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SUMMARY

In terms of ray theory, the focus point (also related to caustics and triplications) is
the point in space where the ray position is stationary for perturbations in the initial
condition. Criteria for the formation of caustics are presented. With ray perturbation
theory, a condition for the development of triplications is de®ned for plane wave sources
and for point sources. This theory is then applied to two cases of slowness media: 1-D
slowness perturbation models and 2-D Gaussian random media. The focus position
in 1-D slowness models is proportional to the inverse of the square root of relative
slowness ¯uctuations. For Gaussian random media, the distance at which caustics
generate is dependent on the relative slowness perturbation to the power of x2/3. We
use snapshots of propagating plane wave®elds to show that caustics develop as predicted
by theory. The theory for caustic formation can be generalized to three dimensions.
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1 I N T R O D U C T I O N

In terms of ray theory, the concept of caustics is understood

as the focus point in space through which rays go. The con-

sequence of the generation of caustics in a wave®eld is, in

the ray geometrical limit, that the amplitude in the wave®eld

is in®nitely high at the focus point because the geometrical

spreading factor is zero at the caustic point (Aki & Richards

1980; Menke & Abbot 1990). This phenomenon has been

investigated by several authors: White et al. (1988) used limit

theorems for stochastic differential equations on the equation

of dynamic ray tracing to predict when caustics start to develop

in Gaussian random media, Kravtsov (1988) gave a thorough

description of caustics, and Brown & Tappert (1986) used

Chapman's method to write explicitly the variation of 2-D and

3-D wave®elds in the vicinity of focus points. They set up three

properties of transient wave®elds away from caustics; the most

important characteristic of transient waves through caustics is

that the triplication will generate after the ballistic wave®eld

due to causality.

A new theory for caustic formation is presented. This theory

is based on ray perturbation theory but is formally equivalent

to dynamical ray theory as used in White et al. (1988) because

the normal derivative of the equations in ray perturbation

theory is identical to the equation of dynamic ray tracing

(Pulliam & Snieder 1998). In contrast to the treatment of White

et al. (1988), this application is not restricted to random media.

In Section 2, the general theory for the caustic formation

of wave®elds emitted by plane wave sources and point sources

is presented. The theory is then applied on a 1-D slowness

perturbation medium and a 2-D Gaussian random medium

for both plane wave sources and point sources. The results

for the 2-D Gaussian random medium are similar to those

given in White et al. (1988). In Section 3, the theory for caustic

formation is tested on numerical experiments where a plane

wave®eld propagates in a 1-D slowness perturbation ®eld and

in a 2-D Gaussian random medium.

2 T H E O R Y

We demonstrate how the focal length of converging wave®elds

in 2-D slowness perturbation ®elds can be computed. First, we

derive the general theory for two distinct source geometries, the

plane wave (plw) source and the point source (ps). Second, we

apply this theory to two case studies, 1-D slowness pertur-

bation ®elds and 2-D Gaussian random media. The theory

presented for caustic formation can be generalized to three

dimensions.

2.1 General theory

We make use of ray perturbation theory (Snieder & Sambridge

1992) and separate the ray into a reference ray and a perturbed

ray. The slowness ®eld, u=u0+u1, is decomposed into the

reference slowness ®eld, u0, and the slowness perturbation ®eld,

u1. The reference slowness u0 is kept constant in this study,

which means that the reference ray is a straight line. The per-

pendicular de¯ection from the reference ray to the perturbed

ray at propagation distance x0 is denoted by q(x0).
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First, the case of an incoming plane wave is treated. Imagine

two horizontal reference rays with slightly different initial

positions. One reference ray is at the position z while the other

reference ray is at the position z+dz; see Fig. 1 for a de®nition

of the geometrical variables. For each reference ray there is a

perturbed ray due to the slowness perturbation in the medium.

The condition for caustics, that is, where the two perturbed

rays intersect, gives the following equation:

q�x0; z� dz� � dzÿ q�x0; z� � 0 (1)

or

Lq

Lz
�x0� � lim

dz?0

q�x0; z� dz� ÿ q�x0; z�
dz

� ÿ1 : (2)

Snieder & Sambridge (1992) showed how the perpendicular

ray de¯ection q(x0) from the reference ray can be computed

given the slowness perturbation u1:

q�x0� �
�x0

0

G�x0; x� L\
u1

u0

� �� �
�x�dx ; (3)

with h' the component of the gradient perpendicular to the

reference ray, so that

q�x0� �
�x0

0

G�x0; x� L
Lz

u1

u0

� �
�x�dx (4)

for a horizontal reference ray. The Green's function

G�x0; x� �
0 if x0 < x

x0 ÿ x if x0 > x

(
(5)

has the boundary conditions G(0, x)=GÇ (0, x)=0. The con-

dition for caustics in eq. (2) contains the partial derivative of

q(x0) with respect to z. Using eq. (4) together with the con-

dition for caustics in eq. (2) at given z, we ®nd that caustics are

formed at x0 when�x0

0

G�x0; x� L2

Lz2

u1

u0

� �
�x�dx � ÿ1 : (6)

Second, the point source case is considered. We investigate

the generation of caustics developing for rays that leave a point

source with an azimuth Q. Assume again that two reference

rays with slightly different initial positions are emitted from

the source. One reference ray is sent in the direction Q+dQ /2,

while the other reference ray is emitted in the direction QxdQ/2.

The distance between the reference rays is given by x0dQ. The

condition that the two perturbed rays cross each other leads to

the following equation:

q x0;r� 1

2
dr

� �
� x0drÿ q x0;rÿ 1

2
dr

� �
� 0 (7)

or

1

x0

Lq

Lr
�x0� � 1

x0
lim

dr?0

q x0;r� 1

2
dr

� �
ÿ q x0;rÿ 1

2
dr

� �
dr

� ÿ1 : (8)

Using h'=(1/x)(h /hQ) in eq. (3), the perpendicular ray

de¯ection to the reference ray is derived. Hence,

q�x0� �
�x0

0

G�x0; x� 1

x

L
Lr

u1

u0

� �
�x�dx : (9)

The Green's function in eq. (9) for the reference ray with

azimuth Q is the same as in the case of incoming plane waves,

which is stated in eq. (5). With eq. (9) combined with the

condition of caustics in eq. (8) at given z, we ®nd that caustics

generate at x0 when

1

x0

�x0

0

G�x0; x� 1

x

L2

Lr2

u1

u0

� �
�x�dx � ÿ1 : (10)

The second derivative of u1/u0 with respect to the trans-

verse coordinate is an important quantity. It re¯ects the fact

that it is the curvature of the relative slowness perturbation

that generates caustics. For example, negative h2/hz2(u1/u0)

and h2/hQ2(u1/u0) lead to the focusing of wave®elds, whereas in

areas with defocusing effects the two quantities are positive.

2.2 A medium with 1-D slowness perturbations

The focus position of a plane wave propagating in a medium

with a constant reference slowness ®eld u0 and 1-D slowness

perturbations u1(z) can be computed analytically. The reference

ray in such a medium is a straight at given z. The condition for

caustics in the case of incident plane waves given by eq. (6) can

be used to determine when caustics start to generate at the

offset xplw
caus at given z. The integration in eq. (6) is carried out

from 0 to xplw
caus. Hence,

xplw
caus�z� �

�������������������������
ÿ2

L2

Lz2

u1

u0

� �
�z�

vuuut : (11)

The focal distance xps
caus of wave®elds emitted by point sources

is easily derived from the condition for caustics in eq. (10).

The second derivative h2/hQ2=x2h2/hz2, which permits an

evaluation of the integration in eq. (10) in the range 0±xps
caus.

Thus,

xps
caus�z� �

�������������������������
ÿ6

L2

Lz2

u1

u0

� �
�z�

vuuut : (12)

The distance between the source and receiver is denoted L.

If x
plw=ps
caus �z� < L, triplications will be present in the recorded

wave®eld.

Figure 1. De®nition of the geometric variables for an incoming plane

wave in a 2-D medium with a constant reference slowness. There is one

horizontal reference ray at z and another one at z+dz. The caustic

develops at the intersection point of the two perturbed rays.
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2.3 Gaussian random media

Next, we discuss the formation of caustics in Gaussian random

media. The autocorrelation function F(r) of a Gaussian random

medium is given by

F�r� � Su1�r1�u1�r2�T

� �eu0�2 exp ÿ r2

a2

� �
; (13)

where e is the rms value of the relative slowness perturbations,

a denotes the correlation length (or roughly the length scale

of slowness perturbations) and r=|r1xr2|. Notice that the

reference slowness is biased in a realization of a ®nite Gaussian

random model (e.g. MuÈller et al. 1992). However, this artefact

does not affect the derivatives of the slowness.

According to eq. (2), caustics develop in a plane wave®eld

when hq/hz=x1. This implies that on average in a random

medium caustics develop when

Lq

Lz

� �2

�x0�
* +

� 1 ; (14)

where n . . . m is the expectation value. For this reason the

following quantity is used to monitor the formation of caustics:

Hplw�x0�: Lq

Lz

� �2

�x0�
* +

� 1

u2
0

�x0

0

�x0

0

G�x0; x
0�G�x0; x

00�

|
L2

Lz2
u1�x0� L2

Lz2
u1�x00�

* +
dx0dx00 : (15)

The monitor Hplw(x0) is zero at the source position and

Hplw(x0)=1 when caustics start to develop at the offset x0

according to eq. (14)

We follow the same method as used in Roth et al. (1993) to

evaluate the right-hand side of eq. (15). First, the expectation

value of the slowness perturbation ®eld differentiated with

respect to z twice, at offsets xk and xa, in eq. (15) is expressed

in a simple form containing the characteristic parameters for

the Gaussian random medium. The following expression is

evaluated on the horizontal reference ray z0:

L2

Lz2
u1�x0; z� L2

Lz2
u1�x00; z�

* +�����
z�z0

� L4

Lz02Lz002
u1�x0; z0�u1�x00; z00�

* +�����
z0�z00�z0

� L4F�r�
Lz02Lz002

�����
z0�z00�z0

: (16)

The autocorrelation function F(r) is differentiated twice with

respect to zk and za in eq. (16), which gives

L4F�r�
Lz02Lz002

����
z0�z00�z0

� 3

r2
F 00�r� ÿ F 0�r�

r

� �����
z0�z00�z0

: (17)

The prime and double-prime of F(r) signify a single and double

differentiation with respect to r. Using the autocorrelation

function F(r) in eq. (13) for Gaussian random media, the

left-hand side of eq. (16) is ®nally written as

L2

Lz2
u1�x0; z� L2

Lz2
u1�x00; z�

* +�����
z�z0

� 12
�eu0�2

a4
exp ÿ r

a

� �2
� �

:

(18)

The right-hand side of the monitor for plane waves in eq. (15)

can be simpli®ed further. De®ne

f �r�: L2

Lz2
u1�x0; z� L2

Lz2
u1�x00; z�

* +�����
z�z0

; (19)

where r=|xkxxa| and

g�x0; x00� � G�x0; x
0�G�x0; x

00�

� x2
0 � x0x00 ÿ x0�x0 � x00� : (20)

We then derive from eq. (15)�x0

0

�x0

0

G�x0; x
0�G�x0; x

00� L2

Lz2
u1�x0� L2

Lz2
u1�x00�

* +�����
z�z0

dx0dx00

�
�x0

0

�x0

0

g�x0; x00�f �jx0 ÿ x00j�dx0dx00 (21)

for xk and xa smaller than x0. Using the integration technique in

Roth et al. (1993), the expression for the monitor in eq. (15) is

simpli®ed further. The details of this integration method are

explained in Appendix A; here we just give the results. The

double integration in eq. (21) from 0 to x0 is changed to an

integration from 0 to x0 of the function f (r) in eq. (19)

multiplied by a summation of two integrations of g(xk, xa)
in eq. (20) from r to x0 and from 0 to x0xr, respectively. In

brief, the right-hand side of eq. (21) is written as�x0

0

dr f �r�
�x0

r

g�x0; x0 ÿ r�dx0 �
�x0ÿr

0

g�x0; x0 � r�dx0
� �

: (22)

The solution to the two integrations of g(xk, xa) inside the

square brackets are computed analytically:�x0

r

g�x0; x0 ÿ r�dx0 �
�x0ÿr

0

g�x0; x0 � r�dx0 � 1

3
x3

0 ÿ
1

2
x2

0r� 1

6
r3 :

(23)

The expressions for the function f (r) in eq. (19) and for the

integration of g(xk, xa) in eq. (23) are used together with

the expression for the monitor in eq. (15). Hence, the monitor

for plane waves propagating in a Gaussian random medium

simpli®es to

Hplw�x0� � 12
e2

a4

�x0

0

2

3
x3

0 ÿ x2
0r� 1

3
r3

� �
exp ÿ r

a

� �2
� �

dr :

(24)

By letting x0 go to zero in eq. (24) it is easy to verify that

Hplw(0)=0.
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Assume ®rst that the propagation length is less than the

correlation length, i.e. x0/a<1. The exponential function is set

to unity in this regime and the integration of the right-hand side

of eq. (24) is carried out directly. Hence,

Hplw�x0� � 3e2 x0

a

� �4

%1 ; (25)

which re¯ects the fact that caustics are not formed in this

regime.

Suppose instead that the propagation distance is much

greater than the correlation length, i.e. x0/a&1. We can then

compute the analytical solution of the monitor in eq. (24)

by letting the range of integration go to in®nity because the

exponential in the integrand approaches zero for r&a. Thus,

Hplw�x0�&12
e2

a4

�?
0

2

3
x3

0 ÿ x2
0r� 1

3
r3

� �
exp ÿ r

a

� �2
� �

dr

� 12
e2

a4

���
n
p

ax3
0

3
ÿ a2x2

0

2
� a4

6

� �

&4
���
n
p

e2 x0

a

� �3

: (26)

We have made use of the assumption that x0/a&1 to eliminate

the last two terms in brackets of eq. (26). Let L denote the

source±receiver offset. We then derive the non-dimensional

number L/a from eq. (26) in the case where caustics develop at

x0<L. Hence, by using Hplw(L)i1, we obtain

L

a
§ eÿ2=3

�4 ���
n
p �1=3

� 0:52eÿ2=3 : (27)

For a point source the generation of caustics can be

evaluated along similar lines. The monitor Hps(x0) is de®ned

in the same way as the monitor for plane waves except that the

condition for the formation of caustics in eq. (8) for point

sources is applied. Thus,

Hps�x0�: 1

x0

Lq

Lr

� �2

�x0�
* +

� 1

x2
0u2

0

�x0

0

�x0

0

G�x0; x
0�G�x0; x

00�

|
1

x0x00
L2

Lr2
u1�x0� L2

Lr2
u1�x00�

* +
dx0dx00 : (28)

According to eq. (8), caustics develop at the offset x0 when the

monitor in eq. (28) is equal to 1. The mean value

L2

Lr2
u1�x0� L2

Lr2
u1�x00�

* +

is related to

L2

Lz2
u1�x0� L2

Lz2
u1�x00�

* +

by using the chain rule:

L
Lz
� Lr

Lz

L
Lr
� 1

x

L
Lr

; (29)

because z=xQ for small values of Q. Thus,

L2

Lr2
u1�x0� L2

Lr2
u1�x00�

* +

� �x0x00�2 L2

Lz2
u1�x0; z� L2

Lz2
u1�x00; z�

* +�����
z�z0

: (30)

The procedure used for the derivation of the monitor for plane

waves is repeated for the monitor for point sources. The only

difference from the previous example is that the function

g(xk, xa)=G(x0, xk)G(x0, xa)xkxa=x0
2xkxa+(xkxa)2xx0(xk+xa)xkxa.

The ®nal result of the rather long derivation of the monitor for

caustic formation in the point source case is given by

Hps�x0� �12
e2

a4

�x0

0

1

15
x3

0 ÿ
4

3
x0r2 � 4

3
r3 � 7

15

r5

x2
0

� �

| exp ÿ r

a

� �2
� �

dr : (31)

By letting x0 go to zero it can be shown that Hps(0)=0.

Similarly to eq. (25), it can easily be shown that triplications

due to point source wave®elds do not generate when the

length scale of heterogeneity is greater than the source±receiver

distance. Assume instead that x0/a&1 and carry on exactly as

in the case of incident plane waves. The analytical expression of

the right-hand side of eq. (31) is given by

Hps�x0� � 2
���
n
p
5

e2 x0

a

� �3

: (32)

The non-dimensional number L/a for the condition that caustics

develop in the recorded wave®eld is derived from eq. (32); the

condition Hps(L)i1 thus gives

L

a
§ 5

2
���
n
p

� �1=3

eÿ2=3 � 1:12eÿ2=3 : (33)

It is instructive to compare eq. (27) for plane waves

and eq. (33) for point sources with the estimates obtained by

White et al. (1988). They used limit theorems for stochastic

differential equations on the equation of dynamic ray tracing in

Gaussian random media to calculate the probability that a

caustic occurs at a certain propagation distance. In Figs 4 and 5

of White et al. (1988), they demonstrate universal curves for the

probability of caustic formation as a function of the universal

distance, de®ned as

~q � �8n�1=6e2=3 L

a
; (34)

where we have made a change of symbol from White et al.

(1988) by using e for the relative rms value of slowness pertur-

bations and L for the propagation distance of the wave®eld.

This means that in the theory of White et al. (1988), caustics

develop when the non-dimensional number L/a is given by

L

a
� ~q

�8n�1=6
eÿ2=3 : (35)

This expression has the same dependence on e as the condition

for caustics in eqs (27) and (33).

According to Figs 4 and 5 of White et al. (1988), the highest

probability for the generation of caustics for plane waves is

found for tÄ=0.9 and for point sources tÄ=1.9. By inserting the
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appropriate value of tÄ into the factor tÄ /(8p)1/6 from eq. (35), we

®nd that the factors are 0.53 and 1.11 for the cases of plane

waves and point sources, respectively. Comparing these two

numbers with the corresponding factors in eqs (27) and (33), we

see that there is a good agreement between the work of White

et al. (1988) and our work.

Although we have derived the condition for caustics due to

plane waves and point sources in two dimensions, the theory

for caustics can be generalized to three dimensions. In three

dimensions, the equation for the ray perturbations q1 and q2 in

the directions perpendicular to the ray decouples for a homo-

geneous reference model and a coordinate system that does

not rotate around the reference ray (see eq. 50 of Snieder &

Sambridge 1992). The condition for caustics in eqs (2) and (8)

for plane waves and point sources, respectively, can be applied

to the ray perturbation in two orthogonal directions separately.

For example, as shown in Appendix B, the non-dimensional

number L/a for the point focus in 3-D Gaussian random

media is given by eq. (27) for plane waves and by eq. (33) for

point sources. Notice that in three dimensions a caustic is not

necessarily the same as a point focus. A caustic can in that case

also be a line of focus points, whereas a focus point, as the

words imply, is located at a point.

3 N U M E R I C A L E X A M P L E S

In this section, numerical examples of caustic formation

of plane wave®elds are shown for two distinct media: a 1-D

medium with the slowness perturbation ®eld described by

u1�z� �
���
2
p

eu0 sin��z� z0�4=k�, and a 2-D Gaussian random

medium with the slowness perturbation ®eld described by

eq. (13). The quantity u0 is the reference slowness, which is

constant for all numerical experiments shown in this paper.

The rms value of relative slowness ¯uctuations is denoted

by e. The parameters z0, k and e are adjusted such that the

development of triplications in the media is signi®cant.

In Fig. 2(a), the 1-D slowness medium with z0=350 m,

k=1.5r1010 m4, u0=2.5r10x4 s mx1 and e=0.035 is plotted.

It is seen that the slowness ®eld changes more and more rapidly

with increasing z. In Fig. 2(b), the focal distance of a plane

wave®eld propagating in the 1-D slowness medium shown in (a)

is computed using eq. (11). The offset from the source position is

plotted on the abscissa while the depth at which caustics start

to develop is plotted on the ordinate. The focal distance of the

converging plane wave®eld is shown as a solid line. Notice that

there are zones with defocusing of the plane wave®eld between

120 and 205 m, between 265 and 305 m, between 350 and 380 m,

etc. In these zones the wave®eld propagates through a zone

with a positive curvature of the relative slowness perturbation, so

caustics do not develop. The focal distance is thus in®nite. The

curvature of the relative slowness ¯uctuations increases with

increasing z, so the focal distance of the converging wave®eld

decreases as depth increases.

In Fig. 3, snapshots of a plane wave®eld propagating

through the 1-D slowness perturbation ®eld with the same

values of z0, k, u0 and e as for the 1-D medium in Fig. 2(a) are

shown. The snapshots are produced with a ®nite difference

solution of the acoustic wave equation. The central frequency is

1000 Hz and the applied source function is a Ricker wavelet.

The snapshots are taken every 5 ms, with the ®rst snapshot

at the source position and the last snapshot at about 100 m

offset. Positive amplitudes are dark while negative ampli-

tudes are light. The ®rst triplications are visible in the snapshot

at t=10 ms (y40 m) at depths below 500 m as the wave-

®eld contains large positive amplitudes. In the snapshots for

t=15 ms (y60 m), 20 ms (y80 m) and 25 ms (y100 m), the

triplications generated in the wave®eld are very clear as they

give rise to a half-bowtie-form wave after the ballistic wave-

front. Comparing the theoretically predicted minimum focal

distance of the converging wave®eld in Fig. 2(b) with the offset

at which triplications start to develop in the wave®eld in Fig. 3,

we ®nd that there is good agreement between the theory presented

for caustic formation and the numerical 1-D experiment.

In Fig. 4, snapshots of a plane wave propagating in a

2-D Gaussian random medium with reference slowness u0=
2.5r10-4 s mx1, relative slowness ¯uctuation e=0.025 and

correlation length a=7.1 m are presented. The central fre-

quency is 1000 Hz, while the Ricker wavelet is applied as a

source impulse. The 10 snapshots are computed for every

2.5 ms, where the ®rst snapshot is taken at the initial wavefront

and the last snapshot is taken at about 90 m offset. In the upper

and lower parts of the plane wavefronts in Fig. 4, a circular

wave due to diffraction at the edge of the numerical grid can

be seen. Inserting the appropriate value for e into eq. (27),

the non-dimensional number L /a=6.1 for the development of

triplications in the Gaussian random medium is found. The

expectation value of the offset at which caustics start to generate

is then L=43 m for a=7.1 m. In Fig. 4, no triplications are

observed in the wavefront at t=0, 2.5 or 5 ms, i.e. at approxi-

mately 0, 10 and 20 m, respectively. Then, for t=7.5 ms (y30 m)

and 10 ms (y40 m), the multipathing that is associated with

the formation of caustics can be seen as a minor wave®eld after

the ballistic wavefront. This generation of minor wave®elds,

delayed compared to the ballistic wavefront, is due neither

to uncertainties in the ®nite difference code or to scattering

effects (for the employed wave l /a#0.5) but instead to caustic

formation. For the last ®ve snapshots at t=12.5 ms (y50 m),

15 ms (y60 m), 17.5 ms (y70 m), 20 ms (y80 m) and 22.5 ms

(y90 m), triplications are developing rather strongly after

the wavefront. The maximum amplitude variation along the

wave®eld for each wavefront is plotted with as a solid white line
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Figure 2. (a) The 1-D slowness ®eld with e=0.035. (b) The focal

distance (solid line) of a plane wave®eld calculated as a function of

depth. Notice that the incoming plane wave®eld is being focused in

regions with positive slowness perturbations and defocused when the

slowness perturbation is negative.
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in Fig. 4. For the initial wavefront at t=0 ms, the amplitude is

constant, while the maximum amplitude along the wave®eld

varies with increasing extrema for the wavefronts for larger t.

The bar in the upper-right corner of Fig. 4 shows the relative

percentage of the amplitude variations in the perturbed slow-

ness model compared with the reference amplitude computed

for the homogeneous reference slowness model. Notice that

the largest positive values of the maximum amplitude along the

wavefronts correspond to the parts of the wavefronts with

darkest shades, while the negative amplitude variations are

shown with light shades. Witte et al. (1996) uses the kinematic

ray tracing equation to construct a ray diagram for a Gaussian

random medium with ®xed e=0.03, but with different values of

the correlation length a. Using eq. (27) with e=0.03 gives the

non-dimensional number L /a=5.4. Looking at the top panel in

Fig. 4 of Witte et al. (1996) for L /a=10, it is seen that the ®rst

caustics generate at z#5±6, which corresponds well with the

theoretical value computed with eq. (27).

4 C O N C L U S I O N S

In this paper we have developed a theory for the formation of

caustics. The theory is based on ray perturbation theory, but is

equivalent to a similar approach by White et al. (1988) where

the equation of dynamic ray tracing is used to predict when

triplications develop in Gaussian random media.

We have applied the theory for the generation of caustics in

two case studies (that is, 1-D slowness perturbations ®elds and

2-D Gaussian random media) where the plane wave source and

the point source are taken into account. The theory for caustic

formation can be generalized to wave®elds propagating in three

dimensions. We ®nd that the formation of caustics for 1-D

slowness perturbation ®elds depends on the inverse of the square

root of the relative slowness perturbation, while for Gaussian

random media the formation of caustics is dependent upon the

relative slowness perturbation to the power of xtwo-thirds.
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A P E N D I X A : D E R I V A T I O N O F E Q . ( 2 2 )

In this appendix, the step from eq. (21) to eq. (22) is

demonstrated. The right-hand side of eq. (21) is written as�x0

0

�x0

0

g�x0; x00� f �jx0 ÿ x00j�dx0dx00 ; (A1)

where

f �jx0 ÿ x00j� � L2

Lz2
u1�x0; z� L2

Lz2
u1�x00; z�

* +�����
z�z0

(A2)

and

g�x0; x00� � G�x0; x
0�G�x0; x

00� : (A3)

The integration over xa in eq. (A1) is split into one integration

over xa from 0 to xk and another integration over xa from xk to

x0. Thus, eq. (A1) is rewritten as�x0

0

dx0
�x0

0

g�x0; x00� f �x0 ÿ x00�dx00 �
�x0

x0
g�x0; x00� f �x00 ÿ x0�dx00

" #
:

(A4)

Caustic formation 181

# 2001 RAS, GJI 144, 175±182



Now de®ne r=xkxxa and r=xaxxk for the ®rst and second

integrations over xa in the brackets of eq. (A4) and carry out a

change of variables in the two integrations over xa inside the

brackets. The result is given by�x0

0

dx0 ÿ
�0

x0
g�x0; x0 ÿ r� f �r�dr�

�x0ÿx0

0

g�x0; x0 � r� f �r�dr

" #

(A5)

or�x0

0

dx0
�x0

0

g�x0; x0 ÿ r� f �r�dr�
�x0ÿx0

0

g�x0; x0 � r� f �r�dr

" #
:

(A6)

The integration over xk multiplied with the ®rst and second

integrations over r in the brackets of eq. (A6) corresponds to

the triangle in the r±xk plane as shown in Figs A1(a) and (b),

respectively. By changing the order of integration in eq. (A6),

but still keeping in mind that the double-integration over r and

xk must be over the triangles as shown in Figs A1(a) and (b), it

is possible to rewrite eq. (A6) in the following way:�x0

0

dr

�x0

r

g�x0; x0 ÿ r� f �r�dx0 �
�x0ÿr

0

g�x0; x0 � r� f �r�dx0
� �

:

(A7)

After rearranging the term f (r) outside the integration over xk,
the result is ®nally given by�x0

0

drf �r�
�x0

r

g�x0; x0 ÿ r�dx0 �
�x0ÿr

0

g�x0; x0 � r�dx0
� �

; (A8)

which is the equation given in (22).

A P P E N D I X B : C A U S T I C F O R M A T I O N
I N T H R E E D I M E N S I O N S

Imagine that a plane wave®eld is propagating along the

x-axis with the decoupled ray de¯ections q1 and q2 parallel to

the y- and z-axes, respectively; see Fig. B1 for the experimental

set-up. Using the results from Snieder & Sambridge (1992),

the decoupled differential equations for the ray de¯ection

coordinates are then given by

d2

dx2
qi � qª i . +

u1

u0

� �
; (B1)

where i=1, 2. The ray de¯ections are gathered together

in the ray de¯ection vector q=(0, q1, q2). The condition for

caustic formation in eq. (2) is applied on each ray de¯ection

coordinate. Hence,

+q�x0� �
0

ÿ1

ÿ1

0BBB@
1CCCA (B2)

for a point focus at offset x0. In order to determine when caustics

develop in a 3-D Gaussian random medium, the expectation

value of +q(x0).+q(x0) is computed. Thus, according to eq. (B2)

for a point focus, caustics develop when

S+q . +qT�x0� � Lq1

Ly

� �2

�x0� � Lq2

Lz

� �2

�x0�
* +

� Lq1

Ly

� �2

�x0�
* +

� Lq2

Lz

� �2

�x0�
* +

� 2 (B3)

at offset x0. For 2-D Gaussian random media, the following

result is derived:

Hplw�x0�: Lq

Lz

� �2

�x0�
* +

� 1 (B4)

when a caustic develops at offset x0. According to eq. (26),

Hplw(x0)=4
���
n
p

e2�x0=a�3 for x0/a&1. This result can be used

for each ray de¯ection qi separately, so the monitors H
plw
1 (x0)

and H
plw
2 (x0) for q1 and q2, respectively, are de®ned as

H
plw
1 �x0�: Lq1

Ly

� �2

�x0�
* +

and

H
plw
2 �x0�: Lq2

Lz

� �2

�x0�
* +

; (B5)

where H
plw
1 (x0)=H

plw
2 (x0)=4

���
n
p

e2(x0/a)3. Combining eq. (B3)

with the monitors de®ned in eq. (B5), we compute

H
plw
1 �x0� �H

plw
2 �x0� � 2 (B6)

or

4
���
n
p

e2 x0

a

� �3� 1 (B7)

for a caustic at offset x0 in a 3-D Gaussian random medium,

which is also the result found for 2-D Gaussian random media.

Similarly, the result for caustic formation due to a point source

in 3-D Gaussian random media is unaltered from the result in

the 2-D case.

Figure B1. Estimation of the point focus in a 3-D medium.

(a) (b)
Figure A1. The integration technique given by Roth et al. (1993). Area

of integration for (a) b0
xkg(xk, xkxr) f (r)dr and (b) b0

x0xxk g(xk, xk+r) f (r)dr

in eq. (A6).
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