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SUMMARY 
The reflection and transmission of plane P- and S-waves by a laterally homogeneous band is 
discussed. A dyadic representation of a ‘plane wave Green’s tensor’ is derived, which is used 
to describe the reflection and transmission of plane waves by a thin homogeneous layer in the 
first Born approximation. From this, the reflection and transmission by an arbitrarily thick 
continuously stratified band is derived using invariant imbedding. We derive an exact set of 
matrix Ricatti equations which describe the reflection and transmission of plane waves by the 
laterally homogeneous band. These equations remain regular at turning points, and 
incorporate both homogeneous and inhomogeneous waves within the heterogeneity. It is not 
necessary for the band to be stratified; the density and the elasticity tensor of the band may 
have an arbitrary depth dependence. It is shown that in case the band is a smooth 
heterogeneity without turning points, its only effect is a phase shift of the transmitted wave. 
In a numerical example for the analogue case of 1-D scattering in quantum mechanics the 
behaviour of homogeneous and inhomogeneous (tunneling) waves is illustrated. 
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1 INTRODUCTION 

The reflection and transmission of plane waves in layered 
media is well understood. The propagator matrix formalism 
(Gilbert & Backus 1966; Aki & Richards 1980; 
Kennett 1983) gives an exact description of the reflected and 
transmitted plane wave field in stratified media. There are, 
however, three disadvantages of the propagator matrix 
method. First,/since the medium under consideration has to 
consist of homogeneous layers, many layers are needed to 
model a strong velocity gradient. Second, for each layer the 
inverse of the fundamental matrix has to be calculated. A 
third disadvantage is that general anisotropic media can 
presently not be handled. This implies that coupling be- 
tween the P-SV and the SH motion by anisotropy is not 
taken into account. 

Here we present a theory which describes the reflection 
and transmission of  plane waves by a laterally homoge- 
neous band with an arbitrary variation of density and 
elasticity tensor as a function of depth. We demonstrate that 
it is possible to obtain exact first order differential equations 
which describe the reflection and transmission of plane 
waves, by employing the first Born approximation and an 
invariant imbedding technique (Budden 1955; Kennett 
1984). These equations describe the propagation of both 

homogeneous and inhomogeneous waves within the hetero- 
geneity. In contrast to other methods (e.g. Kennett 1974), 
the equations remain regular at turning points, so that both 
inhomogeneous and inhomogeneous waves are treated 
correctly. 

In Section 2 the reflection and transmission of plane P- 
and S-waves by a thin homogeneous layer is treated in the 
first Born approximation. Among others, Hudson (1977), 
Malin (1980), Hudson & Heritage (1981), Malin & Phinney 
(1985) and Wu & Aki (1985) used this approximation to 
describe the scattering of body waves. Recently, Snieder 
(1986a) and Snieder & Nolet (1987) used a similar theory to 
describe surface wave scattering. In order to describe 
scattering in the Born approximation a Green’s tensor for 
the background medium under consideration is needed. 
Hudson & Heritage (1981) and Wu & Aki (1985) used the 
Green’s tensor for the excitation of seismic waves by a point 
force in a homogeneous background medium. Snieder 
(1986a) and Snieder & Nolet (1987) used a dyadic repre- 
sentation of the Green’s tensor for the excitation of surface 
waves in a laterally homogeneous background medium. In 
order to describe reflection and transmission of plane waves 
in a homogeneous background media by a thin homoge- 
neous layer a dyadic representation of a ‘plane wave 
Green’s tensor’ is derived in the Appendix. 
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In Section 3 the reflection and transmission of plane 
waves by a continuously stratified band is discussed. We 
apply an invariant imbedding technique (Budden 1955; 
Kennett 1984) to the results of Section 2 for the thin 
homogeneous layer, in order to obtain a system of matrix 
Ricatti equations which describe the reflection and transmis- 
sion of plane waves by a laterally homogeneous band. The 
connection between the reflection and transmission pro- 
perties of a single isotropic layer and the propagator matrix 
method for multilayered isotropic media was shown by 
Kennett (1974). Here we demonstrate the connection be- 

tween the scattering properties of a thin homogeneous layer 
and the reflection and transmission of plane waves by a 
laterally homogeneous band. It is shown that the only effect 
of a smooth laterally homogeneous band without turning 
points is a phase shift of the transmitted wave field. Finally, 
in Section 4, we illustrate the character of the reflection and 
transmission coefficients for the analogue case of 1-D 
scattering in quantum mechanics both for homogeneous and 
inhomogeneous (tunneling) waves. This confirms that the 
theory remains valid in the neighbourhood of turning points. 

2 T H E  REFLECTION OF PLANE P -  AND 5’-WAVES BY A THIN HOMOGENEOUS LAYER IN 
THE FIRST BORN APPROXIMATION 

The use of the first Born approximation in seismic scattering problems was discussed in detail by Hudson & Heritage (1981). 
Following these authors we express the density and the elasticity tensor as p = po + ps and c = co + cs respectively. In this 
paper, po and c‘ define a homogeneous, isotropic background medium in which = A&j6kI+ p0[6~&1+ 6iI6jkl. ps and Cs 

are perturbations of the background medium which define the scatterer. In our case the scatterer is a thin homogeneous layer. 
The displacement field n can be expressed as uo + us. Here uo describes the displacement field of an unperturbed plane wave 
in a homogeneous background medium while us describes the displacement field of the scattered wave. The scattered wave us 
can be expressed as a Born series: 

in which u1 is the first Born approximation for the scattered wave. The unperturbed plane wave uo satisfies the equation of 
motion in the background medium 

quu,” = 0, (2.2) 

where L: = - pow26, - A, a,d, - po a, a, - p0SIJ dk dk. From now on we distinguish between downward and upward traveling 
plane waves respectively. The positive z-axis is chosen vertically downward. Downward traveling waves are denoted by the 
subscript D, while upward traveling waves are represented by the subscript U. The downward traveling plane wave solution of 
(2.2) can be expressed as 

u”,x, z, t )  = p;)ei(b+v+--or) 7 (2-3) 
where t = 1, 2 or 3, and v1 = vo = l/(w2/$) - k‘ while v2 = v j  = vs = l/(w2/p2) - k*. t is a polarization direction index; (Y 

and /3 are the P- and S-wave velocity for the homogeneous background medium. p&(i = 1 ,2 ,  3) are called polarization vectors 
because they describe the direction in which the wave oscillates. pb and p& describe the oscillation direction of the P-SV 
downgoing wave while p; describes the oscillation direction of the SH downgoing wave. For a downgoing plane P-wave we 
have pb  = (a /o) (k ,  0, v,) while for a downgoing plane S-wave we have p& = ( /3 /w)(  - vs, 0, k) or p; = (0, 1,O). 

The upward traveling plane wave solution of (2.2) can be expressed as 
uL((x, z, t )  = p t  er(h-vrz--ot) (2.4) 
where, again, t = 1, 2 or 3, and v1 = v, = q(w2/&)  - kZ while v2= vg = vs = l/(02/p2) - k‘. For an upgoing plane P-wave 
we have p: = (cu/w)(k, 0, -v,) while for an upgoing plane S-wave we have pz = ( /3/w)(vs, 0, k) or p c  = (0,1,0). ph and pk 
describe the oscillation direction of the P-SV upgoing wave while p c  describes the oscillation direction of the SH upgoing 
wave. 

In order to find the first Born approximation for the wave scattered by the thin layer, we need a plane wave Green’s tensor 
G which satisfies 
L ; G ~ ~  = 6,,6(z - z,) er(kr--or). (2.5) 
In the Appendix it is shown that this plane wave Green’s tensor is given by 
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Reflection and transmission of plane P -  and S-waves 449 

thereby defining G(z ,  z,). The Born series for the scattered wave can be obtained from the 1-D analogue of expression (3) of 
Hudson & Heritage (1981) which is given by 

+ ikGij(z, zo)cf (z ) - d f i ~ ( z o )  - ik - d -  Gij(z, z o ) ] c ~ 3 1 r ( z o ) ~ ~ ( ~ ) } d z o e i ~ * l - w r ~ ,  
f13k [dz, 1 [dzo 

where ii"(zo) is defined by 

u"(x, z ,  t )  = ii"(z)e'("-"'). 

The first Born approximation for the wave scattered by the thin layer with width Az, is given by 

The argument z, denotes that the thin layer is located at depth G. Now we consider two types of unperturbed waves: 
downgoing and upgoing unperturbed waves respectively. In case of a downgoing unperturbed wave, uk, we have 

iig(z) = pbeivrz. (2.10) 

Solving for the first Born approximation for the scattered wave, using (2.6), (2.10) and (2.9) yields 

(2.11) 

where 

(2.12b) 

(2.12c) 

(2.12d) 

(2.12f) 

Note that u1 consists of transmitted downgoing waves and reflected upgoing waves (see Fig. 1, which shows an example for an 
incoming P-wave). r, and t, are reflection and transmission matrices, respectively. For instance, the reflection matrix element 
r: describes the reflection of a downgoing unperturbed wave polarized in the ph direction to an upgoing P-wave polarized in 
the pz  direction. Note that the superscript t represents the polarization direction of the incoming wave, while the superscript 1 
denotes the polarization direction of the reflected wave. The subscript U denotes that the reflected wave travels upward. 

clo,(z) = p;e-ivrz. (2.13) 

Solving for the first Born approximation for the scattered wave, using (2.6), (2.13) and (2.9), yields 

In case of an upgoing unperturbed wave, u t ,  we have 

(2.14) 
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z 
Figare 1. Transmission and reflection of an unperturbed f'-wave which travels downward by a thin layer with width Azo in the first Born 
approximation. The polarization directions and the amplitudes of the waves have been indicated. 

(2.15b) 

(2.1%) 

(2.15d) 

(2.15e) 

(2.1%) 

Note that u1 consists of transmitted upgoing waves and reflected downgoing waves (see Fig. 2, which shows an example for an 
incoming S-wave). Again, rD and t, are reflection and transmission matrices, respectively. For instance, the transmission 
matrix element t'," describes the transmission of an upgoing unperturbed wave polarized in the pb direction as an upgoing 
S-wave polarized in the p: direction. The subscript U denotes that the transmitted wave travels upward. 

We stress that in equations (2.12a-f) and (2.15a-f) for the reflection and transmission matrix elements k denotes the 
horizontal wavenumber in the background medium and that v,, vs or vz denote the vertical wave number in the background 
medium. Also po and A, denote the elastic moduli of the background medium; ps and cs describe the properties of the laterally 
homogeneous layer. 

It can be seen from (2.12a-f) and (2.15a-f) that in case of an isotropic layer, i.e. c;kl = &6,,6k/ + ps[6,6,, + 6t/d,k], or a 
transversely isotropic layer with the z-axis as symmetry axis, we have 
rg=rE=Z3-  - r u  23- - r D  31- - r u  31- -rD 32- - r u  32- -0, 

and 

t, - t ,  - t, - t ,  t ,  - t ,  - t ,  - t ,  - 0. 13- 13 - 23 - 23 = 31 - 31 - 32- 32 - 

Therefore the P-SV reflection and transmission is decoupled from the SH reflection and transmission. If, furthermore, the 
angle of incidence is zero (i.e. k = O), all the off-diagonal elements of the reflection and transmission matrices are zero: there is 
no conversion of the direct wave. 
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Figme 2. Transmission and reflection of an unperturbed S-wave which travels upward by a thin layer with width Aq, in the first Born 
approximation. The polarization directions and the amplitudes of the waves have been indicated. 

It can be seen from expression (2.7) for the higher order Born approximations, that the n-th order Born approximation is 
of the order (Az,)". 

3 THE REFLECTION A N D  TRANSMISSION OF PLANE P -  A N D  S-WAVES BY A 
CONTINUOUSLY STRATIFIED B A N D  OF ARBITRARY THICKNESS 

Using the results for the reflection and transmission of plane P- and S-waves by a thin layer in the first Born approximation, 
which are correct up to order Azo, we demonstrate how exact, first order, non-linear differential equations which describe the 
reflection and transmission of plane P- and S-waves by a laterally homogeneous band with an arbitrary thickness can be 
deduced. Suppose the thick band is confined between 0 and z,. A downward traveling incident wave can be expressed as (2.3) 
while an upward traveling wave can be expressed as (2.4.). The superscript 0 in (2.3) and (2.4) can be omitted. In case of an 
incident plane wave traveling downward, we look for reflected and transmitted waves of the form 

In case of an incident plane wave traveling upward we look for reflected and transmitted waves of the form 

T,(zo), T,(z,), R,(q) and Ru(zo) are the transmission and reflection matrices for which we want to find differential 
equations. These matrices depend on the thickness of the band: z,. Equations (3.1) and (3.2) describe the fact that we know 
the scattered wave field outside the laterally homogeneous band that consists of traveling P- and S-waves. Note that we are 
looking here for the solution for the total wave field for z < 0 and z > zo, while in the discussion of reflection and transmission 
by a thin homogeneous layer we were looking for the first Born approximation for the reflected and transmitted waves. Here 
we want to determine the exact transmitted and reflected wave field. 

In order to do this we use invariant imbedding (Budden 1955; Kennett 1984): we add a thin homogeneous layer with width 
Azo, perturbation in density p,(zo) and perturbation in elasticity tensor c * ( ~ ) ,  to the bottom of the thick band of thickness zo as 
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z 

Figure 3. Laterally homogeneous band confined between z = 0 and z = z,,. The adding of the thin layer with width Az,, to the bottom of the 
band makes it possible to find exact, first order differential equations for the reflection and transmission coefficients. 

shown in Fig. 3, in order to obtain exact differential equations for the reflection and transmission matrices as a function of the 
extension of this band. This is achieved by taking the limit Aq,-,O. The reflection and transmission by the thin layer is 
described by the reflection and transmission matrices t&), t,(zo), rD(%) and ru(zo) as defined in the discussion of the 
scattering of plane waves by a thin layer in the previous section. The effect of adding the thin layer is treated for the reflection 
matrix element Rg(q, + Az,), that is the reflection of a S-wave traveling downward, p&ei(kr+vp--or) , to the P-wave traveling 
upward, pLRS(zo + Aq,)ei(kr-vaz--wr) . W efind that 

R:'(z, + AZJ = RE(%) + [~:'(q,)r:'(z,)~%) + T:'(zo)r:Z(zo)T~(zo) + T:'(zo)r:"(zo)T3,2(zo) 

+ T:"(zo)r':(zo)Tb'(zo) + ~ : 2 ( ~ ~ ) r 3 z ~ ) ~ % ~ )  + G,X&Xzo)~3,2(tb) + GXtb)r':(zo)Tb'(ro) 

+ ~ : 3 ( z ~ ) r 3 z ~ )  T ' , Z ( Z ~ )  + T:3(q,)r"U"zo) ~3,2(zb)I~zO + o[(Az0)'II. (3.3) 

Note that we take into account all possible combinations of reflection and transmission by the thin layer and the thick band that 
result in a reflected P-wave. For instance T ~ ( z o ) r ~ ( z o ) T ~ ( z o )  should be read from right to left as follows: the incident S-wave 

is transmitted by the thick band as a S-wave traveling downward p~T~(zo)ei(kr+v~z-wr) ,  this wave is reflected 
by the thin layer as a S-wave traveling upward p'vr3uZ(zo)T2,2(q,)ei(kx-vgr--or); finally this wave is reflected by the thick band as 
the P-wave traveling upward p ~ T ~ ( z o ) r ~ ( z o ) T ~ ( q , ) e i ( k r - v u z - o r ) .  

2 i ( k x + v p - w t )  
pDe 

Equation (3.3) can be rewritten as 

where a sum over u and z should be performed. Taking the limit Azo-*O yields 

This equation is exact because the terms of the order Aq, in expression (3.4) go to zero in the limit Ak-0. The first order 
differential equation has to be supplemented with a boundary condition. For zo = 0, the inhomogeneous band has a vanishing 
thickness, so that there are no reflected waves: RE(% = 0) = 0. Differential equations for the other reflection and transmission 
coefficients can be obtained in a similar way. This gives the following Ricatti equations for the reflection and transmission 
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Reflection and transmission of plane P-  and S-waves 453 

matrices: 

(3.6b) 

with the boundary conditions TD(0) = T,(O) = I and RD(0) = R,(O) = 0, where I is the unit matrix and 0 is the nil matrix. The 
former boundary condition describes the unperturbed transmission of plane waves in the absence of a band heterogeneity while 
the latter boundary condition denotes that there are no reflected waves in that case. The - represents a product of matrices: 
(B C)", = B"C"9 Note that the reflection and transmission matrices for the thick band are dimensionless, while the reflection 
and transmission matrices for the thin layer have dimension length -'. 

We thus have 36 coupled, complex, first order, non-linear differential equations that describe the reflection and 
transmission of plane P- and S-waves by a band heterogeneity. These equations contain no singularities because tD, t,, rD and 
ru are regular throughout the heterogeneity. The differential equations have the same form as the equation derived by Kennett 
(1984), which describe the propagation of surface waves in a 2-D laterally heterogeneous medium. These equations can be 
solved numerically in the same way as done by Kennett (1984) and Kennett & Mykkelveit (1984). As pointed out by Kennett 
(1984), these Ricatti equations transform a two point boundary value problem into an initial value problem which is much 
easier to solve numerically. 

The reflection and transmission matrices R and T in this paper are different from the reflection and transmission matrices 
used in the reflectivity method (e.g. Kennett 1974). For example, in Kennett (1974) Rj and Ti are the local coefficients for 
upgoing and downgoing waves within the inhomogeneous band at layer j .  In this paper R(zo) and T(zo) denote the reflected 
and transmitted waves outside a band of thickness zo. This implies that we do not make any statements of the wave field inside 
the inhomogeneous band. Specifically, the propagation characteristics of the inhomogeneous band do not enter the equations 
explicitly. (It is for this reason that the equations remain regular in the presence of turning points.) However, implicitly the 
propagation characteristics of the inhomogeneous band are contained in the Ricatti equations (3.6). 

Consider a smooth medium without turning points. In that case we can approximate equations (3.612 and d) 

Let us consider normal incident waves (i.e. k = 0). As mentioned in the discussion of the reflection and transmission of plane 
waves by a thin isotropic layer, all the off-diagonal elements of t D  and t, are zero in case of normal incidence. Because of the 
boundary conditions TD(0) = T,(O) = I  it follows that all the off-diagonal elements of T,(zo) and TU(z,) are zero. For the 
remaining diagonal elements we find 

(3.8b) 

Because tF = tY we have TL" = T Y .  Equations (3.8a) and (3.8b) are the justification of the approximations (8.5) and (3.12) 
made by Snieder (1986b) and Snieder (1987) respectively. All the elements of t D  and t, are purely imaginary in this case. We 
have for example 

so the only effect of the band is a phase shift of the transmitted wave. Here k, = w/(u. This phase shift corresponds to a 
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wavenumber perturbation 

(3.10) 

so that the phase shift induced by the inhomogeneous band is correctly taken care of. 

4 A NUMERICAL EXAMPLE FOR 1-D 
SCATTERING IN QUANTUM MECHANICS 

In this section we illustrate the behaviour of homogeneous 
and inhomogeneous waves in a 1-D quantum mechanical 
example, and show explicitly that inhomogeneous waves are 
handled correctly by the Ricatti equations for the reflection 
and transmission coefficients. Up to this point the theory is 
presented for the reflection and transmission of plane 
seismic waves. Using a strategy similar to the one used in 
Sections 2 and 3 for the seismic case, a similar set of scalar 
Ricatti equations can be derived which describes the 1-D 
reflection and transmission of plane waves in quantum 
mechanics. The 1-D Schroedinger equation can be 
expressed as 

where I/I is the wave function, k is the wavenumber and V is 
a potential. If we define q = Vo + I/P, with 

we find that 

(4.3) 

Using the first Born approximation, the reflection and 
transmission of a plane wave q o ( x )  by a rectangular 
potential with height V ( x )  and width Ax can be described in 
the same way as in Section 2. From this, a set of scalar 
Ricatti equations can be derived in the same way as in 
Section 3. If we replace the subscript D (down) by R (right) 
and the subscript U (up) by L (left) and replace zo by xo,  we 
find the following scalar Ricatti equations for the 1-D 
quantum mechanical case 

in which T = TL = T, and t = t ,  = t,. In these equations we 
have 

t(x0) = - V(xo), (4.5a) 

i 
rL(xo) = - - V(xo)ezikr0, (4.5b) 

2k 

i 

i 
2k 

rR(xo) = - - V(xo)e-ukro. (4.52) 

In the last expression k is the wavenumber for the incident 
plane wave in the background medium. Note again that the 
Ricatti equations are non-singular because t, r, and r, are 
regular within the potential. The boundary equations for the 
Ricatti equations are T(0)  = 1 and RL(0) = RR(0)  = 0. 

In order to show that the differential equations (4.4a-c) 
describe the propagation of both homogeneous and 
inhomogeneous waves within the potential, we solve the 
equations (4.4a-c) numerically for a rectangular potential 
for which analytical solutions are known (Mertzbacher 

Solution of equations (4.4) for potential we11 
ru 
F 1 I I I I 

I.' \ 
\ 

2.0 4.0 6.0 8.0 10.0 
Width nf nntontid 

(a) 

Exact solution for potential well 
n! I I I I 
r 1 

1 1 I I I I 
2.0 4.0 6.0 8.0 10.0 

Wdth of potential 

(b) 
Figure 4.(a) Analytical solution for the transmission coefficient as a 
function of the width of the potential in case V < k2. Here k = 1 
and V = -1. (b). Numerical solution for the transmission coefficient 
as a function of the width of the potential as obtained from 
equations (4.4) in case V < k2. Here k = 1 and V = -1. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/96/3/447/602788 by C

olorado School of M
ines user on 18 Septem

ber 2018



Reflection and transmission of plane P -  and S-waves 455 

Exact solution for potential barrier 
o! I 1 I I 
7 1 

I 
1 I 1 1 I I 

2.0 4.0 6.0 8.0 10.0 
Width of potential 

Solution of equations (4.4) for potential barrier 
I I 1 1 - 
- Absolute value 

Real part 
Imaginary pav 

. __. . . -. 
_ _ _  

~ 

2.0 4.0 6.0 8 0  10.0 
Wtdth of potential 

Figure 5. (a) Analytical solution for the transmission coefficient as 
a function of the width of the potential in case V > k2. Here k = 1 
and V = 2. (b) Numerical solution for the transmission coefficient 
as a function of the width of the potential as obtained from 
equations (4.4) in case V > k2. Here k = 1 and V = 2. 

1970), and consider both homogeneous (V < k2) and 
inhomogeneous (V > k2) solutions. In the latter case 
tunneling occurs. We compare the numerical results with the 
analytical solutions. In Fig. 4(a) the analytical solution for 
the transmission coefficient, T, is shown as a function of the 
width of the potential in case V < k2. Figure 4(b) shows the 
solution for the transmission coefficient for the same 
problem as obtained from the Ricatti equations. Figure 5(a) 
and (b) shows the transmission coefficient as a function of 
the width of the barrier in case V > k 2  for the analytical 
solution and the numerical solution respectively. It is clear 
from Figs 4 and 5 that the Ricatti equations (4.4a-c) 
correctly describe the propagation of both homogeneous 
and inhomogeneous waves within the potential, despite the 
fact that the propagators within the potential do not enter 
the theory explicitly. 

5 CONCLUSIONS 

Exact, first-order, non-linear differential equations which 
describe the reflection and transmission of plane waves by a 
laterally homogeneous band are derived by employing the 
first Born approximation and an invariant imbedding 
technique. The basic concept is the fact that the contribution 
to the total wave field of the higher order Born 
approximations for the waves scattered by the thin layer 
with width Az goes to zero in the limit Az-0 .  Invariant 
imbedding extends the Born approximation in a bootstrap 
fashion to the full non-linear response. The differential 
equations can be solved numerically, in the same way as was 
done by Kennett (1984) and Kennett & Mykkeltveit (1984). 
The advantages of this approach are, apart from numerical 
efficiency, that the density and the elasticity tensor may have 
an arbitrary depth dependence, and that the band may be 
anisotropic; P-SV and SH coupling is incorporated in the 
method. Furthermore the method incorporates the propaga- 
tion of both homogeneous and inhomogeneous waves within 
the heterogeneity as we demonstrated numerically in 
Section 4; the theory remains valid in the neighbourhood of 
turning points. Finally we show that in the absence of 
turning points the only effect of a smooth laterally 
homogeneous band is a phase shift of the transmitted wave 
field. A present limitation is that we do not incorporate the 
effects of a free surface. 
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APPENDIX 
In order to find the plane wave Green's tensor G which satisfies 

LgGj, = hi,,6(z - zo)ei(k'-of), 

where L.; = - pow2tiii - n,aiai - p0didi - poSij aka,, we first try to find the solution u of 

,$ui = e h ( z  - zo)ei(k'--wf), 

where F is a constant vector. As an appropriate ansatz we look for solutions 

t z > z o  
u u  , z ,>z .  

p* ei(kr+vuz-ot) + [ p k ~ D  + p3 c lei(kr+vpz-or) 
D D D  

ei(h-vv,z-or) + [pLBu + p3 c Iei(kr-vgz-or) 

p; and ph (i = 1, 2,3)  are defined in Section 2. The boundary conditions at z = z, are (Aki & Richards 1980, Ben-Menahem 
& Singh 1981) 

(A.4a) 

(A.4b) [a,@, z,, t) - uu(x, z,,, t ) ]  . f = - Fei(h--of), 

where f = (0, 0, 1) and UD = Ao(v * uD)I + pO[vUD + (vuD)T], with a similar expression for (I,. Here u is the stress tensor, I is 
the unit matrix and the superscript T denotes transpose. Now we have six linear equations (A.4a,b) and six unknowns A,, B,, 
C,, A,, B, and C,. Solving for the unknown yields 

The plane wave Green's tensor is therefore given by 

(A.5a) 

(A.5b) 

(A&) 

(ASd) 

(ASe) 

i ( h  - o r )  = G(z,  zo)e 7 

thereby defining G(z ,  2,). 
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