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SUMMARY 
In most geophysical forward problems, the data are related in a non-linear way to 
the model. Similarly, the inverse problem constitutes a non-linear mapping from the 
data to  the model. In general, it is poorly understood which parts of the data 
contribute to  the reconstruction of the model, and how the non-linearities are 
handled in the inversion. A perturbative treatment of non-linf . inversion clarifies 
these issues. This perturbative treatment is first applied to  . inverse scattering 
algorithm which has an exact solution, and is then generalized for a very wide class 
of non-linear inverse problems. It is shown that only the linear component in the 
data (the first Born approximation) contributes to the reconstruction of the model, 
and that the non-linear components in the data are being subtracted in the 
inversion. These arguments are generalized for a very wide class of non-linear 
inverse problems. The analysis can be used to  derive non-linear inversion schemes. 
As an example an algorithm is derived which performs non-linear traveltime 
tomography without iteratively shooting or bending rays. The analysis has profound 
implications for the stability of non-linear inversions. 
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1 INTRODUCTION 
In many problems of geophysics, quantum mechanics or 
non-destructive testing of materials it is impossible or 
undesirable to take direct samples of the object of interest. 
Instead, one can employ fields, such as elastic wavefields, 
magnetic fields, particle beams etc., to probe the unknown 
object. The mapping from the model to the measured fields 
is called the forward problem, while the mapping from the 
measured fields to the (unknown) model is known as the 
inverse problem. The forward and the inverse problem can 
either be linear or non-linear. Linear inverse problems are 
relatively well understood. In contrast to this, very little is 
known about the nature of non-linear inversion. The aim of 
this paper is to establish the effects of the non-linearities in 
non-linear inversion. 

For the non-linear inverse problem in quantum 
mechanics, where one wants to reconstruct an unknown 
potential given a set of scattering data, exact inversion 
schemes (inverse scattering) have been formulated (e.g. 
Agranovich & Marchenko 1963; Newton 1981; Chadan & 
Sabatier 1989). These algorithms involve the solution of 
similar integral equations. It was poorly understood how 
these algorithms reconstruct the potential, and how the 
non-linearities are handled in the inversion. In Section 2, an 
inverse scattering method is used as a prototype of 

non-linear inverse problems. A perturbative treatment of 
the forward and inverse problem is the natural way to 
investigate the role of the linear and the non-linear aspects 
of both forward and the inverse problem. It is shown both 
analytically and numerically how the potential is re- 
constructed in an inverse scattering algorithm from the 
scattering data, and how the multiply scattered waves are 
handled in the inversion. 

The perturbative analysis of inverse scattering methods 
can be generalized to any forward and inverse problem 
which have a regular perturbation expansion with 
non-vanishing first-order terms (Section 3). The analysis 
generalizes the ideas of Schmidt (1908), Moses (1956) and 
Prosser (1969), and covers the implications for non-linear 
inversion. This treatment leads to a set of recursive 
equations which can be used for the design of non-linear 
inversion methods. As an example, these equations are used 
in Section 4 to derive a non-linear tomographic inversion 
method which corrects for the second-order effects of ray 
bending without actually shooting or bending of rays. 

It is known that some non-linear inverse wave 
propagation problems are very sensitive to errors, especially 
to timing errors (Koehler & Taner 1977; Koltracht & 
Lancaster 1988). In Section 5 ,  the detrimental effects of 
errors on inverse scattering methods is illustrated with a 
numerical example. The results of Section 3 are used in 
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Section 5 to explain why exact non-linear inversion methods 
in general are very sensitive to errors in the data. 

With realistic data sets, one can rarely apply exact 
inversion methods, because exact inversion methods in 
general are not applicable to noise contaminated data with a 
finite bandwidth, a limited number of sample points, etc. In 
practice, one can use methods of optimization to fit the data 
to synthetic data as a function of the model parameters. It is 
shown in Section 6 that the conclusions of this paper for 
exact inversion schemes can be extended to inversion 
methods where one fits the data to synthetics using methods 
of optimization. 

2 A PERTURBATIVE TREATMENT OF 
INVERSE SCATTERING 

As an example of the perturbative analysis of an exact 
non-linear inverse problem, inverse scattering as originally 
developed in quantum mechanics is discussed. Consider the 
wavefield u(x,  t) that satisfies the Plasma Wave Equation 
(PWE) (Balanis 1972); 

u, - u, - Em(x)u = 0. (1) 
The unknown potential (the model) is described by Em@). 
The coefficient E is used to facilitate a systematic 
perturbative treatment of the forward and the inverse 
problem. For simplicity it is assumed that 

m(x)  =0, x < 0 .  (2) 

u(x, t) = 6(t - x ) ,  (t < 0), (3) 

d( t )  = u(x = 0, 1 )  - 6(t  - x ) .  (4) 

The model is illuminated by a delta pulse from the left 

and the data d ( t )  are the reflected waves recorded at x = 0: 

The inverse problem consists of the reconstruction of the 
model m(x),  given the data d( t ) .  This inverse problem has 
an exact solution (Agranovich & Marchenko 1963; Bumdge 
1980), which can be found by solving the Marchenko 
equation 

K ( x ,  t )  + d(x + r )  + 11, K ( x ,  t)d(t + t )  dt = 0. ( 5 )  

This integral equation needs to be solved for K ( x ,  t) for 
every x as a function of t. The data d ( t )  act as the kernel for 
this integral equation. The model can then be found by 
differentiation: 

It is instructive to perform a perturbative treatment of the 
forward and inverse problem. For simplicity, the perturba- 
tive treatment is shown here only for the lowest orders; the 
generalization to higher orders is straightforward. Using the 
Lippman-Schwinger equation, a Born series for the data 
d( t )  can be derived: 

d( t )  = ed,(t) + EZdz(t) + . . . (7) 
In this expression, d , ( t )  is the first Born approximation 
which consists of the single reflected waves, d2(t)  is the 

second Born approximation describing the double reflected 
waves, etc. It should be noted that d( t )  represents the 
recorded data, while the di ( t )  denote the subsequent terms 
in the Born series as obtained from the theory. In an 
experiment one only measures the sum d( t )  of the single and 
multiple reflected waves. The terms d,(t) in the Born series 
can be expressed using the Green's function 

G(x, t ;  x ' ,  t ' )  = - ;H( t  - I' - Ix - X ' I ) ,  (8) 
H ( t )  being the Heaviside function. This Green's function is 
the causal solution of 

GJx, t ; x ' ,  t ' )  - G,(x, t ;  x ' ,  t ' )  = 6 ( x  - x ' )  6(t - t ' ) .  

The first terms of the Born series are given by 

d , ( t ) = j ~ ( x  =o, t ; x , ,  tl)m(x,) 6 ( t ,  -x , )c ix ,dt , ,  

d2(t) = IG (x  = 0, t ; x , ,  t ,)m(x,)G(x,, t , ; x , ,  tz )  

x m(xJ 6(tz - x 2 )  ak,dtlakzdtz, 

d3(t)  = / ~ ( x  =o,  c x , ,  tl)m(xl)G(x,, t , ; x , ,  t z )  

(9) 

(lea) 

(lob) 

x m(xz)G(x2, t2; x 3 ,  t 3 )  
x m(x,) 6(t3 - x3)dr,dtldr2dtzdr3dt3. (1W 

The integral kernel K ( x ,  t) is implicitly also a function of 
the model &m(x), and can also be expanded in a Taylor 
series in the parameter E :  

K(x ,  t )  = EK,(x ,  t )  + &*K,(x, t )  + E,K,(x, t )  +. . . . (11) 

Inserting (11) and the Born series (7) in the Marchenka 
equation ( S ) ,  and equating the coefficients of equal powers 
of E gives the following hierarchy of equations 

K,(x,  t )  = -d,(x + t ) ,  

K,(x, t )  = - d 2 ( ~  + t )  - 

(124 

(12b) K , ( x ,  t)d,(t + t )  dt, !I, 
I: 

- l:Fl(x, t)d2(t + t )  dt, 

n - l  j = l  S -I 

K3(x, t )  = -d,(x + t )  - KZ(x ,  t ) d , ( r  + t )  dt 

(124 

K,(x,  t )  = -dn(x + t )  - 2 (12d) 

These equations are also denoted by the following 
abbreviated notation: K ,  = -dl, K, = -d ,  - K , d , ,  K ,  = 
-d ,  - KZdl-  K , d z ,  etc. The power series (11) can also be 
inserted in expression (6) for the reconstructed model. 
Equating the coefficients of equal power of E gives 

Kj(x,  t )dn- , ( t  + t )  dt. 

According to (13), the model m(x) is completely 
determined by the first-order contribution K,. The higher 
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order terms K,, ( n  2 2 )  do not contribute to the 
reconstruction of the model; see (14). According to (12a), 
the first-order term K ,  depends only on the first Born 
approximation d ,  of the data. This means that the 
reconstructed model is completely determined by the first 
Born approximation, and that the non-linear components in 
the data (d,,, with n 2 2 )  do not contribute to the 
reconstruction of the model. 

So what happens to the non-linear components d ,  ( n  2 2) 
in the data? Repeated recursion of the equations (12) gives 

K2= -d2 + d , d , ,  (154 
K3 = -d3  + d,d ,  + d , d 2 -  d ,d ,d1 ,  (15b) 

K,, = -d,, + C (-1)' C d, ,  * .  .d i , .  (15c) 
, = 2  I ,  + . . . +', =" 

In each of these equations, the higher order Born 
approximation -d,, is being cancelled by repeated iterations 
of lower order Born terms. For example, in (15a) the double 
scattered waves d ,  are being cancelled by the iteration d , d ,  
of the single scattered waves. The same happens for the 
higher order terms. This means that in the reconstruction of 
the model using the Marchenko equation, only the first 
Born approximation contributes to the reconstruction of the 
model, and that the non-linear components in the data are 
being cancelled by repeated iteration of lower order Born 
terms. 

A numerical example illustrates these principles. The 
potential is chosen to be non-zero in two thin regions as 
shown in Fig. 1. This potential basically consists of two 
regions where the potential is non-zero. Waves can bounce 
back and forth between the two sides of the potential. The 
first, second, and third Born approximations from (10) are 
shown in Fig. 2, together with their sum. In the third Born 
approximation (the dotted line), the wave that has bounced 
back and forth once between the sides of the potential can 
clearly be seen around t = 300. 

The first-order contribution to K,(x ,  x )  computed with 
(loa) and (12a) is shown in Fig. 3. [K(x ,  x )  is shown here 
rather than the reconstructed model, because the relevant 
effects are easier to see before the differentiation (6) . ]  This 
function is after the differentiation (13) indistinguishable 

Potential 
I 
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Distance 

F i r e  1. Potential used in the numerical example. 

0 50 100 150 200 250 300 350 4 
Time 

to 

FEgure 2. The first (thin solid line); second (dashed line) and third 
(dotted line) Born approximations and their sum (thick solid line). 

from the true potential in Fig. 1. This confirms that only the 
linear component d ,  contributes to the reconstruction of the 
potential. 

The second-order contributions to K,(x, x )  computed 
with (lOa, b) and (12b) are shown in Fig. 4. The 
second-order Born approximation - d ,  is being cancelled by 
the iterated term - K , d , ;  the sum of these terms is shown 
by the thick solid line. This confirms that the second-order 
Born term d2 is being subtracted in the inversion by the 
iterated first Born approximation, and that there is no net 
contribution of second-order terms to the reconstruction of 
the model. 

The third-order contributions to K3(x, x )  computed with 
(lOa, b, c) and (12c) are shown in Fig. 5. The cubic term 
- d ,  (the dash-dotted line) is being cancelled by iterated 
terms - K 2 d ,  and - K l d 2  of lower order Born approxima- 
tions, so that the third-order Born approximation d3 does 

Firat order contribution to K(x,x) 

50 100 150 200 
Distance 

Figure 3. The first-order contribution K, (x ,  x )  to the reconstruction 
of the potential. The derivative 2(dK,(x, x ) / d x )  is indistinguishable 
from the true potential in Fig. 1.  



548 R.  Snieder 

Second order contributions to K(x.x) 

50 100 150 L 

Distance 

Figure 4. The second-order contributions - R ,  (dash-dotted line) 
and - K , R ,  (dashed line) to the reconstruction of the potential, 
with their sum K2(x,  x )  (thick solid line). 

not contribute to the reconstruction of the potential. The 
sum of these terms (the thick solid line) is equal to zero. 
The slight deviation from zero around t = 100 is caused by 
numerical errors. This is due to the fact that the subtraction 
of the non-linear components from the data is a numerically 
unstable process. 

As shown by Ge (1987), the Marchenko equation can 
efficiently be solved by iteration. In the iterative method of 
Ge (1987) the starting value is 

R'"(x, t )  = -d(x  + t ) ,  (16a) 
and subsequent iterations are given by 

j f ( n + l )  ( x ,  t )  = -d(x  + t )  - R(")(x,  t ) d ( t  + t )  dt, n 2 1. 

(16b) 

Third order contributions to K(x.x) 
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Figure 5. The third-order contributions - R 3  (dash-dotted line), 
- K , R ,  (dashed line) and - K , R ,  (dotted line) to the reconstruction 
of the potential, with their sum K 3 ( x ,  x )  (thick solid line). 

Iterated aolution for K(x.x) 

~ ~~ 
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Fipre 6. Iterative solution of the Marchenko equation after one 
(dotted line), two (dashed line), and three iterations (solid line). 
Only terms up to third order have been taken into account. 

Tbe solution of the Marchenko equation after the first three 
iterations is shown in Fig. 6. In this computation only terms 
up to third order are taken into account. The first iteration 
(the dotted line) amounts to a Born inversion of the data. 
The non-linear components in the data are after one 
iteration incorrectly mapped to artifacts in the data, such as 
for example the bump around x = 150. After several 
iterations these artifacts are removed from the reconstructed 
model. The result of this iterative process (the solid line) is 
after the differentiation (6) indistinguishable from the true 
potential. In this example, three iterations were sufficient, 
because only terms up to third order were taken into 
account. It is shown in Snieder (1990) that after N iterations 
all scattering effects up to Nth order are correctly handled. 

Note that the first iteration approximates the potential 
quite well for small x values ( x  = 25), but for larger values 
of x more iterations are needed for the removal of the 
non-linear effects. The reason for this is that the multiply 
scattered waves need time to bounce back and forth, so that 
the non-linearities are more pronounced in the later part of 
the signal. The laterpart of the signal is mapped in the first 
iteration to larger x values; this means that in the iterative 
process the model is more strongly updated for large x 
values than for small x values. 

The fact that only the first Born approximation d ,  
contributes to the reconstruction of the potential does not 
imply that it suffices to perform a Born inversion of the 
data. The reason for this is that one does not measure the 
first Born approximation, but that one measures the sum of 
both the linear and the non-linear components in the data. 
A Born inversion of the raw data maps the non-linearities 
into artifacts in the reconstructed model. This can be seen in 
Fig. 6. The first iteration (the dotted line) amounts to a Born 
inversion of the data. The multiply reflected waves lead to 
artifacts in the model after a Born inversion, see for 
example the bump around x = 150. In subsequent iterations, 
these artifacts are subtracted from the reconstructed model; 
see the solid line in Fig. 6. It is thus crucial that the 
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non-linear components are subtracted from the data; for the 
example in this section this is achieved in an implicit fashion 
by solving the Marchenko equation ( 5 ) .  

3 A GENERAL PERTURBATIVE 
TREATMENT OF NON-LINEAR INVERSION 

The arguments presented in the previous section for the 
inverse problem for the Plasma Wave Equation using the 
Marchenko algorithm can be generalized for a very wide 
class of non-linear inverse problems. Suppose we have data 
d ( ~ ) ,  and a model Em. The parameter E facilitates a 
systematic perturbative treatment. The data d(E) are in 
general a non-linear function of the model Em, this is the 
forward problem F which constitutes a non-linear mapping 
from the model Em to the data d ( ~ ) :  

d ( c )  = F(Em) = EF,m + E2F,m2+ E ~ F , ~ ~  +.  . . . (17) 
Just as in Section 2, the forward problem F has been 
expanded in a Taylor series in E. The term EF,m is called the 
first Born approximation, the term E ~ F ~ ~ ~  the second Born 
approximation, etc. The inverse problem I consists of a 
mapping from the data d(E) to the model Em. This mapping 
is also non-linear and has a perturbation expansion similar 
to (17): 

Em = I [ ~ ( E ) ]  = I,d + ,I,d2 + ,13d3 +. . . , (18) 
the operators I, indicating operators which act on the data n 
times. Note that it is tacitly assumed that the forward and 
the inverse problem have regular perturbation expansions. 

The forward and inverse mappings F and I are in general 
operators, which may include differentiations, integrations 
or other operators. In the example of the previous section, 
the operator F, is according to (lob) given by 

d20) = ( 4 m 2 ) ( 4  

As can be seen in (19) ,  terms like m2 simply indicate that 
the operator acts on the model twice, it does not necessarily 
mean the square is taken. The same applies to the operators 
in the inverse mapping (18). For the inverse mapping of the 
previous section, the terms I, follow from the Marchenko 
equation ( 5 )  and the differentiation (6). The Marchenko 
equation can be iterated by writing the Marchenko equation 
(5) in the form K = -d - Kd and by inserting this 
expression for K repeatedly in the right-hand side. This 
gives explicitly 

K ( x ,  t )  = -d(x + t )  + + t ) d ( t  + 1 )  d t  

+ ( - 1 ) ' f  d r ,  f dt , .  - * f drl 
j - 2  - I  - T I  -r,-i 

X d(x + t , ) d ( t ,  + t,) - * * d ( t j  + t ) .  (20) 

The first term depends linearly on the data and therefore 
leads to the operator I,, the second term depends 
quadratically on the data and determines I,, etc. The 

potential follows by applying the differentiation (6) to 
K(x,  t). This gives for the first- and second-order inverse 
operators: 

d 
dr 

( I ,d) (x)  = -2-d(2x) ,  

d2(n + t) d t  = 4d2(2x), (22) 

where it is used in the last line that d(0)  = 0. It can thus be 
seen that f x  a specific problem, the operators F, and I, can 
be given a definite meaning. 

The effect of the non-linearities in the inversion can be 
seen by inserting (17) in (18). Equating the coefficients of 
equal powers of E gives the following equations: 

m = I ,  F,m, (23a) 

0 = (I, F, + I,  F, Fl)m2, (23b) 

0 = (I, F, + I,& F, + I,  F2 Fl + I3 F, F, F1)m3, (23c) 

The above equations can be interpreted in the same way as 
in the preceding section. The left-hand side of these 
equations constitutes according to (18) the contribution of 
the terms of different order in the inversion. Only the 
left-hand side of (23a) is non-zero. This equation states that 
a Born inversion I, applied to the first Born approximation 
F,m leads to the reconstruction of the model. The fact that 
the left-hand side of the other equations is zero implies that 
the non-linear components in the data such as F2m2 do not 
give a contribution to the reconstruction of the model. Just 
as in Section 2, this happens because in the inversion the 
non-linear components are subtracted from the data. For 
example, in equation (23b) the first term indicates a Born 
inversion (I,) of the component in the data which has a 
quadratic dependence on the model (F,m2). If the 
non-linear inversion scheme is to reproduce the model rn 
exactly, then this quadratic term is to be cancelled in the 
inversion by the application of the operator I,F,F,. This 
means that just as with the Marchenko eqcation, only the 
first Born approximation contributes to the reconstruction of 
the model, and that the non-linearities are subtacted from 
the data. The same argument applies to the higher order 
equations like (23cd). 

The equations (23) can be used to design non-linear 
inversion algorithms. In these equations, the forward 
operators 4 are supposed to be known. These equations 
should hold for every model m. From (23a) and the 
knowledge of F,, one can usually deduce the inverse Born 
operator I, such that 

Given I,, one can deduce I ,  from (23b) since this equation 
should hold for every model m. Given I, and I,, one can 
determine I, from (23c). m i s  procedure can in principle be 
continued to every desired order. More generally, it follows 
from (23d) and (24) that 

" - 1  
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so that I,, can be determined if Fl- - . F,, and I, . . I,,-, are 
known. For example, it is possible to derive (21) and (22) 
from the general expressions (23) using the operators F, and 
F, defined by d ,  = F,m (loa) and d, = F,m2 (lob). In this 
way it is possible to derive the lowest order inversion 
operators (21) and (22) for the Plasma Wave Equation 
without actually using the Marchenko equation or some of 
the other integral equations of exact inverse scattering. 

Note that it is tacitly assumed in the derivation that the 
first-order term Fl is non-zero. This is not always the case. 
In the theory of the magnetic jerk of Backus (1983), the 
forward problem is of the form 

For this problem the first-order operator Fl is zero and can 
therefore not be inverted. For such a problem an inversion 
in the form of the power series (18) does not exist. To see 
this, consider the scalar relation d ( ~ )  = e2m2 with the exact 
inverse Em = m, the inverse can clearly not be written 
as a power series of the form (18). For these kind of 
problems the theory is not applicable. 

Although the equations (24) and (25) can in principle be 
used to find the inverse operators Ii ,  this procedure becomes 
increasingly complicated for the higher order terms. In 
practice, the design of non-linear inversion schemes will be 
most useful for problems which are only weakly non-linear, 
so that a few terms of the series I ( d )  = I,d + 12d2 + - . . 
suffice for the accurate reconstruction of the model m. It can 
be seen from (24) and (25) that in order to derive the 
inverse operators 11, . . , I,,, only the operators F,, . . . , F,, 
are needed; the higher order operators of the forward 
problem need not be known. An example of the design of 
correction for non-linear effects in a weakly non-linear 
inverse problem is presented in the next section. 

4 CORRECTIONS FOR RAY BENDING IN 
TOMOGRAPHY 

Traveltime tomography is a linear problem if the rays are 
assumed to be fixed. However, the rays depend on the 
(unknown) velocity structure, so that ray bending effects 
make the problem non-linear. As the simplest prototype of 
this problem, consider a body with unknown velocity, which 
is being probed by rays in all directions $, and with all ray 
offsets p; see Fig. 7. The rays travel between sources and 
receivers on different sides of the inhomogeneity and the 
employed sources and receivers are separated by a length L. 

Receivers 

Figure 7. Geometry of the tomographic experiment. 

The traveltime T ( p ,  $) for ray offset p and ray direction + 
is given by 

where the integral is over the true ray T ( p ,  9) connecting a 
source and receiver with offset p and azimuth @. The 
position of the ray r(s) is a function of the length s along the 
ray. Now assume that the velocity c(r) can be decomposed 
in a constant reference velocity co, and a small slowness 
perturbation .m(r): 

The slowness perturbation Em is the model to be 
determined. 

In order to design an algorithm which corrects for ray 
bending, it is necessary to determine the lowest order terms 
of the forward problem, i.e., to prescribe the operators 4 
and F,. The position r(s) of a ray depends on the velocity 
model. Therefore, this position is a function of the slowness 
perturbation Em: 

r(s) = ro(s) + Erl(s) + ~'r,(s) + . . * . (29) 
In this expression ro(s) describes the straight reference ray 
through the velocity model co. Inserting (29) in (28), and 
Taylor expanding m(r) gives 

If the ray is deflected by the velocity variation, one needs 
only to account for the displacement of the ray 
perpendicular to the reference ray in the unperturbed 
medium, hence it is assumed that 

ri I r a ,  i r l .  (31) 
The total length of the ray is increased by the ray bending; 
the line increment ds along the true ray is related to the line 
increment ds, along the straight reference ray through the 
following relation: 

(ds), = dr dr 
= dro(so) - dro(so) + &dro(so) . dr,(so) 

+ EZ[drl(so) * &,(so) + 2dr0(s0) * dr2(so)] + . - . . (32) 

Using (31) this leads to 

(33) 

With (30) and (33) one finds that the traveltime T ( p ,  @) is 
to order E' given by 

(34) 

The velocity perturbation and the ray length are now related 
through (30) and (31) to the position of the unperturbed 
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ray, therefore the integrals in this expression and the 
following expressions are over the straight reference rays 
To(p, 9). The data d(p, 9, E )  are the delay times due to the 
slowness perturbation: 

rl(s) . Vrn[r,(s)] + -- * - 
2c, ds ds 

(35) 

This expression does not yet give the explicit non-linear 
relation between the data d ( p ,  9, E )  and the model Em(r), 
because the ray perturbation Erl(s) in (35) depends on the 
slowness perturbation Em(r). To make this relation explicit, 
one needs to use the equation of kinematic ray-tracing: 

Inserting (28) for the slowness, and (29) for the ray position, 
one finds for the term proportional to E :  

dmdr, d2ro 1 d2rl + m 7 + -- = Vm. -- 
dr ds ds c,dr2 (37) 

Using the fact that the unperturbed rays are straight 
(d2ro/ds2 = 0), and decomposing the gradient of the 
slowness in components parallel and perpendicular to the 
reference ray 

dm dr, 
d s d s  

Vm = V,m +- -, 

one finds that 

d2r, - = coV,m. 
dr2 (39) 

The beginning and end of each ray is fixed, so that 
r,(O) = r,(L) = 0. Using these boundary conditions, the 
solution of (39) is given by 

rl(s) = K(s ,  s’)V,m(s’) ds’, I 
where it is understood that the integral is taken over the 
straight reference ray. The integral kernel K(s,  s’) is given 
by 

S 
K(s ,  s’) = - (1 - -),.c,, 0 < s’ < s, 

K ( s , s ’ ) =  -s 1 - -  c,, s < s ‘ < L .  

L 

( 3 

This relation can be simplified by using 

-$K(s’ ,  s”), 
ds (43) 

which follows by explicit integration of (41). This implies 
that the increase of the traveltime due to the increase of the 
ray length by the bending cancels half the decrease of the 
traveltime due to the fact that the ray travels preferentially 
through regions of high velocity. Using (43) one finds that 

d(p, 9, E )  = E I m(s) ds +$&’I ds 
w p .  +) ro(p. +) 

(45) 

This is just the Radon transform (Chapman 1987). 
According to (23a), the inverse operator I, is the inverse of 
F,, so that I ,  is the inverse Radon transform. The explicit 
form of this operator is shown by Chapman (1987) and the 
numerical implementation of this operator can be found in 
Chapman & Cary (1986). 

The second-order forward operator F, is given by 

Using this expression and (45), one can determine the 
second-order inverse operator I,. According to (25) 1, is 
given by 

1, = -11F21J1. (47) 
It is convenient to define a model f i  which is the inverse 
Radon transform of the data: 

f i  = Ild. (48) 

Using this in (47), the application of I, to the data can be 
written as 

IzdZ = -I lF2fi2.  (49) 

This equation can be simplified by introducing the 
traveltime perturbation 6T‘” due to ray bending in the 
model f i :  

bT(’)(p, 9 )  = F2fi2 = 1 I ds ds’K(s, s’) 
2 ro(p. $1 w p .  +) 

x V,fi[ro(s)] . V,fi[ro(s’)]. (50) 

From (49) and (50) one finds the second-order correction to 
the model by applying an inverse Radon transform I, to 
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6T”’: 

Zzd2= -Z16T‘2’. 

Note that the second-order correction - Z , C ~ T ( ~ )  to the 
model r7i is subtracted rather than added because the effect 
of ray bending is removed from the data. 

The second-order algorithm for non-linear tomography 
thus is as follows. 

(i) Apply an inverse Radon transform to the data; this 
gives a slowness model 6. 
(ii) Compute the traveltime perturbation 6T(”(p, 4) for 
this slowness model using (50). 
(iii) Apply an inverse Radon transform to 6T(*) (51); 
according to (18) this slowness correction should be 
subtracted from ~5. 

In this way it is possible to correct for the quadratic effects 
due to ray bending without iteratively shooting new rays. 

5 THE EFFECT OF ERRORS 

The theory of Section 3 is not only useful for designing 
non-linear inversion methods, it also has implications for the 
effects of errors on non-linear inversion. This is illustrated 
with the inversion of scattering data for the Plasma Wave 
Equation using the Marchenko equation. As an example of 
the effect of errors, the reflection data for the potential of 
Fig. 1 are subjected to the time-stretch shown in Fig. 8. The 
time error thus introduced is not very large in an absolute 
sense, but is larger than the duration of the reflected waves. 
This time error has an effect on the data similar to static 
time delays in reflection seismics due to uncertainties in the 
structure of the weathering layer. 

The first, second and third time-stretched Born 
approximations are shown in Fig. 9. This figure is a 
time-stretched version of Fig. 2. The first-order contribution 
to the reconstruction of the potential is shown in Fig. 10. 
Differentiation of this function according to (6) leads to a 
stretched version of the true potential. 

Real time 
FIgmre 8. Time stretch used for the example for the effect of timing 
errors. 

Born aerier for R(t) (with time error) 

t 
0 50 100 150 200 250 300 350 4 

Time 
Figam 9. The first (thin solid line), second (dashed line) and third 
(dotted line) Born approximations and their sum (thick solid line) 
after the timing error of Fig. 8. 

The second-order and third-order contributions to K ( x ,  x )  
using the time-stretched data are shown in the Figs 11 and 12. 
These figures should be compared with the Figs 4 and 5. 
Note that the second-order contributions -d2 and - K , d ,  in 
Fig. 11 do not cancel each other, so that there is an 
erroneous net second-order contribution to the reconstruc- 
tion of the potential. This effect is even more pronounced 
for the third-order effects shown in Fig. 12. The terms -d3, 
-K,d2 and - K 2 d ,  do not cancel each other. Note that the 
wave that bounced back and forth once between the sides of 
the potential, (the bump around x = 150) is not subtracted 
from the data in the inversion. In fact, the sum of all 
third-order contributions (which should be zero) is of the 
same order of magnitude as the third-order Born term R ,  
itself. This means that if one neglects in this example the 
erroneous time-stretch, one may just as well refrain from 

m a t  order contribution to K1x.x) (with time error) 
I 

T 
0 50 100 150 200 

Distance 
Flgmre 10. The first-order contribution K,(x,  x )  to the reconstruc- 
tion of the potential for the reflection data with a timing error. The 
derivative 2(dK,(x, x ) / d r )  yields a stretched version of the true 
potential in Fig. 1. 
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0 50 100 150 0 200 50 100 150 i 
Distance 

0 50 100 150 i 

I 

Figure 11. The second-order contributions - R ,  (dash-dotted line) 
and - K , R ,  (dashed line) to the reconstruction of the potential for 
the reflection data with a timing error, with their sum K , ( x , x )  
(thick solid line). 

performing a non-linear inversion. The iterated solution of 
the Marchenko equation using the time-stretched data is 
shown in Fig. 13; this figure should be compared with Fig. 6. 
Note that the iterated solution contains artifacts due to the 
incorrectly handled non-linearities. 

A similar inversion was performed with data which had 
erroneously been multiplied with a time dependent amplitude 
factor exp - ( I  - 200)/400. This factor crudely models the 
effect of anelastic attenuation. The third-order contributions 
for this example are shown in Fig. 14. Just as in Fig. 12 the 
non-linearities are not subtracted correctly from the data, 
and the net third-order effect after inversion is of the same 
order as the non-linearity itself. 

There is a simple reason why errors in the data have such 
a detrimental effect on non-linear inversion in general. As 

Third order contributiona to K(x,x) (with time error) 

. .  . .  

.-.-.--- 
/ 
.2>------- 

50 100 150 200 
Distance 

Flgnre l2. The third-order contributions -R3 (dash-dotted line), 
- K , R ,  (dashed line) and - K , R ,  (dotted line) to the reconstruction 
of the potential for the reflection data with a timing error, with their 
sum K,(x, x )  (thick solid line). 

Iterated solution for K(x,x) (with time error) 
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shown in Section 3, the non-linear components in the data 
are in non-linear inversion subtracted from the data (either 
implicitly or explicitly). This subtraction of the non- 
linearities in the data is a highly unstable process. In general 
for non-linear data, the linear component in the data 
determines the model. Since the model determines the 
non-linear components in the data, this means that intricate 
internal relations exist between the linear component and 
the different non-linear components in the data. In general, 
it is extremely difficult to make these relations explicit, but 
these relations do exist for every non-linear problem. For 
example, in invariant imbedding techniques the complete 
non-linear response is retrieved by a recursive application of 
the Born approximation (Tromp & Snieder 1989). Errors in 
the data have the effect of destroying the internal relations 

Third order contributions to K(x,x) (with amplitude error) 

F i i  14. The third-order contributions -R,  (dash-dotted line), 
- K , R ,  (dashed line) and - K , R ,  (dotted line) to the reconstruction 
of the potential for the reflection data with an amplitude error, with 
their sum K3(x, x )  (thick solid line). 
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between the linear component in the data and the different 
non-linear components. This is the reason why for example 
in Fig. 11 the different contributions do not cancel each 
other, because after the time-stretch the arrival times of the 
multiply reflected waves cannot be inferred from the single 
reflected waves. Mathematically stated, the iterated 
first-order term dldl does not cancel the quadratic term d ,  
any more after application of the time-stretch of Fig. 8. 

One may define ‘errors’ as parts of the data that are not 
contained in the employed theory. For a seismic experiment 
one may think for example of timing errors due to velocity 
variations in the weathering layer which are not included in 
the employed velocity model. The obvious solution to 
handle errors is to incorporate the physical effect which 
causes the error in some way in the theory. This does not 
necessarily have to be done by describing the true physical 
process which causes the error, an accurate parametrization 
may be sufficient. For example, if one ignores attenuation of 
seismic waves, the amplitude decay will lead to erroneous 
amplitudes. This can in principle be remedied by 
incorporating attenuation in the inversion. Ignoring 
relatively modest errors in the data may lead to severe 
artifacts in the models obtained by non-linear inversion. 

In exploration seismics and global seismology there are 
several sources of error which may hamper non-linear 
inversion when they are not taken into account. Important 
sources of error include static time shifts, amplitude errors 
for either the source or the receivers, and most importantly, 
errors in the employed velocity model. 

6 NON-EXACT INVERSION METHODS 

In the preceding sections it was assumed that in the 
inversion the model can be exactly reconstructed. For 
example, the relation (18) implicitly assumes that an exact 
and unambiguous operator exists which maps the data into 
the true model. For many inverse problem such an operator 
is not known. Furthermore, realistic data sets frequently do 
not contain all the required information for the complete 
reconstruction of the model. For example, bandlimited 
seismic reflection data carry only information on the spatial 
wavelengths in the impedance which match the wavelengths 
of the employed waves, and on the trend in the velocity 
(Jannane et of. 1989). As an additional complication, 
realistic data are contaminated with noise. 

A relation like (18) can therefore not be used for realistic 
geophysical data. Instead of the exact inverse relation (18) 
one normally uses some estimator E of the inverse mapping: 

f i ( E )  = E[d(&)] .  
The operator E describes how the data d ( ~ )  are mapped 
into the estimated model fi(&). This operator can take many 
different forms, and is often not known in an explicit form. 
For example, the operator E may describe a regularized 
least-squares fit of the model synthetics to the data. In this 
case the operator E is not prescribed explicitly, but 
implicitly the rules for performing the least-squares 
inversion constitute the mapping E from the data d ( ~ )  to the 
estimated model f i ( ~ ) .  Note that this mapping does not 
necessarily lead to the true model; this is the reason that 
f i ( ~ )  is used in the left-hand side of (52) rather than Em. 

The estimated model may depend non-linearly on the true 
model, hence the notation f i ( ~ ) .  

The estimator E is in general a non-linear operator acting 
on the data, so that an expansion analogous to (18) can be 
made: 

* ( E )  = E [ d ( & ) ]  = E , d ( & )  + E2d(&)’ + E , ~ ( E ) ~  +.  . . . (53) 

This relation can be used in a derivation similar to the one 
shown in Section 3. Inserting (17) in the right-hand side of 
(53) gives 

G ( E )  = eE,F,m + &,(El& + E,F:)m2 
+ &,(E1F, + E,4F2 + E2F,Fl + E,F:)m3 + ‘ ‘ . 

(54) 

Note that in general the mapping from the true model Ern 
to the estimated model f i ( ~ )  is non-linear. The quality of 
the estimator E depends on its ability to reproduce the 
correct model Em. In the ideal case, m ( ~ )  = E r n  for every 
reasonable model m. This is achieved most accurately when 
the operators En satisfy 

( E l &  + E2F,F, + E2F,F1 + E3F:)m3+0, 

In these expressions, + means that the estimator E 
reproduces the model most accurately, whenever the 
right-hand side of (55) is more closely approximated. These 
relations simply are a restatement of the fact that the ideal 
relation f i  = m  implies a linear relation between m and f i  
(SSa), and that spurious non-linear components in the 
mapping from m to f i  should be as small as possible 
(55b, c, . . .) 

For a ‘good estimator’ (in the sense that f i  = rn for every 
reasonable model m )  the results of the preceding sections 
therefore pertain to the estimator E in the same way as for 
the exact inversion I. For example in Section 4, a quadratic 
tomographic inversion scheme was presented that corrects 
for ray bending. For the particular problem of Section 4, F, 
was the Radon transform, and fl was the inverse Radon 
transform, for which an explicit expression is known. For a 
general tomographic problem, Fl constitutes slowness 
integrals over the (possibly curved) reference rays, and an 
operator fl cannot be formulated in closed form. However, 
the operator E l  could in this case describe a least-squares 
fitting of the data, and the derivation of Section 4 can then 
be extended to incorporate curved reference rays instead of 
straight reference rays. In general, the conditions (55) for 
the estimator E can be used in the same way as the 
conditions (23) for I for the design of non-linear inversion 
schemes. 

Similarly, the conclusions concerning the effects of errors 
apply both to the estimator E as well as to the exact inverse 
operator I. This means that in general non-linear inversion 
and estimation, one should be aware of the deterimental 
effects that the errors may have on the inversion. 



A perturbative analysis of non-linear inversion 555 

7 DISCUSSION 

A perturbative analysis of non-linear inversion sheds new 
light on the way non-linear inversion is operating. For 
forward and inverse problems which have both a regular 
perturbation expansion, only the linear component in the 
data contributes to the reconstruction of the the model. In 
the inversion, the non-linear components are removed from 
the data; this can happen either explicitly or implicitly. The 
implications for inverse scattering methods are further 
discussed in Snieder (1990). 

The operator equations derived in Section 3 for the 
inverse mapping I,, can be used to design non-linear 
inversion schemes. If the non-linearity is strong this 
procedure may be cumbersome, and a few low-order terms 
may not be sufficient for an accurate reconstruction of the 
model. An example of an extremely non-linear inverse 
problem in resistivity sounding is shown by Parker (1984). 
For such a strongly non-linear problem, low-order 
approximations cannot be expected to give useful results. 
However, for problems that are weakly non-linear, the 
presented theory is useful to obtain the lowest order 
corrections to the resulting model due to the non-linearities. 
An application to a gravimetric non-linear inverse problem 
using the related theory of Schmidt (1908) (see also Rall 
1974) is given by Granser (1987). 

Up to a certain extent it is arbitrary whether one 
considers the non-linearities to be subtracted from the data, 
or whether the non-linear contributions are being subtracted 
from the reconstructed model. The latter is the case in 
iterative inversion of seismic reflection or quantum 
mechanical data using gradient methods (e.g. Tarantola 
1984; Mora 1988; Snieder & Tarantola 1989). In such an 
inversion, the multiply reflected waves are in the first 
(linearized) gradient step mapped into spurious reflectors in 
the reconstructed model. In subsequent iterations these 
spurious reflectors are removed from the model, so that the 
non-linear components in the data do not give a net 
contribution to the reconstructed model. (This is also the 
case in the iterative solution shown in Fig. 6.) Therefore, 
the statement that the non-linear components in the data are 
removed during the non-linear inversion, really means that 
at some point in the inverse mapping from the data to the 
model, the non-linear components in the data are removed. 

The fact that the non-linearities are removed from the 
data (or the model) implies that non-linear inversion can be 
a very unstable process. In wave propagation problems 
timing errors can destroy the proper subtraction of multiply 
scattered waves, which can lead to an instability of the 
inversion. This can also be observed in the numerical 
experiments from Koehler & Taner (1977) for Goupillaud 
inversion of 1-D seismic reflection data. As shown by 
Berryman & Greene (1980), the Goupillaud inversion is 
formally equivalent to inversions using the Marchenko 
equation. The results of this paper imply that this instability 
is inherent to any non-linear inversion method for a 
particular non-linear inverse problem, including methods 
which minimize the misfit between data and synthetics with 
respect to the model parameters. The advantage of 
inversion using these optimization methods is that these 
methods allow a priori notions on the model to be 
incorporated in a natural way (Tarantola 1987), which 

makes it possible to regularize the inversion. It is, however, 
not evident that this regularization does not introduce 
unwanted artifacts in the inversion. 

The results of Section 5 imply that if one does not take 
the effect of errors into account, one may just as well refrain 
from performing non-linear inversions. A similar conclusion 
was reached by Koltracht & Lancaster (1988) who suggest 
suppressing parts of the signal below a certain threshold 
level, the idea being that multiply scattered waves are 
weaker than single reflected waves. It will be clear that such 
an approach is not foolproof, and that valuable information 
may be lost. The only way to handle errors in the data, such 
as timing errors, amplitude errors (attenuation), or errors in 
the velocity model, is to include the physical factors that are 
uncertain in the inversion. In non-linear inversion using 
methods of optimization (Tarantola 1987), the inclusion of 
these parameters can be realized in a natural fashion. 

In inverse wave propagation problems with a variable 
velocity, the uncertainty in the velocity of the reference 
medium is a substantial source of error in non-linear 
inversion, because it leads to uncertainties in the arrival 
times of multiply reflected waves. This will destroy the 
proper subtraction of the non-linearities. Exact inverse 
scattering methods have been developed only for media 
where the velocity is constant, such as the Schrodinger 
equation (Newton 1981; Chadan & Sabatier 1989), or 
relative to media with a higher velocity than the true 
medium (Rose, Cheney & DeFacio 1985; Cheney, Rose & 
De Facio 1989). The determination of the proper velocity is 
therefore a problem which deserves special attention in 
non-linear inversion. 

In general, one cannot say that a physical problem is 
linear or non-linear, it is the formulation of a problem which 
is linear or non-linear. For example, consider the linear 
forward problem d = Fm. The non-linear transformation 
m = efi leads to the non-linear forward problem d = Fe&. 
This is of course a trivial example, which turns a linear 
problem into a non-linear problem. For some non-linear 
problems one can reformulate the inverse problem in such a 
way that it can be recast in a more linear form. One could 
call such problems-linearizable. (Not in the sense that the 
problem can be line'arized locally, but in the sense that the 
problem can be linearized globally by some transformation 
of the model parameters or the data parameters.) However, 
for many inverse problems a more linear reformulation does 
not exist; such problems are intrinsically non-linear. It is 
advantageous to apply transformations to the data or the 
model which render the inversion more linear. After such a 
reformulation the non-linearities with their inherent 
complications are (partially) removed from the data. This 
simplifies the inversion, and reduces the contaminating 
effect of errors. A well-known example of a reformulation 
of an inverse problem is the use of traveltimes rather than 
waveforms, which leads for smooth media to an inverse 
problem which is only weakly non-linear. Similarly, fitting 
the envelope of oscillatory waveforms instead of the 
waveforms themselves renders the inverse problem more 
linear (Nolet, van Trier & Huisman 1986). A systematic 
search for reformulations of inverse problems might be 
crucial for the stable solution of non-linear inverse 
problems. 

The derivations shown in this paper tacitly assume that 
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both the forward and the inverse problem can be formulated 
as a regular perturbation series; see the equations (17) and 
(18). However, not every forward and inverse problem can 
be expressed in such a regular perturbation series. For 
example, suppose that the data are wave amplitudes, that 
the model consists of the wave velocity, and that dynamic 
ray theory is used to map the model into the data. At 
caustics, the amplitude is singular, and can therefore not be 
expressed in a regular perturbation series of the velocity. In 
this case, an inversion of the amplitude data is not possible 
with any inversion scheme, because the amplitude is not 
defined. Similarly, suppose the inverse mapping (18) is 
singular; in that case the inverse problem is ill-posed 
because a small change in the data leads to large changes in 
the resulting model. Therefore, inversion of data is in 
general only possible for problems where both the forward 
and the inverse problem are regular. To this kind of 
problem the results of this paper are applicable. 
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