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Summary. Scattering of surface waves by lateral heterogeneities is analysed in 
the Born approximation. It is assumed that the background medium is either 
laterally homogeneous, o r  smoothly varying in the horizontal direction. A 
dyadic representation of the Green’s function simplifies the theory 
tremendously. Several examples of the theory are presented. The scattering 
and mode conversion coefficients are shown for scattering of surface waves 
by the root of an Alpine-like crustal structure. Furthermore a ‘great circle 
theorem’ in a plane geometry is derived. A new proof of Snell’s law is given 
for surface wave scattering by a quarter-space. It is shown how a stationary 
phase approximation can be used to  simplify the Fourier synthesis of the 
scattered wave in the time domain. Finally a procedure is suggested t o  do 
‘surface wave holography’. 
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1 Introduction 

The propagation of surface waves in a laterally homogeneous medium is nowadays well 
understood (Aki & Richards 1980). Unfortunately there is no exact theory yet for the 
propagation of  surface waves in a three-dimensional laterally varying medium. It is desirable 
to have such a theory because there are several observations indicating that short-period 
( < 2 0  s) surface waves are distorted severely by the lateral heterogeneities in the Earth. 
Levshin & Berteussen (1979) and Bungum & Capon (1974) give evidence of the scattering of 
short-period surface waves by lateral inhomogeneities. 

The classical approach used in the analysis of surface waves in a laterally inhomogeneous 
earth is to  assume that the surface waves are only influenced by the heterogeneities on the 
great circle joining the source and the receiver. A theoretical justification for this assumption 
is given for weak and smooth heterogeneities by Backus (1964), Jordan (1978) or Dahlen 
(1979). However, the observations of Levshin & Berteussen (1979) and Bungum & Capon 
(1974) show that in some cases an appreciable fraction of the surface wave energy 
propagates over non-great circle paths. 

The effect of lateral heterogeneities on surface wave propagation in two dimensions has 



582 R. Snieder 

received considerable interest. Knopoff & Hudson (1 964) investigated the transmission of 
Love waves through a continental margin using a representation theorem. They modelled the 
continental margin by a vertical interface between two media. Alsop (1966) and 
Malichewsky (1979) studied the same model by minimizing the stress mismatch or the 
energy flux mismatch across the continental margin. However, none of these models could 
handle a non-zero angle of incidence, so that conversions from Love waves to  Rayleigh waves 
could not be described. Hudson (1977a) treated the effect of a heterogeneous strip by using 
a variational method. All these studies involved some form of approximation. Finally, 
Kennett (1984a) devised an exact theory for the propagation of surface waves in a 2-D 
laterally heterogeneous medium. 

The 3-D surface wave problem has received considerably less attention. Gregersen & 
Alsop (1 974) and Alsop, Goodman & Gregersen (1974) considered the reflection and the 
transmission of surface waves in three dimensions by a vertical discontinuity. They did this 
by decomposing the surface wave in homogeneous and inhomogeneous body waves and 
using expressions for the reflection and transmission by an infinite discontinuity. However, 
their solutions did not satisfy the boundary conditions a t  the surface, so that it is not clear 
how useful their results are. Recently Its & Yanovskaya (1985) studied the 3-D reflection 
and transmission of surface waves a t  a vertical or weakly tilted discontinuity in a more 
rigorous way. 

For 3-D media with a smooth lateral heterogeneity, ray tracing (Babich, Chikhachev & 
Yamovskaya 1976) or Gaussian beams (Yomogida & Aki 1985) are suitable techniques to  
describe the propagation of  surface waves. However, it is impossible t o  treat sharp horizontal 
heterogeneities with these methods. Therefore, the  theory for surface wave propagation in 
3-D laterally heterogeneous media was restricted t o  lateral smoothly varying media, and to  
media consisting of  two welded quarter-spaces. This was not very satisfactory since one 
would like t o  describe the scattering effects of an arbitrary distribution of scatterers in three 
dimensions. 

The Born approximation is very useful in incorporating these effects. This approximation 
was first applied t o  the 2-D surface wave problem by  Kennett (1972) who gave a derivation 
in wavenumber space. Subsequent papers used a similar theory to  describe the scattering of 
body waves, see Hudson (1977b), Malin (1980), Malin & Phinney (1985) or Wu & Aki 
(1985). Herrera (1964) and Herrera & Ma1 (1965) used the Born approximation t o  describe 
3-D surface wave scattering, and gave an expression for the scattered surface wave using 
representation theorems. Their results did not receive much attention because n o  convenient 
form of  the Green’s function was available. Therefore the Born approximation has not been 
used yet to  describe surface wave scattering by organized 3-D heterogeneities. The aim of 
this paper is to provide such a scattering theory. The theory, as it is presented here, applies 
t o  scattering in the far field in a plane geometry. 

In order to d o  this, a dyadic representation of the far field Green’s function in a laterally 
homogeneous medium is presented in Section 2. The representation is similar to the dyadic 
form of the Green’s function derived by Ben-Menahem & Singh (1968) for a homogeneous 
sphere, but is much easier to  interpret. The Green’s function for an elastic half-space consists 
of a surface wave part and a body wave part. In this study the body wave contribution to the 
Green’s function has been neglected throughout. The reason for this is that the theory relies 
heavily on a dyadic representation of the Green’s function. Unfortunately, there is no dyadic 
representation of the body wave Green’s function in a layered medium available. This 
problem can be overcome in two ways. One alternative is to use a locked mode approxi- 
mation (Harvey 1981). Another option is t o  consider an elastic sphere instead of an elastic 
half-space. In that case both surface waves and body waves can be expressed in normal 



3-0 scattering o f  surface waves 583 

modes. The generalization of the theory presented in this paper to a laterally inhomogeneous 
sphere is presented in Snieder & Nolet (in preparation). 

In Sections 3 and 4 the dyadic representation of the surface wave Green’s function is used 
to derive the Born approximation for surface waves in the far field. The theory describes 
mode conversion in a natural way because the Green’s function is a superposition of all 
surface wave modes. In Section 5 this theory is generalized for the important application of 
a background medium with smooth lateral variations. 

The second half of the paper deals with some examples and illustrations of the theory. 
These examples by no means exhaust the possibilities of the theory. In Section 6 the inter- 
action terms and the radiation patterns are presented for surface wave scattering by a point 
scatterer which has a vertical structure similar to the root of the Alps. 

The advantage of the formulation using a dyadic representation of the Green’s function is 
that the final expression for the scattered wave is quite simple. This enables one to use the 
formalism for the scattering of surface waves in realistic situations. Section 7 features two 
examples of this. Propagation through a band-like structure is discussed. This leads to a 
‘great circle theorem’ in a flat geometry. Furthermore the reflection by a quarter-space i s  
treated as a simple example of scattering by a continental margin. 

All the derivations are given in the frequency domain, since surface waves are dispersive. 
In Section 8 it is shown how a stationary phase approximation leads to an efficient 
formulation in the time domain, which is useful for calculating synthetic seismograms. 

One would like to use scattered surface waves to invert for the location and the structure 
of the scatterers. This can in principle be done with an inversion scheme similar to the 
algorithm of Tarantola (1984a, b). It is shown in Section 9 how ‘back propagation’ of 
scattered surface waves can be used to invert for the scatterers. 

In this paper the summation convention is used unless stated otherwise. Latin indices are 
used to denote vector components, while Greek indices are used for the mode numbers. The 
dot product which is used is defined by: 

IP * 41 = P: 4i 

[A  : B ]  =Al ;  Bj i .  

(1) 

(2) 

where * denotes complex conjugation. Double contractions are defined by: 

Finally, in order to see the limitations of the theory the assumptions which are used 
throughout the paper are listed. It is assumed that: 

there is a plane geometry; 
the interaction with body waves can be neglected; 
the far field approximation can be used; 
the heterogeneity is weak; 
the scatterers are buried. 

2 The dyadic representation of the far field Green’s function of a laterally homogeneous 
medium 

The surface wave Green’s function in the spectral domain for the excitation of a laterally 
homogeneous elastic medium with density p and elastic parameters h and p by a point force 
is given by Aki & Richards (1980, chapter 7). The Green’s function contains a matrix, but 
this matrix can be rewritten as a dyad. The expressions of Aki & Richards include an 
azimuth angle cp, which depends on the positions of the source and the receiver. This 
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azimuth dependence can be interpreted easily by rewriting the Green’s function in a dyadic 
form. Both for Love waves and for Rayleigh waves the far field Green’s function can be 
written as: 

For Love waves p” is given by: 

f -/,”(z) sin cp 

while for Rayleigh waves: 

r; (z) cos cp 

p” is called the polarization vector. The index v refers to the mode number; it should be 
remembered that modal summation is implied in (3). The functions Zr(z), r;(z) and r;(z) 
are the surface wave eigenfunctions in the notation of Aki & Richards. It is assumed that the 
eigenfunctions are normalized in such a way that: 

8c, U,Z; = 1 (no summation). (5) 

Here c ,  and U, are the phase velocity and the group velocity of mode v .  The integralZf is 
for Love waves defined by: 

I? I,” = p(z)Zl (z)dz 

and for Rayleigh waves: 
J 

I l  - 1 p(z) (rf ( z )  + rla(z)) dz. ,- ‘ S  
The polarization vectors can be interpreted by expressing them in the following vector 

form: 

p”(z, cp) = Z:(Z)+ for Love waves 

p”(z, cp) = rp(z) d + iri(z) 2 for Rayleigh waves. 

(See Fig. 1 for the definition of & and 6.) It can now be understood why the p vectors are 
called the polarization vectors, since they describe the direction in which the displacement 
vector oscillates. In the far field, this oscillation is purely transverse for Love waves, while 
Rayleigh waves oscillate both in the radial and vertical direction. 

From this point on, Love and Rayleigh waves are treated in a unified way, and the modal 
summation involves both Love and Rayleigh waves. Using the representation ( 3 ) ,  the 
displacement excited by a point force F oscillating with angular frequency o can be written 
as: 
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A r 

Figure 1. Geometry for the direct wave in a laterally homogeneous medium. 

It can be seen explicitly that the displacement oscillations are in the p' direction. The 
excitation is described by the dot product in the right side of (9). This means that only the 
projection of the force on the polarization vector contributes to the excitation. 

In subsequent sections the gradient of the Green's function is needed. The gradient is 
derived here in the far field limit, since the Green's function itself is already in the far field 
limit. The azimuthal derivative in the gradient can be neglected, since it is O(l/kX) com- 
pared to the radial derivative. The gradient with respect to the receiver position (index l) ,  or 
the source position (index 2) is in the far field limit: 

In these expressions ? is the horizontal gradient operator. 
With these expressions the excitation by a moment tensor can be determined. The 

response to a single couple follows by superposing the response to point force F at rs + 6 to 
the response to a point force -F at r, - 6. The response to this single couple follows by 
Taylor expanding the superposition in 6, and using (1 Oa-d) for the gradient. Interchanging 
the direction of F and 6 and adding the single couple displacement fields leads to the 
following response to the excitation by a moment tensor: 

where M is defined as: 

M = 2(6F + Fa). (12) 
Note that the factor -i coming from the horizontal gradient in the source coordinate is 
absorbed in the definition of the dot product. 

All the following sections deal with the excitation by a point force, but the results can be 
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generalized everywhere in case of excitation by a double couple by making the following 
substitution: 

[PV(Z,,Cp) - FI -+ [(&A+ ẑ  3,) PYZS,Cp) : MI .  (13) 

3 The Born approximation 

The effect of lateral heterogeneities is treated here in a linearized way by using the Born 
approximation for the scattered wave. Suppose that the structural parameters in the medium 
can be written in the following way: 

P(X, Y ,  z )  = / lo  ( z )  + E A N x ,  y ,  z )  

X(X,  .Y, Z) = ho (z) + E Y ,  Z) 

P(X? Y ,  z) = Po (z) + E A&, Y ,  z) .  

( 1 4 4  

(14b) 

( 14c) 

The parameters po,  Xo and po define a laterally homogeneous background medium, 
which has a Green’s function as presented in the last section. The parameter E has been 
added to indicate that the inhomogeneity is weak, and serves only for bookkeeping 
purposes. 

The equations of motion of the laterally heterogeneous system can be written as: 

L i j ~ j =  Fi (1 5) 

L~~ = - 6 i i p ~ 2 -  aih ai - aip ai - aijakp a,. (16) 

with 

This operator can be written in the form L = L o  + EL ’ by inserting (14a-c) in (1 5) .  The 
displacement field can be expressed as a perturbation series: u = uo + eul + O(E’ ). If these 
expressions are inserted in (15), then the terms of zeroth order and first order in E lead to 
the relations: 

Louo = F (1 7) 

(18) LOU1 = -L’ uo. 

If we now assume that the heterogeneity does not affect the boundary conditions (which 
may be a very debatable assumption in realistic situations), then both (17) and (18) can be 
solved with the Green’s function of the background medium. This leads to the following 
expression for the direct wave: 

uo = GF. (19) 

u1 = -GL1uO = -GL’ GF. (20) 

While the scattered wave is given by: 

The operator products in (1 9) and (20) imply both summation over matrix elements as well 
as integration over space variables of the Green’s function. For example, (19) is an 
abbreviated notation for: 

uq(r)= d3r’Gij(r,r’) 4 ( r ’ ) .  s 
For the moment we shall only concern ourselves with excitation by a point force in r, and 
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scattering by a point heterogeneity in ro : 

Ap(r) = Ap6(r - ro) 

Ap(r) = ApG(r - ro) 

F(r) = F6(r - rs). 

( 2 2 4  

(22c) 

( 2 2 4  

Ah(r) = A.X6(r - ro) (22b) 

Since the theory in this approximation is linear in the heterogeneity, as well as in the 
excitation, more general situations can be handled by integration over both the hetero- 
geneity and the excitation. 

The unperturbed direct wave has been discussed in Section 2. The scattered wave is 
explicitly: 

uf (r) = - d3r’ci i (r ,  r ’ )Lfk  (r’)Gkl(r’,rs)Fz(rs). (23) I 
where the heterogeneity operator is: 

(iii) 

( i 4  (24) 

The differentiations are all with respect to the r ‘  coordinates. Note that the differentiations 
act both on the delta functions as well as on the Green’s function at the right of L’. The 
differentiation of the delta functions can be removed with a partial integration. For instance, 
the contribution of term (ii) to (23) can be rewritten: 

- Jd3r’Gi i  (r,r’)ai [Ah 6(r’ - ro) a;Gkl(r’, r,)] FI 

= / d 3 r ’  [ i3/Gii (r, r’)] Ah 6(r‘ - ro) [ a;Gkl (r’,  r,)] F1 

= A h  [agGii(r , ro) l  [ a % d r ~ , r , ) ]  Fz. 

The partial integration leads to  a surface integral, which is zero for buried scatterers. If 
partial integration is also applied to the terms (iii) and (iv) the scattered wave takes the 
following form: 

ur (r) = [ A p a 2 G i l ( r ,  ro>Gjl(rO, rs) 6) 
- A.X(ap Gij (r, ro 1) (aOkGkl(r0 9 rs)) 

- &(a! Gij (r, r0 1) (37 G k i  (rO 7 rs)) 

(ii) 

(iii) 

- Ap(a0,Gij (r, ro 1) (a! Gjl (ro 9 rs))I Fl(rs). (iv) ( 2 5 )  

This expression is not easy to interpret because of all the gradient terms of the Green’s 
function. However, the expression may be simplified considerably by using the dyadic form 
for the Green’s function (3) and its gradient (10a-d). After some algebra it follows that in 
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A 
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Figure 2. Geometry for the scattered wave in a laterally homogeneous background medium. 

the notation of Fig. 2: 

where You is given by: 

vuu(ro = Apw2 [pU(zo, PZ * P' (~O,  ~i )I 6) 
- AA I[(, -iku [pu(zO, cp2 i A2 I + [azo puizo, cp2 ) 21 ) (ik, [A1 - pu(z0, v1 11 

- A!J u kuku [ P Y Z O ,  cpz 1 * A1 1 [ A 2  * P%O, cp1)I 

+ [2 - azo P Y Z O  7 (p1)I)D (ii) 

- iku [pu(z0, cp2 1 - 51 [A2 - azo pu(z0, cpl )I 

+ ik,Lazo p ~ ( z o ,  9 2  1 * i1 I [; p'(zo, cp1 )I 
+ ~ ~ z o ~ u ( z o ~ c p 2 ~ ~ ~ ~  12 - azg~u(zo ,cp l )~n  (iii) 

- All I[ kuk, [ A 2  * A1 I [P"(ZO 1 q 2  1 * P Y Z O  9 P1>1 

+ [ a z , P ~ ~ z o , ~ 2 )  - a z o p ~ ( z o , ~ l ) ~ n .  (iv) (27) 

The expression for the scattered wave (26) is now easy to interpret. If one reads (26) from 
right to left one follows the 'life history' of the scattered wave. The point force excites mode 
u.  The surface wave then travels to the point of scattering r o ,  the phase shift and the 
geometrical spreading are determined by the propagation term exp i (kuX1 f 7~/4)/4-. 
Then the wave is scattered by the interaction matrix Vuu.  After the scattering, which may 
include mode conversion since the modes u and v can be different, the wave propagates to 
the receiver. The oscillation at the receiver is finally given by the polarization vector 
p"(z, cp2>. Note that (26) implies a summation over all the surface wave modes, and that all 
the modes in principle interact with each other. 

4 Analysis of the interaction matrix 

The interaction matrix as given in (27) is very general, but is hard to interpret. However, 
(27) can be simplified by inserting the expressions (7) and (8) for the polarization vectors of 
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Love and Rayleigh waves. It turns out that even though the polarization vectors depend on 
the azimuthal angles cpl and cp2 separately, the interaction matrix depends only on the 
scattering angle: 

cp=cpz -p1. (28) 

As an example this is shown for the scattering of Love waves by the density variation: 

VLL(i) = Ape' Z ~ ( Z ~ ) Z ~ ( Z ~ ) [ ~ ~  - GI ] = A p w 2 1 ~ ( z o ) Z ~ ( z o )  cos cp. 

Similar expressions hold for all the interaction terms. 

this is that the incoming wave (v) enters the h scattering term in the following way: 
It can be seen that the h heterogeneity does not affect the Love waves. The reason for 

iku [& * P U ( Z 0 ,  cp1 )I + azo P%ZO 7 91 1. 
For a Love wave the polarization vector has no vertical component, and is perpendicular to 
the direction of propagation (A1) .  Therefore both terms vanish if the incoming wave is a 
Love wave. If the outgoing wave (a) is a Love wave the same holds, so that h variations do 
not affect Love waves at all. 

If the polarization vectors for Love and Rayleigh waves ((7) and (8)) are inserted in (27) 
then the following expression for the interaction matrix results: 

V:fc. = [Z: 1,VApw’ - (aZy)  (aZ,”) A p ]  cos cp - k,k,Zy Zy A p  cos 2cp (29a) 

Vt(i = [ r :  Zy Apw’ + (k,r; - ary)  A p ]  sin cp - k,k,r: Z,V A p  sin 2cp 

For convenience the zo dependence of the eigenfunctions is not shown explicitly. Vertical 
derivatives are denoted in the following abbreviated form: 

Observe that the interaction terms depend in a very simple way on the scattering angle. 
There is no conversion from Love wave to Rayleigh wave or vice versa in the forward 
direction (q= 0), or in the backward direction (q= T). The interaction terms V,, and VLR 
differ only in sign, but have the same magnitude. 

5 Linearized scattering with a smooth background medium 

The theory of the previous sections can be generalized for a smoothly varying background 
medium with embedded scatterers. ‘Smoothly varying’ means in this context that the 
horizontal variations of the background medium are small on a scale of the largest horizontal 
wavelength under consideration. (There is of course no restriction on the vertical variations 
of the background medium.) 



590 R.  Snieder 
Bretherton (1968) showed that in this limit the surface wave modes decouple, and Babich 

et al. (1 976) derived a ray tracing formalism for surface waves, as well as a condition for the 
amplitude variations along a ray. Hudson (1 981) derived a parabolic approximation for 
surface waves, which Yornogida (1 985) extended to a Gaussian beam formalism for surface 
waves. We shall proceed here with a derivation of the Green’s function for Love waves in a 
smoothly varying background medium. (The derivation is completely analogous in  the case of 
Kayleigh waves.) Since the surface wave modes are decoupled we will restrict ourselves to  
one mode, and modal summation is temporarily suppressed. 

According to Yomogida the Love wave displacement on a ray (i.e. n = 0 in his notation) is 
in the far field: 

In this expression 7, is defined by the condition r1 (s, 0) = l , T l  (s, z )  is a ‘local mode’ since 
the mode varies along the ray. The phase of the Love wave is given by: 

where k(s) is the local wavenumber, and the integral is along the ray. The geometrical 
spreading factor q(s)  follows for a point source from the equations of dynamical ray tracing: 

asp = -c-* (s)a,,c(s)q 

as4 = C ( S > P 7  (32a) 

p(o)  = c-l (0), 9(0) = 0. (32b) 

with starting values: 

In these expressions a, denotes differentiation along a ray, while a, is the horizontal 
derivative perpendicular to a ray. Finally @L represents the excitation of the Love wave. This 
factor follows from the consideration that the excitation depends only on the local 
properties of the medium, so that I $ ~  is the same in a smoothly varying medium as in a 
laterally homogeneous medium with the properties of the source region. For a laterally 
homogeneous medium (32a, b) can be integrated to give q(s) = s, so that in that case: 

A comparison with (9), (7) and the normalization condition (5) shows that @L is determined 
by: 

exp (ini4) 
Zl(z, s = O)[&O) * F] .  

@ L =  + (34) 

If Z1 ( z ,  s) in (30) is normalized according to (5), and (34) is used for the excitation factor, 
then it follows that the Love wave displacement is: 
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A similar result holds for Rayleigh waves, so that the Green's function for a smoothly 
varying background medium has the following dyadic form: 

It should be stressed that the normalization condition (5) is crucial in obtaining the correct 
amplitude variations along the ray. The modal summation now includes both Love and 
Rayleigh waves. Note that quantities like the phase shift O,(s) or the geometrical spreading 
q,(s) are different from mode to mode. Also the ray paths are in general different for 
different modes, so that ray tracing has to be done for each mode separately. 

The expressions for the gradient of the Green's function (10a-d) are unaffected by a 
smooth horizontal heterogeneity of the background medium, since the horizontal derivatives 
of the parameters of the medium are by assumption small compared to k,(s). The derivation 
in Sections 3 and 4 is therefore unaffected by the smooth variations in the background 
medium. Therefore the expression for the scattered wave is: 

(37) 

See Fig. 3 for the definition of the variables. In principle the length along the ray path (s) 
depends on the mode number, but this is not shown explicitly. The interaction matrix is 
given by (27) or (29a-d) with the local polarization vectors. The scattering angle is now 
determined by the angle between the incoming and the outgoing ray at the scatterer. There- 
fore the scattering angle for a fixed source receiver pair is in general different for different 
sets of modes (a, v). 

Figure 3. Geometry for the scattered wave in a smoothly varying background medium. 

Note that the expression for the scattered wave depends explicitly on the scattering angle. 
This makes it impossible to use a Gaussian beam formalism in this context, since one has to 
do the ray tracing from source to scatterer to receiver in order to obtain the scattering angle. 
This is a time-consuming procedure since it has to be repeated for every new set of modes 
(0, v)- 

21 
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6 The interaction matrix for scattering by a mountain root 

In the previous sections the theory of surface wave scattering was developed. The subsequent 
sections deal with some examples to clarify the theory. In this section the depth integrals of 
the interaction matrix (29a-d) are presented for the scattering of surface waves by the root 
of the Alps. The heterogeneity consists of a light, low velocity anomaly between 20 and 50 
km, taken from Mueller & Talwani (1971). The M7 model or Nolet (1977) is used as a back- 
ground medium. Both the background medium and the heterogeneity are shown in Fig. 4. 

4 003 w m 3 1  a 1103w set1 p ,1"3m set, 

Figure 4. Density, P-wave velocity and S-wave velocity for the background medium (solid line), and the 
mountain root model (dashed line) used in the calculations of the interaction matrix of Section 6 .  

It can be seen from (29a-d) that the interaction matrix for the scattering from Rayleigh 
wave to Rayleigh wave, or from Love wave to Love wave has the form: 

VRR or  LL = V(O) + V(1) cos ~p + V(2) cos 2q. 

Here cp is the scattering angle. In case a Rayleigh wave is converted to a Love wave, or vice 
versa, the interaction matrix takes the form: 

VRL or  LR = V(1) sin q + V(2) sin 2q. 

In this section the 'sin nq' scattering coefficient for the conversion of the vth Love wave to 
the a t h  Rayleigh wave is denoted by VRO+Lv(n) .  A similar notation is used for the Love 
wave-love wave scattering and the Rayleigh wave-Rayleigh wave scattering. 

In Fig. 5 the fundamental mode interaction terms VR, + R ~ ,  V R ~  + L ~  and V L ~  + . L ~  are 
shown as a function of frequency. The interaction terms are given per unit area because 
(29a-d) has only been integrated over z .  In order to obtain the strength of the scattered 
wave one has to multiply by the horizontal area of the scatterer. For a scatterer of 100 x 100 
km the scattering coefficient is of order 1. However, surface waves with a period of 20 s have 
a wavelength of the order of 100 km, so that one cannot consider a scatterer of 100 x 100 
km as a point scatterer. In that case one would have to integrate over the horizontal extent 
of the whole scatterer. In order to circumvent this complication the interaction terms are 
simply given per unit area. 

Note that the three types of fundamental mode scattering are of the same order of 
magnitude. Also observe that the scattering coefficients are strongly dependent on the 
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Figure 5. Fundamental mode interaction terms for different azimuth numbers for scattering by the 
mountain root as a function of frequency. 

period. The interaction terms at 20 s are almost an order of magnitude larger than the 
interaction terms at 40 s. This agrees well with observations of scattered surface waves which 
show that 20 s Rayleigh waves are much more strongly scattered than 40 s Rayleigh waves 
(Levshin & Berteussen 1979). The reason for this is that for a period of 40 s the penetration 
depth of the surface waves is so large that the influence of the shallow scatterer on the 
propagation of the surface wave is relatively small. Mathematically this is realized by the 
normalization condition (5). 

The interaction terms for R1 +- RI scattering and R1 + L1 conversion decreases for 
periods shorter than 17 s. The reason for this effect is that for these high frequencies the 
surface waves are too shallow to be influenced by the heterogeneity. 

In order to appreciate the difference in the radiation patterns for the different funda- _ -  
mental mode scattering events, the scattering amplitude is shown 
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in Fig. 6 as a function of 

-1.5 -1.0 -0.5 0 0.5 1.0 1.5 
Figure 6 .  Radiation pattern for the scatterer of Fig. 5. The wave comes in from below. R, + R ,  scattering 
is shown by a solid line, L, + L, scattering by a dashed line and R, +L, conversion by a dotted line. 
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the scattering angle for a period of 21 s. Note that there is no converted wave being radiated 
in the forward or in the backward direction. The R1 + R1 scattering is much stronger in 
the forward direction than for backscattering, while L1 + L1 has a much more symmetrical 
four lobe radiation pattern. 

Fig. 5 shows that the different azimuth terms V(n)  in general behave in a different way as 
a function of frequency. Consequently, not only the strength of the radiation pattern 
depends on frequency, but also the shape of the radiation pattern is frequency dependent. 
This can be seen in Fig. 7 which shows the R1 +- R1 scattering for several periods. For a 
period of 40 s the scattering is very weak, and forward scattering and backscattering have 
almost the same strength. For larger periods the radiation pattern loses this symmetry. 

For periods larger than 20 s the interaction among the fundamental modes is in general 
much stronger than the interactions involving higher modes. For shorter periods this does 
not hold any more, because for these periods the fundamental modes are too shallow to be 
influenced by the heterogeneity. 
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0.5 

0. 

-0.5 

- 

- 

- 

- 

t 

Figure 7. Radiation pattern for R, t R, scattering as in Fig. 6 for different periods. The thin dashed line 
is for T = 40 s, the dasheddotted line for T = 26 s, the solid line for T = 21 s and the thick dashed line for 
T ='14 s .  

As a representative example the interaction terms V R ~ + R ~ ( ~ )  and V R ~ + ~ ~ ( ~ )  are 
shown in Fig. 8(a, b). Note that the coupling of the higher modes with the fundamental 
mode is stronger than the interaction of the higher modes with themselves. The only 
exception is the scattering of the first higher mode ( N =  2 )  to itself for short periods. This 
strong scattering is caused by the fact that for periods of 10-14 s the first higher mode 
behaves like a Stoneley mode on the Moho, and therefore carries most of its energy at the 
depth of the heterogeneity. 

One should be a bit careful with the conclusion that for periods larger than 20 s the 
higher mode scattering effects are negligible. It is true that this conclusion holds for the 
interaction terms V(n),  but it is not necessarily true for all scattering angles since for some 
scattering angles the fundamental mode interaction terms vanishes. As an example the 
Rayleigh wave radiation pattern is shown in Fig. 9 for the coupling of the fundamental mode 
with itself, as well as with the higher modes. The scattering .amplitude for R1 + R1 
scattering vanishes for a scattering angle of 106". This means that for this scattering angle 
the coupling to the higher modes dominates the R1 +- R1 scattering. 
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Figure 8. (a) V R ~ + R ,  (1) interaction terms for the mountain root scatterer as a function of frequency. 
Numbers in figure are mode numbers N.  (b) F ' R ~ + R ~ ( ~ )  interaction terms for the mountain root 
scatterer as a function of frequency. Numbers in figure are mode numbers N. 
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Figure 9. Radiation pattern as in Fig. 6 for RN+ R, scattering for a period of 21 s. Numbers in the figure 
are mode numbers N .  
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7 Application of stationary phase principles to the calculation of the scattered wave 

The theory presented in Sections 2-5 dealt with surface wave scattering by point scatterers. 
However, since the theory is linear(ized), more general inhomogeneities can be treated by 
integrating over the inhomogeneity . This integration can be simplified considerably by using 
the stationary phase approximation (Bender & Orszag 1978). Two examples are given for a 
laterally homogeneous background medium. 

7.1 P R O P A G A T I O N  T H R O U G H  A B A N D - L I K E  H E T E R O G E N E I T Y  

Consider the propagation of surface waves through a band-like inhomogeneity confined 
between x = xL and x = xR (see Fig. 10). This heterogeneity is not unlike the model for the 
Central Graben in the North Sea, used by Kennett (1984b). The inhomogeneity is assumed 
to depend on y in a smooth way, compared with the horizontal wavelength of the surface 
waves. In that case the scattered wave is: 

with 

The y integral can be evaluated with the stationary phase approximation. The point of 
stationarity is given by y = 0 for all x and z, so that the phase function can be approximated 
by: 

Integration over y then leads to the following approximation for the scattered wave: 

exp [ i (k ,  - k,)x] vyx,  y = 0, z) 

(40) 

&,(xr - x) + k,x 
i m d z  l X T d x  

exp [i(k,xr + 3 n/4)l 
Ul(rr) 2 

P‘(zr, ( ~ 2  = 0 )  [ ~ ” ( z s ,  ~1 = 0)  * FI . 

This means that in order to calculate the scattered wave one only needs to integrate over 
the line joining the source and the receiver. Equation (40) is a restatement of the ‘great 
circle theorem’ (Jordan 1978 or Dahlen 1979), but now in a plane geometry. The only 
difference is that in order to arrive at (40) we did not have to assume smoothness of the 
heterogeneity along the great circle, but only in the transverse direction. 

Equation (40) shows that the interaction matrix is only needed for a scattering angle 
cp = 0. This means that mode conversions from a Love wave to a Rayleigh wave (and vice 
versa) vanish in this limit, since V R ~  vanishes for cp = 0. This reflects the fact that appreciable 
transverse gradients of the inhomogeneity are needed to couple Love waves to Rayleigh 
waves. 
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x = x L  x = x R  

Figure 10. Geometry for surface wave scattering by a band-like heterogeneity. 

For Love waves the z integral of the interaction matrix term in (40) is given by: 

[ o m V ~ ~ ( x , y  = 0,z)dz = dz [(Apw’ - k,k,Ap)E~(z)Z,V(z)- Ap(a, I:) (a,Zf)]. (41) 

This expression is the linearized form of the interaction terms (2.21) of the 2-D theory of 
Kennett (1984a). The only difference with Kennett’s result is the appearance of the 
geometrical spreading factor in (40), as well as a phase shift of n/4. Both differences are 
caused by the fact that in this theory the surface waves are propagating in two horizontal 
directions. 

7.2 S C A T T E R I N G  BY A Q U A R T E R - S P A C E  

In the previous section it was shown that only the heterogeneity on the source-receiver line 
influences the scattered wave if the inhomogeneity is smooth in the transverse direction. The 
next example shows what can happen if this condition is violated. Consider the situation 
shown in Fig. 11. The left half of the (x, y )  plane consists of a different medium than the 
right half of the plane, where the source and the receiver are located. This situation models 
the scattering of surface waves by a sharp continental margin. The heterogeneity in the left 
half plane is assumed to be smooth in the horizontal direction (compared to the largest 
horizontal wavelength under consideration). This means that: 

Iax(Ap)I@ IkAPI, lay(Ap)I@ IkApI. (42) 

(Similar expressions hold for A h  and Ap.) Lastly, it is assumed that both the source and the 
receiver are located many wavelengths away from the continental margin. 

Again, the scattered wave can be written as an integral over the inhomogeneity: 

with f given by (39), and H is the Heaviside function. After a partial integration in x the 
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i- 
Figure l l .  Geometry for surface wave scattering by a quarter-space. 

The first term on the right side is zero if a small amount of damping is present; this can be 
realized by giving k ,  and k ,  a (small) positive imaginary component. The x differentiation in 
the second term produces three kinds of terms. Differentiation of the geometrical factors 
yields terms of the relative order O(l /k ,X1 ,  l/k,(x - x,), etc.) which are negligible in the far 
field compared to the original expression (43). The contributions of the derivatives of Ap, 
AA and Ap (which are contained in f) are also negligible compared to the original expression 
(43) because of the smoothness we assumed (42). Therefore the dominant contribution 
comes from the derivative of the Heaviside function. This leads to the following expression 
for the scattered wave: 

The y integral can again be evaluated with a stationary phase approximation. The phase 
function is: 

Let the minimum of B,,(y) be attained for $, so that: 
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It then follows from a stationary phase evaluation of t h e y  integral that the scattered wave is 
given by: 

x Jo- ,yx = 0,y = 9, z)dz. (47) 

Inspection of Fig. 11 shows that the stationary phase condition (46) is just Snell's law for 
the reflection of surface waves: 

sin i, sin i, _ _ - ~  - (no summation) 
CV CU 

where 

cv = w / k , .  (49) 

This means that for every set of modes (v, a) scattering by a quarter-space is equivalent to 
reflection by a point on the boundary between the two quarter-spaces which is determined 
by Snell's law. This means that the forward problem can be solved very efficiently because 
the cumbersome integration over the heterogeneity can be avoided. Unlike in Alsop er al. 
(1974) and Gregersen & Alsop (1974) the surface boundary condition is satisfied, since each 
mode satisfies the surface boundary condition. In contrast to previous studies it is not 
necessary to calculate the modes in both quarter-spaces in order to find the reflection 
coefficients. 

Unfortunately, it is not possible to consider the transmission of surface waves through 
a continental margin by locating the receiver in the heterogeneous quarter-space. The reason 
for this is that in that case the far field approximation cannot be used any more. 

The results derived in this section are applicable to a step-like continental margin. A 
smoother transition between two half-spaces can be treated numerically by dividing the 
transition zone into many small step discontinuities and by adding the scattered waves (47) 
from every step discontinuity. 

8 The scattered wave in the time domain 

Up to this point the theory was presented in the frequency domain. A Fourier transform 
makes it possible to find the scattered wave in the time domain. A stationary phase 
approximation of the frequency integral simplifies the final result considerably. In this 
section scattering by a point scatterer is discussed as an example. 

The scattered wave in the time domain is given by: 
m 

u'(rr ,  t )  = [ fuV(a) exp [ i (kvXl  + k , X z  - a t ) ]  dw. 
d -m 

Here, f is defined by (39). The frequency derivative of the phase function vanishes if the 
following condition is satisfied: 



600 R .  Snieder 
In this expression U,  is the group velocity of mode v. This condition determines a frequency 
& for every X 1 ,  X z  and t .  It is possible that (51) has more than one solution &, in which 
case one can simply sum over the contribution of every stationary frequency. A stationary 
phase evaluation of the w integral leads to the following result: 

1 exp [i(k,(&)Xl + k,(&)Xz - &t + 37r/4)1 

J(k:’(&) XI + k6‘(&)Xz) J k ,  k ,  (&)XI xz 

The prime denotes differentiation with respect to a. 
It is instructive to investigate the condition (51) in some more detail. If the modes u and 

v have the same group velocity, then (51) describes an ellipse, so that for a fixed time tall  
the points on the ellipse should be evaluated in (52) with the same frequency & (see Fig. 
12a). If U,(&) f U,(&), then (51) defines an egg-like curve and, at a given time t ,  all the 
points on the egg can be evaluated at the same frequency & (see Fig. 12b). 

Figure 12. (a) Set of  points which satisfy (51) for R, +R, scattering for a period of 21 s. (b) Set of 
points which satisfy (51) for R, t R, scattering for a period of 21 s .  

9 Least squares inversion of scattered surface wave data 

The theory for surface wave scattering is presented here in the Born approximation, so that 
there is a linear integral relation between the scattered wave (26) and the heterogeneity. 
(Remember that for a general configuration of scatterers (26) has to be integrated over all 
the scatterers, so that a ro integration should be performed.) This is convenient for solving 
the inverse problem, since the inversion of (possibly ill-posed) linear integral relations in the 
presence of noise is well understood. Franklin (1970) showed how to invert a discretized 
linear relation if the covariances of all variables are prescribed. Tarantola & Valette (1982) 
pointed out that discretization can be postponed to the moment of numerical implemen- 
tation. The application of this formalism to the acoustic reflection problem is shown by 
Tarantola (1984a, b). Here a similar inversion method is presented for surface wave data. We 
shall assume that the source parameters and the background medium are known. If necessary 
these properties could be included in a simultaneous inversion with the direct wave and the 
scattered wave. 
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In the surface wave inversion problem we try to reconstruct the elastic parameters and 
the density from surface wave data. This means that we want to find the following model 
vector (which is a function of the three space variables): 

m =  ( 5 3 )  

The a priori knowledge can be incorporated by prescribing the CI priori value of the model 
vector, as well as a covariance matrix. It is assumed that the a priori knowledge of the 
heterogeneity is given by: 

mo = O .  (54) 

The a priori model covariance is given by a matrix (operator) Cm(rl, r2),  which we shall 
leave unspecified. The data consist of the observations of the scattered wave, which in 
general consists of a superposition of different modes. It is possible that only one 
component of the scattered wave is measured, or that more components are measured. In 
general we will have data from many receivers, possibly also for different sources. We can 
put all these data in one data vector d :  

All the different observations are simply put below each other, so that d can have any 
dimension. If the inversion is done in the frequency domain the scattered waves for different 
frequencies are all entered in the data vector (55) as separate data. Here the inversion is 
presented in the time domain formulation. In that case the data vector consists of the 
displacement measurements as a function of time, hence the data vector is a function of 
time. The inversion can be started once the covariance matrix of the data vector (C,) is 
specified, 

The inversion can be done in one step, since the theory is linear. This means that the 
stabilized least squares solution is given by (Tarantola 1984a): 

m = ( Z +  CmAT Ci'A)-' CmAT Ci'd. (56) 

In this expression A is the gradient of the data vector in model space, i.e. 

A =  ( 5 7 )  

(The dots indicate that all the measured displacements are put on top of each other.) Note 
that A is a function of time, since u' is a function of time. 

The first step in the inversion entails weighting of the displacement components. The 
weighted data vector is defined by: 

Z( t )  = C;' d(t) .  
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If one now inserts the time-dependent version of the scattered wave in (57), one obtains the 
following result for ~ ~ i i  : 

a V“”(r,) 
aAx  

a vuu(ro)  

, J 

exp [-i(k,(Cj)Xl - &t + 3n/4)] exp [ - ik , (&)X2]  
FdG) ’ P”(ZS, & C p 1 1 1  

J(n/W,@)X1 JW) ku(G)X* 

x [p”(zr, G, ~ p 2 >  * iiWl d t  

guu(G, X I ,  X 2 )  = J2n/(k:’(G)X1 + k l ( c i ) X 2 )  . 

(59) 

where 

(60) 
The integration over time in (59) is performed because both A and C are functions of time, 
and a contraction over the time variable is implied by the operator product, All variables 
have the same meaning as in Fig. 2, for the appropriate sources and receivers. The symbol 
1 indicates that a summation over all the sources and receivers is performed. For each 
r, s 
source-receiver pair and each value of t the value of G is determined by (51). If (51) has 
more than one solution one should sum over these solutions. The derivatives of Vuu can 
easily be obtained from (29a-d). 

Just as in Tarantola (1984a) the inversion consists of a back propagation, as well as a 
correlation with the source function. This can be seen in (59) because this expression is the 
temporal correlation of a surface wave propagating back from the source to the scatterer 
with a surface wave propagating from the receiver to the scatterer. Equation (59) therefore 
implies a summation in the horizontal plane over the ellipses or egg-curves of Fig. 12. The 
weight factor in this summation is determined by the geometrical spreading factors, the 
projection of the observed scattered wave on the appropriate polarization vector, and the 
source characteristics. 

In order to do the back propagation correctly the different modes have to be separated. 
In practice this is hard to realize. However, often the fundamental mode contributions are 
dominant, and higher mode scattering is relatively weak. Moreover, the fundamental mode 
wavetrain is usually separated in time from the higher mode contributions. In that case time 
windowing can be used to separate the fundamental modes from the higher modes, and the 
inversion can be done with the fundamental modes only. The fundamental Love wave and 
the fundamental Rayleigh wave are separated by projecting the displacement vector on the 
polarization vector (see (59)). 

At this point only qualitative statements about the resolution can be made. The 
horizontal resolution and the vertical resolution are controlled by different factors. The 
horizontal resolution is mainly dependent on the number of sources and receivers that are 
available, since this determines how well the scattered wave energy can be focused on the 
scatterer. The vertical resolution depends mostly on the bandwidth of the signal. Synthetic 
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examples, or scattering data from a well-known distribution of scatterers are needed to make 
these statements more quantitative. 

The inversion presented here can be called ‘surface wave holography’ because the surface 
waves which are scattered and reflected by the heterogeneity (the object) are projected back 
in space and are correlated with the source signal (the illumination) to give an image of the 
heterogeneity. 

10 Conclusions 

The scattering of surface waves has been treated in this paper in the Born approximation. 
This means that a linearization in the scattering effects is performed, so that the theory is 
only applicable for inhomogeneities which are weak enough. (See Hudson & Heritage (1 982) 
for the validity of the Born approximation in seismic problems.) However, even if the 
heterogeneity is not weak, one might hope that the theory still gives a qualitative under- 
standing of the scattering and mode conversion phenomena. 

For simplicity it is assumed in this study that the surface boundary conditions are not 
perturbed by the heterogeneity, so that the heterogeneity is assumed to be buried. This 
means that this theory cannot be applied to the important case of surface wave scattering by 
variations in the topography without making some modifications. 

The far field condition restricts the application of the theory. Because of this restriction 
it is impossible to consider scatterers close to the source or the receivers. This means that the 
theory cannot be applied if either the source or the receiver is located in a heterogeneous 
region. Moreover, the far field condition also makes it impossible to calculate higher order 
corrections to the Born approximation, since these corrections contain near field terms. 

The dyadic form of the far field Green’s function for either a laterally homogeneous 
medium or a laterally smoothly varying medium shows that the polarization vectors play a 
crucial role. The polarization vector determines not only the depth dependence and the 
displacement direction of the elastic waves; the excitation is also conveniently expressed in 
terms of the polarization vectors. 

In the Born approximation the scattered waves are characterized by an excitation at the 
source, followed by an undisturbed propagation to the scatterer. Here scattering and mode 
conversion occur. These effects are described by the interaction matrix. After the scattering 
an undisturbed propagation to the receiver occurs. The ‘undisturbed propagation’ can be 
either in a laterally homogeneous medium, or in a laterally smoothly varying background 
medium. 

Stationary phase theorems are very useful in simplifying the resulting integrals over the 
heterogeneity. It is shown that if the inhomogeneity is smooth in the transverse direction, 
then only the heterogeneity on the source-receiver line influences the scattered wave. This 
is the analogy of the ‘great circle theorem’ in a plane geometry. 

The same principle holds for scattering by a quarter-space. It is shown that in the far field 
limit for each pair of incoming and outgoing modes the scattering is determined by a 
reflection point on the interface between the two quarter-spaces. The phase speeds of the 
incoming and the reflected surface wave determine this point by means of Snell’s law. 

The linearized scattering theory can be used in conjunction with the inversionalgorithm 
of Tarantola (1984a). The inversion is formulated in a way which is reminiscent of holo- 
graphy techniques used in optics. This kind of inversion will be tested with data from the 
NARS array (Nolet & Vlaar 1982 and Dost, Van Wettum & Nolet 1984), but only a limited 
resolution can be expected with a small number of stations and a few source positions. A 
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dense network, as is presented in the PASSCAL proposal (1984), would be ideal for an 
accurate reconstruction of lateral heterogeneities with surface wave holography. 
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