-effect (Born
ssel transformof the heterogeneity. andWolf, 1959). In Fig. 7 this effectis shown for

R1 ~— R~scatteringby topographyat a period of
20 s. To appreciatethe dependenceof theshapeof

7. Application to a Gaussianmountain the radiation patternon the width of the moun-

tain, the radiation patternsare normalised.For a
In this section Fraunhoferdiffraction by an small mountain(L = 0), the forward scatteringis

idealised Gaussianshapedmountain is consid- comparableto theback-scattering.As thewidth of
ered.This meansthat it is assumedherethat the mountain(2L) increasesto valuescomparable

V
09( 1) = V°”exp — r2/L2 (7.1) to the wavelengthof the Rayleighwave (70 km),

the radiationpatternhasonly onenarrow lobe inOf coursea Gaussianmountaincannotsatisfy the
theforwarddirection.

conditions(6.1). However,the tail of the scatterer Thestrengthof the scatteredwave for R
1 ~— R1

contributeslittle to the integral, andthis error is
scatteringat aperiodof 20 s by topographyof 1

simply ignored. For a Gaussianmountain the km height can be seen in Fig. 8. This figure
integral (6.8) can be performed analytically. includes the topography only, the contribution
AbramowitzandStegun(1970)gavean expression from the mountainroot is not takeninto account,
for the Fourier—Besseltransform of a Gaussian.
Using this result onefinds

NORMALIZED SCATTERING AMPLITUDE
T°” =

1.0 _________

xexp[_~(k~+k~_2k0k,,cos4))L2] 20 40

(7.2) 10

The term ¶L
2V°” is the integralof the heterogene- 0.5

ity over the volume of the scatterer.The exponent
term describesthe interferenceeffectsof different

~O22O~parts of the scatterer.For interactions of the o.fundamentalmodewith the highermodes,k,, and
k,, are different so that the exponentis always
negative.This term thereforeleadsto aweakening
of the interactionsof thefundamentalmode with
thehighermodes. I

It is interesting to considerthis interference
term in somemoredetail for unconvertedwaves -i. 0 -0.5 0 0.5 1.0

k
0 = k,, = k (7.3) Fig. 7. Normalisedtopographyscatteringamplitude TR, .-

for a Gaussianmountainfor a period of 20 s. Half width L is
(This condition is almostsatisfiedfor the interac- indicatedin kilometers.Incomingwaveis shownby anarrow.
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SCATTERINGAMPLITUDE 8. Scatteringby abandheterogeneity revisited

60 The perturbationtheory derived in this paper

80 andin paper1 is valid for ‘weak inhomogeneities’.Theinhomogeneityhasto beweak becauseof the

o ~700 requirementthat the scatteredwaves are small4° comparedto the direct wave. Now supposewe
° ~3O want to apply the theory to a weak and smoothheterogeneity with a large horizontal extent.

Smoothmeansin thiscontext that

N IaH,LI<<Ik,LI (8.1)
where a H is a horizontal derivative, and k is the

- I I horizontalwavenumberof the modeunderconsid-
-0.4 .0.2 0 0.2 04 eration.A similar conditionis assumedto hold for

Fig. 8. Topographyscatteringamplitude TR, R
1 for a Gaus- X’, p

1 and h. This condition implies that the
sianmountainof 1 km heightata periodof 20 s. Half width L heterogeneityvarieslittle on a scaleof a horizon-
is indicated in kilometers. Incoming wave is shown by an tal wavelength.
arrow. For a heterogeneitywith a large horizontal

extent, the integralsfor the scatteredwave may
divergewith the sizeof the heterogeneity,evenif

becausethe degreeof compensationdependson the inhomogeneityis relatively weak. This diver-
the size of the mountaintoo. Oneshouldtherefore genceis an effect of the truncation of the per-
be careful with the interpretationof this figure, turbation series(Nayfeh, 1973), sincethe sumof
since the presenceof a mountainroot affects the all ordersis necessarilyfinite. Physically this can
forward scatteringdrastically(Fig. 5a—c). Further- be understoodin the following way. If a wave
more, the strength of the topographyscattering propagatesthrough a region with a weak and
dependson themountainheight. smoothheterogeneity,the only effect of the inho-

Forthis particularexampleit canbeconcluded mogeneity is to perturb the local wavenumber.
that for mountainswith a half width less than 30 Insteadof a solution exp (ik

0x) for a laterally
km the R1 ~— R1 scatteringat 20 5 is extremely homogeneousmedium, thelaterallyheterogeneous
weak. However,for largermountainsthe forward
scatteringincreasesrapidly with the mountainsize.
For mountainswith a half width larger than 70
km the total topographyinteractioncoefficientis
larger than0.4. Thismeansthat the scatteredwave
(as it follows from this calculation) is not small
compared to the direct wave, which signals the
breakdownof the Born approximation.This con-
waveswith a periodshorterthan 20 s are strongly - o -o

firms the NORSAR observationsthat surface
scattered(Bungumand Capon, 1974). It will be
clearthat amountaincomplexlike the Alps, which
has a half width much larger than 70 km, and
which has a pronounced root (Mueller and
Taiwani, 1971) will severely distort the propa- x-x1 x-x6

gation of surfacewaveswith a periodshorterthan Fig. 9. Geometryfor surfacewavescatteringby abandhetero-

20 s. geneity.
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medium has a solution exp ifx(ko + ôk)dx. In If the heterogeneityis weak and smooth,but
that caseit canbe shownwith WKBJ theory that wide, the interval (xL, XR) canbe divided in thin
reflections and wave conversions are negligible subintervals.By increasingthe numberof these
(Bretherton,1968;Woodhouse,1974).This means subintervalstheycanbe madearbitrarily thin, so
that the Born approximation, which splits the that (8.3) can beusedfor eachsubinterval.How-
totalwave in a direct wave anda scatteredwave, ever,the transmissioncoefficientof acombination
doesnot makemuch sensephysically becausein of subintervalsis in generalnot relatedin a simple
reality thereis just onephaseshifted transmitted way to the transmissioncoefficientsof the subin-
wave. tervals.

We discuss this for the band heterogeneity Rayleigh(1917)addressedthis problemby con-
model shown in Fig. 9. It was shown in paper 1 sidering the reflection and transmissionin a
that the total wavein caseof propagationthrough mediumconsistingof many layerswith equal re-
abandheterogeneityis givenby flection and transmissioncoefficients.Let r,

1 and

e1x,+11
4) — t,, denotethe reflection and transmissioncoeffi-

= ~7(Zr) 1/2 [p~(o).FJ cient of n of theselayers. Rayleigh(1917)showed
(!kX) that in that case

2 tntm 8

>~[i + 4~f~vvP(x)dx1 = 1 — r
0r,,, . . -

XL Thereforethetransmissioncoefficientof the corn

e’~”
4~ — bination of two substacksis the product of the

+ ~ 2ie~°(Zr) ~ \1/2 [~“(o) . F] transmissioncoefficient of each substack,pro-
9*0 ~~k~k

0) videdthe reflectioncoefficientsaresmall.

e
11’~~ For asmoothheterogeneitythe reflectioncoef-

XJ 1/2 V09(x)dx ficients are indeed small (Bretherton, 1968), so
XL (kp(Xr — x) + k

0X) that the transmissioncoefficient of a stack of

(8.2) subintervals is the product of the transmission
Figure 9 defines the geometricvariables in this coefficients of each subinterval. Therefore the
expression.Forconveniencethemodal summation phaseshifts introducedby eachsubintervalshould
hasfor oncebeenmadeexplicit. Theunconverted be added.
wavesare takentogetherwith the directwave.The This meansthat,under the restriction that the
last term in (8.2) describesthe convertedwaves, heterogeneityis smooth,the (divergent)Born ap-
The interactiontermsare to be evaluatedin the proximationshouldbe replacedby
forward direction (4) =0). 1 + ~f~v(x)dx---~ exp~f~v(x)dx (8.5)

From this point on we shall only concernour- k XL k
selves with the unconvertedwave, since the last This renormalisationprocedureyields a finite re-
integral in (8.2) is negligible for a smoothhetero- suit for a wide andsmoothheterogeneity,andis
geneity.(This is becauseof the oscillationof the consistent with results from WKBJ theory
exponentterm in the integrand.)For simplicity (Bretherton, 1968). Morse and Feshbach(1953)
the index v will be suppressed,but it should be gavein paragraph9.3 a rigorousproof of (8.5) for
kept in mind that a sum over all unconverted scatteringby a potential in the 1-D Schrodinger
modesis implied, equation.

If theheterogeneityis weak, andnot too wide,
we canapproximate 2~ 9. The partial derivativesof the phasespeedwith

1 + —~fV(x)dx= exp-~fV(x)dx (8.3) respectto topography

so that the only effect of the heterogeneityis a If the expressions(8.2) and(8.5) are combined,
phaseshift of the transmittedwave, the following expressionresults for the uncon-
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vertedwave Since the interaction terms for topography
scatteringareknown, the partial derivativesof the

s~ 2 XR-~ + ~f V(x)dx} phasespeedwith respectto the topographyheightexp i

(h) can be calculatedtoo. For Love waves one
~unc(~) =~(Zr) ~ 1/2 finds by inserting(3.lOa) (with 4’ = 0) in (9.3) that

(-~ kXr)

(9.1) [~~1L=—2p°l~(c2—f32)h (9.5a)
i. cj

(The modal summationis not madeexplicit, and while (3.lOd) yieldsfor Rayleighwaves
the parametere is suppressed.)It follows from
this expressionthat the interactionterms V are F ~i ] R = — 2p°[r~C2 + TI2 (C2 — 4(1 — ,~2) $2)] h
closely related to the wavenumberperturbation 1 C J
dueto the heterogeneity (9.5b)

8k = V(x) . (9.2) In these expressions all variables are to be

evaluatedat the surface. With the normalisation
andthe relativephasespeedperturbationis given condition(3.4), this finally gives thepartial deriva-
by tives of the phasespeedwith respectof the topog-

[&I = 2 V(x) (93) raphyheight. For Love wavesthis leadsto

~se resu~s2are derivedfor a smoothbandhet- [lac]L = ~ p°l~(c~— $2) (z = 0) (9.6a)
erogeneity. However, since the phasespeed de-

andfor Rayleighwavespendsonly on the local propertiesof the medium,
theseresultscanbe used for an arbitrarymedium 1 ilk 1 P.

with heterogeneitieswhich vary smoothly in the [~i~.1
horizontaldirection. —1 ~F2 2 2

The interactionterms V containa contribution = p {r
2c + ri (c2 — 4(1 —4cUI

of theburiedheterogeneitiesanda contributionof
the topographyvariations.As an example,con- (z = 0) (9.6b)
sider the phasespeedperturbationfor Rayleigh The partial derivativesof the phasespeedwith
wavesby aburiedheterogeneity.In that caseV in respectto topographyheight are shownin Fig. 10
(9.3) follows from (3.7d) with ~ =0. for the fundamentalmodes,calculatedwith the

16c1R 1
[7] 4~ui1fp1~2(T~Tfl ____________________

+(kr1+a~r2)
2x1.+(2k2rI2+2(a~r

2)
2

q

+(kr
2_a~r1)2)p}j (9.4)

The factor 4c(J11 could be addedbecauseof the -
normalisationcondition(3.4).Equation9.4 is equal -~-~

to expression(7.78) of Aki and Richards(1980),
where the Rayleigh-wavephasespeedperturba-
tions are calculatedwith a variational principle.
The scatteringtheory thusproducesthe samere- - 40 - - SO - 100

sult in a roundaboutway, confirming that small PERIOD(SEC)

variationsin the phasespeedare treatedcorrectly. Fig. 10. Phasespeedderivativewith respectto topographyfor
For Love waves a similar result can be derived the fundamentalLove mode (L) and for the fundamental

from (3.7a). Rayleighmode(R).
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M7 model of Nolet (1977). It canbeseenthat the ters, as they are known from variationalprinci-
effect of topographyon thephasespeedis largest pies, can be obtainedfrom the scatteringtheory
for periodsof about 20 s. For large periods the too. In an analogousway the partial derivativesof
penetrationdepthof the surfacewavesis so large the phasespeedwith respect to topographyare
that the topographyhas little effect. For short obtained.
periods the surface waves only sample the top Thisis importantfor theefficient calculationof
layer. In that case,a thickeningof the top layerby surface-wave seismograms,and for applying
topographydoesnot influencethephasespeed. travel-time corrections for the topography.Fur-

The relative phasespeed perturbation for a thermore,thephase-speedvariationsdueto topog-
topographyof 1 km is of the order of 0.5%. This raphy couldcausesurface-wavefocussingand de-
meansthat for realisticvaluesof the topography focussingeffects.Ray-tracingtechniques,asdevel-
(up to several kilometers) this effect cannot be oped by Gjevik (1974), Babich et al. (1976) or
ignored. Since the topographyis in generalwell Gaussianbeams(YomogidaandAki, 1985),could
known, this effectcaneasilybetakeninto account be used to investigatethis.
in inversions using phase speed observations The equivalence between topography and
(Nolet, 1977;Caraet al., 1980; Panzaet al., 1980). surfaceperturbationsof the mediumparameters

shows that (in this approximation)the inverse
problemhasa non-uniquesolution. This posesno

10. summary problems for the holographic inversion scheme
presentedin paper 1, since the topographyis in

Surface-wavescatteringby topographycan be generalwell known. Thereforethe surfacewaves
incorporated in the linearised surface-wave scatteredby the topographycan be calculated,
scatteringformalism of paper1. An error analysis and subtractedfrom the recordedsurfacewaves.
shows, however, that for realistic values of the The remaining scattered surface waves are
largescaletopography(1—5 km) the theorybreaks scatteredby the heterogeneityunderthe topogra-
down for periodsshorterthan 15 s. Furthermore, phy, so that given enough data the inversion
steepslopescannotbehandledby the theory. schemeof paper 1 could be used to map the

Theradiationpatternfor scatteringby topogra- heterogeneityunderthe topography.
phy showsthat the scatteringin the forward direc-
tion is relatively weak. A comparisonwith the
radiation pattern for a ‘mountain root model’ Acknowledgement
showsthat scatteringby topography,and scatter-
ing by a mountainroot in generalenhanceeach I thank Guust Nolet both for providing the
other.The reasonfor this is that botheffectslead context for this research,and for his help and
to athickeningof the crustalwaveguide. advice.

For scatteringby an extended heterogeneity,
interferenceeffectsbetweenwavesradiatedfrom
different partsof the scattererleadto anenhance-
ment of the forward scattering(Mie effect). Fur- Appendix
thermore,theseinterferenceeffectsleadto a rela-
tive weakeningof the interactionof the funda- Surfaceperturbationsof mediumparameters
mentalmodewith the highermodes,comparedto
the interactionsamongthe fundamentalmodes. Supposethat the densityand the elastic para-

For a heterogeneitywhich is smooth in the metersare perturbedall the wayup to the surface,but that there is a flat topography(h = 0). As
horizontal direction a relation is establishedbe-

shown in paper 1 the scatteredwave satisfiesin
tweenthe interactionterms and the variationsin

the interior
the phasespeed. The partial derivatives of the
phasespeedwith respectto the mediumparame- L°i~1= — L11i° (Al)
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Linearisingtheboundarycondition(2.3—4) yields Aid, K. and Richards, P.G., 1980. Quantitative Seismology,
for the perturbedquantitiesat z = 0 volume 1. Freeman,SanFrancisco.

Babich, V.M., Chikhachev,B.A. and Yanovskaya,T.B., 1976.
flIC,°~k,akU,

1= — flC,Jk,akU! (A2) Surfacewavesin avertically inhomogeneoushalfspacewith
a weak horizontal inhomogeneity. IZV Phys. Earth, 12:

The r.h.s.of (Al) can be consideredas a surface 242—245.
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and(A2) canbesolvedfor u1 sionsin Eurasia.Bull. Seismol.Soc. Am., 74: 1087—1104.
Born, M. andWolf, E., 1959. Principles of Optics.Pergamon

Press,New York.
= — fG

1~(i,i’)L)k(i’)u~(i’)dV’ Bretherton,F.B., 1968. Propagationin slowly varying wave-

guides.Proc.R. Soc.,A302: 555—576.
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from higher mode data in westernEurope and northern
Asia. Geophys.J.R.Astron.Soc.,61: 459—478.
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