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The Origin of the 100,000 Year Cycle in a 
Simple Ice Age Model 

ROELOF K. SNIEDER • 

NOAA Geophysical Fluid Dynamics Laboratory, 
Princeton University, Princeton, New Jersey 

A one-dimensional nonlinear ice age model developed by J. Imbrie and J. Z. Imbrie was used to 
investigate the 100,000 year cycle in climate records. It was already known that the model could mimic 
the 100,000 year cycle in the climate response, but it was not clear how this strong response was created. 
It is shown in this paper that the interference between the spectral components in the solar heating of 
19,000 years and 23,000 years gives rise to an amplitude modulation, and how this modulation is 
converted by the nonlinearity to a 100,000 year cycle in the climate response. 

1. INTRODUCTION 

The spectral properties of climate records have received 
considerable interest in geophysical research. Geological data 
show fairly conclusive evidence that the climate variations in 
the past have a pronounced spectral component correspond- 
ing to a cycle of about 100,000 K. (In this paper, time will 
always be measured in units of 1000 years, which will be 
denoted by K = 1000 years.) These climate variations are 
thought to be paced by variations in the orbital parameters of 
the earth [see Hays et al., 1976; lmbrie and lmbrie, 1980]. 

It turns out, however, that the fluctuations in the earth's 
orbital parameters give rise to variations in the effective solar 
heating which have dominant periods only of 19, 23, and 41 
K, [see Berger, 1977]. (The 19 and 23 K cycle are caused 
mostly by the combined effects of eccentricity variations and 
precession; the 41 K cycle is caused by obliquity variations.) 
The 100 K cycle in climate records cannot be explained by 
variations in the earth's orbital parameters if the climate re- 
sponds linearly to the solar heating. However, in a nonlinear 
climate system the nonlinearity could give rise to an energy 
transfer within the spectrum, which could create a strong 100 
K cycle in the climate response. 

Wigley [1976] showed this explicitly for a simple nonlinear 
equilibrium model which essentially squared the forcing. Birch- 
field [1977] showe• the same behavior both for a "half wave 
rectifier" equilibrium model, as well as for Weertman's ice 
sheet model. In this paper the 100 K cycle in the model of 
Imbrie and Imbrie is discussed limbtie and lmbrie, 1980, 
heareafter referred to as II.] 

The model of II is not an equilibrium model; a phase lag 
between the radiative forcing and the climate response is al- 
lowed. Their model is simple enough to understand what 
mechanism transfers energy to the 100 K cycle. II introduce 
the nonlinearity by assuming that ice sheets decay faster than 
they grow. (In II, several reasons are given to support this 
assumption.) If the solar heating is denoted by a function x(t), 
and if the climate response is denoted by a function y(t), then 
the ice sheet effect was parameterized by II as 
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dy l+b 

dt Tm 

dy 1 - b 

dt Tm 

(x- y) x > y 

(x - y) x < y 

(1) 

where y(t) is taken as a negative measure of ice volume. 
II found a strong 100 K cycle in the climate response y(t), 

by using a realistic heating function x(t) which contained most 
energy in cycles of 19, 23, and 41 K. They found the best fit 
with observed climate variations of the last 150 K by choosing 
the following parameter setting: Tm= 17 K, b = 0.6. This 
means that the II system is highly nonlinear. It was, however, 
not clear why this nonlinearity gave rise to a very strong 100 
K cycle in the response. 

The goal of this paper is to clarify the source of the 100 K 
cycle. In order to do this, the model was integrated using 
several different heating functions x(t). The spectra of the re- 
sponses were used to trace down the origin of the 100 K cycle. 

2. METHODS OF ANALYSIS 

The heating functions that have been used in this study are 
superpositions of three oscillations: 

x(t) = A• cos ro•t + A 2 cos ro2t + A 3 COS rO3t (2) 

The frequencies ro•, to2, and to3 correspond to periods of 19, 
23, and 41 K. Equation (1) was integrated for 700 K; the last 
655.5 K were used to determine the spectral density of the 
response. The time step and the record length were chosen in 
such a way that the spectral density was calculated for 
ro = 2r•/655.5 K and multiples of this frequency, so that the 
spectral density was evaluated for a period of 109 K. The 
parameters Tm and b had the same values as in II, that is, 
Tm = 17 K and b = 0.6, except in the last experiment, where 
the nonlinearity parameter (b) was varied. 

The mean of the response was subtracted in order to 
remove undesirable low-frequency effects. Next, the response 
was windowed [see Blackman and Tukey, 1958] and then Fou- 
rier transformed. The plots of the spectral density were nor- 
malized with respect to the maximum of the spectral compo- 
nents. 

3. RESPONSE TO HARMONIC FORCING FUNCTIONS 

The system (1) was first integrated with heating functions 
that contained only one frequency component, that is, only 
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reason for this is that the linear superposition of two oscil- 
lations with equal amplitude gives rise to an amplitude modu- 

(3) 
0 100 200 300 400 500 600 

TIME (1000 YRS) - 

Fig. 1. Time series of the heating (dashed line) and the climate re- 
sponse (solid line) for a harmonic forcing with a period of 41 K. 

cos (o• o + 6)t + cos (o• o -- 6)t = 2 cos 6t cos O•ot 

Resulting in a modulation with a period given by 

2n 

one of the Ai in (2) was different from zero. This will be called 
a harmonic heating function. As an example, time series of the 
heating and the climate response are shown in Figure 1. In 
this case the heating occurred only at 41 K. The spectrum of 
the climate response is shown in Figure 2. 

The main feature of the spectra of the responses to harmon- 
ic heating functions is the strong peak at the frequency at 
which the system is forced. The spectral energy of the climate 
response is contained within a narrow spectral band (or equiv- 
alently, the climate response is almost sinusoidal) despite the 
fact that the system is highly nonliner. This is because the 
climate adjusts itself in such a way that the time-averaged 
climate is warmer than it would be in the case of a constant 

solar heating with the same mean. This has the effect that the 
ice sheet spends about the same amount of time "growing" as 
it is "decaying," despite the fact that the time constants for 
growth and decay are quite different (see (1)). 

The fact that the response is not exactly sinusoidal can be 
seen in Figure 2, where the overtones of the 41 K cycle can be 
seen at 20.5 and 13.67 K. These peaks would be absent if the 
response were exactly sinusoidal. 

The important point of the experiments with a harmonic 
forcing is that the spectrum of the response contains essen- 
tially only the frequency component of the forcing. This indi- 
cates that the strong 100 K response in the II model is not 
caused by any sort of internal resonance of the system. As 
already noted by Le Treut and Ghil [1983], this is because the 
model of II consists of only one first-order differential equa- 
tion. 

The equilibrium solution of the II system is given by Yeq = 
x, as can be seen from (1). This means that the transient 
solution has a much smaller amplitude than the equilibrium 
solution (Figure 1) [see Held, 1982]. 

4. RESPONSE TO FORCING FUNCTIONS 

CONTAINING TWO FREQUENCIES 

If a heating function that contains two frequency compo- 
nents is used, a more interesting response is generated. The 

FREQUENCY (2•'/1000 YRS) 
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Fig. 2. Spectrum of the climate response in Figure 1. 

(4) 

This time will be referred to as the "beat period." It has to be 
remembered that the function cos 6t changes sign twice in 
every time interval of length T•, so that the amplitude of the 
modulation has a period T•/2. This result also holds if the 
amplitudes of the two constitutive oscillations are not equal, 
although in that case, the modulation is weaker. 

The beat period can be calculated by taking (3) and defining 
T/= 2•r/(oa o - 6) and T• = 2•r/(Oao + 6), so that 

T•- 2T•Tj/IT•- TjI (5) 

A table of the beat period of three different frequency combi- 
nations that were studied is given below' 

Case T• T 2 

1 19 23 218.5 
2 23 41 104.8 
3 19 41 70.8 

The time series of the heating and the climate response for 
case 1 is shown in Figure 3; the spectrum of the response is 
shown in Figure 4. The amplitude modulation is clearly visible 
in Figure 3. Note that the climate response depends only on 
the amplitude of the beat and is insensitive to the sign of the 
modulation. This is caused by the fact that the "growth time" 
of the ice sheets is so much larger than the "decay time." This 
has the effect that the climate becomes warmer whenever the 

amplitude of the beat increases, and this occurs with a period 
of 109 K. 

It is therefore not surprising that the most important feature 
of the spectrum is the strong spectral component at 109 K. 
This component corresponds to an oscillation with a period of 
a half beat time. As already noted, the reason for this is that 
the climate response is only determined by the amplitude of 
the modulation, but not by the sign of the modulation. This 
modulation effect is so strong that the 109 K cycle contains 
even more energy than the 19 and 23 K cycles at which the 
system is forced. 

Note that the II model behaves similar to the model of 

Wigley [1976] or the "half wave rectifier" model of Birchfield 
[1977]. In all these models the strong 100 K cycle is generated 
because a positive response is in some sense favored to a 
negative response. The only difference is that the models of 
Birchfield and Wigley show a strong response at the "sum 
frequency" (corresponding to a period of 10.4 K), whereas this 

, 
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Fig. 3. Time series of the heating (dashed line) and the climate 
response (solid line) for a heating containing only oscillations with 
periods of 19 and 23 K. 
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spectral component is very weak in the II system. (This spec- 
tral component can just be seen at the end of the frequency 
scale in Figure 4.) This indicates that the treatment of para- 
metric forcing of Le Treut and Ghil [1983] does not apply 
very well to the II system, since their theory predicts that the 
response at the sum frequency and the difference frequency 
will be of equal strength. 

The spectra of the response to forcing functions containing 
frequencies at 19 and 41 K or 23 and 41 K are similar to 
Figure 4, except that the spectral components in the climate 
response due to the amplitude modulations are very weak. 
This is because the concept of amplitude modulation is only 
useful if 

« T• >> max (T/, T•) 

This condition is certainly not satisfied for cases 2 and 3 (see 
the tabulation above). 

5. VARIATIONS OF THE NONLINEARITY PARAMETER 

To see the role of the nonlinearity more clearly, several 
experiments were done in which the nonlinearity parameter (b) 
was varied, using the heating function of case 1. This case was 
chosen because it gave rise to an extremely strong 109 K cycle. 
The heating and the climate response in the "very nonlinear 
case," that is, b - 0.9, are shown in Figure 5. Note the nonlin- 
ear sawtooth-like response. The shape of the envelope of the 
climate response is not sinusoidal at all, resulting in a climate 
response that contains many overtones of the 109 K cycle. 
This has the effect that for b- 0.9 there is less energy in the 
109 K cycle than for b- 0.6, despite the fact that the nonlin- 
earity is stronger. 

This effect can also be seen in Figure 6, in which the energy 
in the 109 K cycle is shown as a function of the nonlinearity 
parameter. For b = 0 the 109 K cycle has zero energy, which 
is only to be expected for a linear system forced only at 19 and 
23 K. For b = 1 the solution of (1) is y(t)= x .... so that in 
that case the 109 K cycle does not contain any energy either. 
There clearly has to exist a maximum for intermediate b 
values. It turns out that this maximum is attained for b = 0.72. 

It follows that II made a fortunate choice by assuming 
b = 0.6, because this value is close to the value of b that 
maximizes the energy in the 109 K cycle. (It is interesting to 
note that II determined their value of b by fitting model re- 
sults to real data of the last 150 K without considering any 
spectral component separately.) 
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Fig. 4. Spectrum of the climate response in Figure 3. 
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Fig. 5. Time series of the heating (dashed line) and the climate 
response (solid line) for the same heating as in Figure 3, but with 
b = 0.9. 

6. CONCLUSION 

The nonlinear dynamical system of II has been integrated 
using heating functions that were superpositions of oscillations 
with periods of 19, 23, and 41 K. The climate response to these 
heating functions contains essentially one frequency if the 
heating is harmonic. This confirms that the 109 K cycle in the 
response is not an internal resonance of the system [see Le 
Treut and Ghil, 1983]. 

If the system is forced with a heating function containing 
two frequency components, the climate response has a pro- 
nounced spectral component that is determined by the ampli- 
tude modulation of the heating. This effect is particularly 
strong if the system is forced at 19 and 23 K. 

The 109 K peak in the spectrum of the climate response of 
the II system appears therefore to be caused by an interference 
of the 19 and 23 K cycles, which gives rise to an amplitude 
modulation. The nonlinearity converts this amplitude modula- 
tion to a 109 K cycle. Just as in Wigley [1976] or in the half 
wave rectifier model of Birchfield [1977], this happens because 
a positive response is favored to a negative response. Note 
that the 19 and the 23 K cycles are present because the com- 
bined effects of eccentricity and precession lead to a splitting 
of the precession cycle into two cycles with periods of 19 and 
23 K [see Hays et al., 1976]. The nonlinearity therefore ex- 
tracts the variations in the eccentricity and transfers the 
energy from the 19 and 23 K cycles to the 109 K cycle. This 
means that it is ultimately the eccentricity cycle that generates 
the 109 K cycle in the climatic response. 
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Fig. 6. Energy in the 109 K cycle in the climate response as a func- 
tion of the nonlinearity parameter, for the heating shown in Figure 3. 
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