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a b s t r a c t

This study examines one-dimensionalwave propagation in amulti-story buildingwith seismic excitation.
In particular, the building is modeled as a series of shear beams for columns/walls and lumped masses
for floors. Wave response at one location of the building is then derived to an impulsive motion such as
displacement and acceleration at another location in time and frequency domains, termed here as wave-
based or generalized impulse and frequency response function (GIRF and GFRF), which is dependent upon
the building characteristics above the impulse location. Not only does this study illustrate features of GIRF
and GFRF in terms of building properties, it also shows broad-based applications of the modeling. Two
examples are presented with the use of the modeling. One is wave-based characterization of ten-story
Millikan Library in Pasadena, California with the recordings of Yorba Linda earthquake of September 3,
2002. The other is analysis for influence of stochastic floor-to-columnmass ratio, story-height and seismic
input in seismic wave responses.

Crown Copyright© 2011 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Response analysis and system identification of high-rise
buildings with seismic excitation are typically carried out within
the framework of vibration theory. In this vibration-based
approach, the building structure is modeled as a discrete or a
multi-degree-of-freedom (MDOF) system, and structural dynamic
properties are characterized with modal frequencies and shapes
that are a function of physical parameters such as floor mass
and column/wall stiffness. Subsequently, seismic responses are
obtainable for a given excitation, and system parameters are
identifiable if seismic recordings are provided. Furthermore,
structural nonlinear analysis and damage diagnosis are achievable
by updating the linear MDOF model to nonlinear one. While this
approach is widely used and capable in solving many issues raised
in performance-based design and structural vibration control, it
has limitation in characterizing comprehensive seismic motion
in structures, subsequently affecting the broad-based applications
such as effective identification of local system parameters or
damage with a limited number of recordings.

The limitation of the vibration-based approach resides in the
implicit assumption that seismic responses are synchronous at dif-
ferent locations of the structure. In fact, seismic responses are the
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result of wave propagation in large-scale structures such as high-
rise buildings or towers andmultiply supported pipelines, inwhich
somewave phenomena such as time delay of travelingwaves from
one location to the other plays an important role in in-depth under-
standing of seismic recordings and effective identification of local
structural features, as shown in [1–5]. Building upon the aforemen-
tionedwork as well as pertinent others (e.g., [6–9]), this study pro-
poses one-dimensional seismic wave motion modeling in building
structures and examines its effectiveness and broad-based appli-
cations. The multi-dimensional wave motion will be examined in
the subsequent study.

2. Modeling of wave motion in buildings

In this study, an N-story building is modeled as a series of shear
beams for columns/walls and lumped masses for floors as shown
in Fig. 1, in which one-dimensional shear wave propagation in
vertical direction is investigated.

For source-free, jth column bounded with (z+

j−1, z
−

j ), j = 1, 2,
. . . ,N , wave motion of shear displacement u(z, t) is governed by

∂2u(z, t)
∂z2

=
1
v2
j

∂2u(z, t)
∂t2

(1)

where vj =

Gj/ρj is the shear wave speed, and Gj and ρj are

respectively shear modulus and mass density of the jth column.
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Fig. 1. A model for an N-story building subjected to seismic motion below z0 .
For jth floor bounded with (z−

j , z+

j ) with u(z−

j , t) = u(z+

j , t),
the governing equation of wave motion is derived based on Fig. 1
as

Gj+1Aj+1
∂u(z+

j , t)

∂z
− GjAj

∂u(z−

j , t)

∂z
− cfj

∂u(zj, t)
∂t

= mfj
∂2u(zj, t)

∂t2
(2)

where the first and second terms (Fs = GA∂u/∂z) are respectively
the shear forces at the positive (superscript +) and negative
(superscript −) sides of the floor height (zj) due to the shear
deformation in the jth and (j+ 1)th columns, the third term (Fc =

cf ∂u/∂t) the floor damping force, and the right-hand side term
(FI = −mj∂

2u/∂t2) the floor inertia force, in which A is cross-
sectional area of the floor/wall, mf the lumped floor mass which
excludes the mass overlapped with columns and walls, and cf the
hysteretic damping coefficient of the floor. For convenience, height
z indicates the positive side in this paper and thus superscript +

can be dropped in later use.
Introducing Fourier transform representation of the wave

motion

u(z, t) =

∫
∞

−∞

U(z, ω)eiωtdω, (3a)

U(z, ω) =
1
2π

∫
∞

−∞

u(z, t)e−iωtdt (3b)

where i is imaginary unit and ω frequency. Inserting Eq. (3a) into
Eqs. (1) and (2), one can solve forwave representation in frequency
domain at z and wave-state relationship at zl and zm as

Uz = U(z, ω) = Uu
z + Ud

z = C1e−iωz/vj + C2eiωz/vj (4)
Uu
m

Ud
l


=

[
Tml Rlm
Rml Tlm

] 
Uu
l

Ud
m


(5)

where displacement Uz consists of up-going and down-going
waves denoted with superscripts u and d respectively, and
transmission and reflection coefficients Tml and Rlm (Tlm and Rml)
relate the out-going waves Uu

m and Ud
l to input waves Uu

l and Ud
m

for building segment bounded with (zl, zm), as seen in Fig. 2.
For the jth column, coefficients T and R can be found as

Tj−(j−1) = Tz−j zj−1
= e−iωhj/vj = T(j−1)j− ,

Rj−(j−1) = R(j−1)j− = 0.
(6)

To understand the transmission coefficient in time domain, one
can perform inverse Fourier transformwith Eq. (3b) for Eq. (6) and
obtain transmission coefficient in time domain as

T̃j−(j−1)(t) =
1
2π

∫
∞

−∞

e−iωhj/vjeiωtdω = δ(t − hj/vj) (7)

which shows the delta function δ with time delay hj/vj, meaning
the up-going impulsive wave propagation through column height
without loss of amplitude. Wave attenuation in propagation due
to damping can be taken into consideration by replacing real shear
wave speed with complex one vj[1 + iγcj|ω|] with γc indicating
the hysteretic damping ratio (e.g., [8]), which is equivalent to
multiplying a frequency-dependent attenuation factor Bj =

e−γcj|ω|hj/vj in Eq. (6) (e.g., [3]).
For the jth floor, one can find

Tjj− =
2

1 + rIj − rDj + irMj

= Bfje
−iωhej/vj

Rjj− = Tjj− − 1, Tj−j = Tjj− rIj , Rj−j = Tj−j − 1
(8)

where coefficients rIj, rDj and rMj, amplitude Bfj and equivalent
floor height hej can be found in terms of column impedance (ρv)
ratio, cross-sectional area (A) ratio, floor-to-column mass ratio
(rm), wave traveling time for column length (h/v), i.e.,

rIj =
ρj+1vj+1

ρjvj

Aj+1

Aj
, rDj = γfj rMj ,

rMj = rmj

hj

vj
ω, rmj =

mfj

mj

Bfj =
2

(1 + rIj − rDj)
2 + r2Mj

,

hej =
vj

ω
tan−1 rMj

1 + rIj − rDj

.

(9)
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Fig. 2. Transmission and refection coefficients Tml and Rlm ((a) left) or Tlm and Rml ((b) right) relate the out-going wave Uu
m (left) or Ud

l (right) and input waves Ud
m and Uu

l in
building segment bounded by (zl, zm) or (l,m).
With Eqs. (6)–(7) as a reference, Eqs. (8)–(9) indicate that
lumped floor mass can be treated as a column-type continuum
with equivalent height and damping but with non-zero reflection
coefficients.

For lumped mass at the free building top, ρN+1 = vN+1 =

AN+1 = 0 or rIN = 0, which degenerates Eq. (8) to TNN− = 2 and
RNN− = 1, meaning that up-going wave Uu

N− is transmitted to the
topwith doubled amplitude and also reflected to down-goingwave
Ud
N− without changing the motion direction.
At the building lower end z0 (or generally at referenced location

zr which could be selected as z0), no segments below level z0
are used in the model, yielding rI1 = ∞. One can then find
T0−0 = 0 and R0−0 = −1, suggesting down-going wave Ud

0 is
completely reflected to the up-going wave Uu

0 with changing the
motion direction.While this featurewill not be used in subsequent
response calculation, it can help interpret wave phenomena at
lower end z0 with a fixed boundary.

For a composite building segment bounded with (zl, zn), or
simply (l, n), with intermediate location zm (zl < zm < zn) such as
(zj−1, zj)with z−

j , repeat use of Eq. (5) for (l,m) and (m, n)will lead
to the representation of transmission and reflection coefficients in
(l, n) in terms of those in two sub-segments in (l,m) and (m, n) as

Tln =
TlmTmn

1 − RnmRlm
, Rln = Rmn +

TnmRlmTmn

1 − RnmRlm
. (10)

The above composition rule can be applied reversely for (n, l)
and also repeatedly to find all the transmission and reflection
coefficients between any two locations.

With the aforementioned coefficients R and T , wave response
at z (or zR = z− zr ) can then be related to those at referenced level
zr that could be at the bottom of the building or any other height
as

DRr(ω) =
UzR

Uzr
=

(1 + RNR)TRr
(1 − RrRRNR)(1 + RNr)

, (11a)

dRr(t) =

∫
∞

−∞

DRreiωtdω. (11b)

Eq. (11a) indicates that DRr is dependent only upon R and T
above zr which are function of building properties in frequency
domain. For z = zr , Eqs. (11a), (11b) lead to DRr = 1 and dRr =

δ(t), suggesting that DRr and dRr are respectively frequency and
time displacement responses at z (zR) to displacement impulse
at zr . Subsequently, wave response representation in general,
and displacement response at z to input displacement at zr in
particular, is then found as

u(z, t) =

∫
∞

−∞

DRrUzr e
iωtdω =

∫
∞

−∞

dRr(t − τ)u(zr , τ )dτ (12)

which has the samemathematical form as traditional vibration re-
sponse representation in frequency domain with DRr as frequency
response function and in time domain (Duhamel’s or convolution
integral) with dRr as impulse response function.

While the aforementionedderivation is for displacement (u,U),
it is straightforward to extending to velocity (v = du/dt, V =

iωU) and acceleration (a = d2u/dt2, A = −ω2U) with DRr and dRr
remaining the same. For acceleration input at zr and displacement
response at z, which is the typical case for displacement response
to earthquake ground acceleration, Eq. (12) can be modified as

u(z, t) =

∫
∞

−∞

HRrAzr e
iωtdω =

∫
∞

−∞

hRr(t − τ)a(zr , τ )dτ (13)

where HRr = −DRr/ω
2 and hRr have conventional meanings

for frequency response function and impulse response function
respectively. Because of the aforementioned difference, DRr and
dRr are referred to respectively as wave-based or generalized
frequency response function (GFRF) and generalized impulse
response function (GIRF).

3. Applications in earthquake engineering

For illustration, two examples are presented below to show the
usefulness and effectiveness of the proposed modeling in system
identification and seismic response analyses.

3.1. Wave phenomena and vibration features with uniform shear-
beam model

To show thewave-basedmodeling and characterization of seis-
mic responses and system identification other than vibration-
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based one, one can first examine a special case for the aforemen-
tioned model, i.e., uniform shear–beam model without lumped
floor mass, which leads Eq. (11a) to

DRr =
[1 + e−iω(2Hr−2zR)/vc e−γc |ω|(2Hr−2zR)/vc ]e−iωzR/vc e−γc |ω|zR/vc

1 + e−iω(2Hr )/vc e−γc |ω|(2Hr )/vc

(14)

where Hr = zN − zr and vc denotes respectively the height and
shear wave velocity of the building portion bounded by (zr , zN).
The GIRF can be found by substituting GFRF of Eq. (14) into
Eq. (11b), where the integration can be evaluated with the method
of residues. In particular, the integrand for dRr , a function of the
real variable ω, is treated as a function of variable y, which has an
infinite number of poles yj (j = 1, 2, . . .) in the upper half complex
plane, namely

1 + e−iy(2Hr )/vc e−γc |y|(2Hr )/vc = 0
yj = (±1 + iγc)ωj, ωj = (2j − 1)ω0,

ω0 =
πvc

2Hr
, j = 1, 2, . . . ,∞.

(15)

The integration of Eq. (11b) can be found as

dRr = 8ω0

∞−
j=1

(−1)j+1e−γcωjt cos
ωj(Hr − zR)

vc
sin(ωjt). (16)

Eq. (16) shows GIRF consists of infinite number of motion
modes, each of which has exponentially decaying damping factor,
modal shape with cosine factor, and sinusoidal motion withmodal
frequency ωj. The fundamental or first mode with j = 1 has period
Tc = 4Hr/vc which is the travel time for waves to propagate up
and down the building height (Hr) twice. Eqs. (14)–(16) are first
derived in [3].

To validate usefulness of the aforementioned uniform shear–
beam model, this study follows [3] to examine seismic recordings
in ten-story Millikan Library shown in Fig. 3 after the Yorba
Linda earthquake of September 3, 2002. Fig. 4 shows the seismic
acceleration recordings in the north–south component in the west
side of the building at basement and the 1st to 10th floor. While
features of wave propagation in the building can be observed from
the arrival time of traveling waves from floor to floor in 10–11 s, it
can be seen clearly through GIRF extracted from the recordings.

To extract GIRF from recordings, one can first calculate the
recording-based GFRF, i.e.,

D̃jb =
ŨjŨ∗

b

|Ũb|
2 + ε

⇒
ε→0

Ũj

Ũb
(17)

where Ũ is the recording in frequency domain, superscript asterisk
indicates the complex conjugate, and ε is a positive small number,
implying the added white noise. The white noise is used primarily
to avoid unstable calculation of GFRF at some frequencies near the

notches in the spectrum
Ũb

2, as suggested in [3]. As ε approaches

zero, D̃jb(ω) ⇒
Ũj

Ũb
, the definition ofGRFR.With theuse of Eq. (11b),

the GIRF of the building at different floors (j = 1–10) with respect
to referenced motion at basement (b), denoted as d̃jb, are then
found, which is shown in Fig. 5 with ε selected as 5% of total power
spectrum of basement motion. Note that the tilde over quantities
d,D and U is used to distinguish the recording-based quantities
from those based on modeling or Eqs. (14) and (16).

As shown in Fig. 5, the GIRF at the basement is impulsive
acceleration. As a fictitious input or virtual source to the building,
the impulsive acceleration at basement or the peak for visual
convenience at t = 0 is propagated upward at building shear
velocity, and time delay of the peak at increasing height is well
Fig. 3. Vertical cross section of the Millikan Library in the north–south direction.

Fig. 4. Seismic recordings at the different floors (indicated as 1–10) with respect
to basement motion (indicated as B or b).

observed. After hitting the top, the peak is reflected completely
without changing motion direction due to the reflection feature
at free top (R−

NN = 1). The time delay of the waves traveling
upward from the 10th floor to the top and then downward to the
10th floor generates the second peak at the 10th floor. The 2nd
peak is then propagated downward and disappear at the basement
due to the fact that the basement with impulsive acceleration
is equivalent to the fixed basement end, which makes the wave
motion disappear at time other than t = 0. This phenomenon can
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Fig. 5. GIRFs at the different floors (indicated as 1–10) with respect to basement
motion (indicated as B or b).

Fig. 6. GIRFs at the 3rd and 8th floors with respect to basement motion obtained
based on Eq. (14) with selected parameters vc = 322 m/s, Hr = 48.2 m,
γc = 0.044.

also be explained with transmission and reflection coefficients at
the basement (T−

b b = 0 and R−

b b = −1), which indicates that all the
down-going waves completely to the up going waves reflected at
the basement, i.e., fixed basement boundary. When the 2nd peak
reaches the basement, another up-going impulsive wave will be
generatedwith the same amplitude but oppositemotion direction,
making the fixed basement motionless at that time instant.

The aforementioned cycle of wave propagation continues as
time goes on. For earlier time (0–1 s), the GIRF consists primarily of
superposition of up-going and down-going traveling shear waves.
For later time (>1 s) as the traveling waves can be regarded as
standing waves, the GIRF develops the building dynamic features
characterized by modal frequencies (primarily by the 1st mode
or the building resonance), with the amplitude reduced as time
goes on (e.g., see GIRF at the 10th floor), which is typically the
free vibration or impulse response phenomenon. The increased
amplitude of the GIRF at the fundamental modal frequency with
the position changed from the 1st to the 10th floor is again
attributed to the wave phenomena due to the fixed bottom and
free top boundaries.

All the aforementioned wave features extracted from record-
ings can be observedmore clearlywith the use of Eq. (16), as shown
in Fig. 6 for themodeling-based GIRFs at the 3rd and 8th floor with
respect to basementmotion, inwhich building shearwave velocity
Fig. 7. Magnitudes of GFRF at the 3rd and 8th floors with respect to basement and
3rd floor motion obtained based on seismic recordings and theory in Eq. (14).

Fig. 8. Fourier spectra of seismic recordings at the basement, 3rd and 8th floors.

322 m/s and damping factor 0.0244 are used based on the study
in [3]. In particular, the first peak at the 3rd floor is rooted from
the impulse propagation from the basement, which propagates to
the first peak at 8th floor with damping-related reduced ampli-
tude. That first peak at the 8th floor is then propagated to the top
and then reflected to travel downward to the 8th and 3rd floors
to generate the second peaks with sequential reduced amplitude.
The second peak at the 3rd floor continues propagating downward
to the basement. Since the motion will disappear at basement due
to the fixed boundary, a negative, same amplitude peak, balanc-
ing the positive one at the basement, is generated and propagated
upward. That negative peak propagates to the 3rd and 8th floors
with further reduced amplitude, and continues following previous
wave propagation cycle. From perspective of vibration at the 8th
floor (similar to the other locations), the first couple of peaks are
the result of initial condition, for the impulse response in a system
is equivalent to the free vibration with non-zero initial condition.
As time goes on, the vibration feature at that floor is then domi-
nated by the character of the resonance of whole building, while
high-order motion modes are also involved.

In addition, the model can help identify some building features,
exemplified as shear wave speed and damping with the use of two
sets of recordings. Fig. 7 shows the GFRFs of acceleration at the 3rd
and 8th floors with respect to referenced motion at basement and
the 3rd floor respectively based on recordings (i.e., D̃8b, D̃3b and
D̃83) and the uniform shear–beammodel (i.e.,D8b,D3b andD83). For
reference, the Fourier spectra of the seismic recordings at the three
locations are also shown in Fig. 8. The identified shear wave speeds
for the whole building and the 3rd-floor-up building portion are
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Table 1
Identified shear wave speeds and damping and their comparison with results from others (one number from Snieder and Safak [3] using the uniform shear–beammodel and
the same earthquake but averaged over all Djb , j = 1–10 with 11-set recordings) and (two numbers from Table 11.1.1 in [10] with Lytle and San Fan Fernando earthquake
recordings respectively).

Height (Hr ) and location (zR) inm Identified 1st modal frequency in rad/s Shear wave speed in m/s Damping

zr = zb 48.2, 13.4 10.77 330 (322) 0.0305 (0.0244)
z = z3 (12.08,10.13) (0.029,0.064)

zr = zb 48.2, 34.8 10.77 330 (322) 0.0281 (0.0244)
z = z8 (12.08,10.13) (0.029,0.064)

zr = z3 34.1, 21.4 13.16 292 0.0187
z = z8
330 and 292 m/s respectively, indicating that shear modulus (G)
of the 3rd-floor-up building portion is less than that of the whole
building if mass density (ρ) is assumed the same. Alternatively, the
lower portion of the building (i.e., from the basement to the 3rd
floor) ismore rigid in shear resistance than the upper portion (from
the 3rd floor to the top). Typically, the stronger the shear rigidity
of the building is, the less the corresponding damping ratio. While
not universally correct, this phenomenon is also observed from the
identified damping for the aforementioned case, i.e., 0.0281 and
0.0187 respectively for the whole and the 3rd-floor-up building
portion. As shown in Table 1, the identified parameters are also
compared with those using recordings at other floors as well as
those from [10,3], indicating that the uniform shear–beam model
is good enough to characterize the fundamentals of wave and
vibration motion in buildings.

3.2. Deterministic and stochastic features of wave motion with
general floor–beam model

The difference between earthquake recordings and uniform
shear–beam model is well observed exemplified in Fig. 7,
which is primarily attributed to the deterministic modeling
and analysis without considering other major building features
such as floor masses. This issue can however be addressed
with a stochastic wave motion model with floor masses, in
which building parameters and/or seismic input are treated as
random variables/processes. While various statistical responses
for the stochastic model can be found within the framework of
probabilistic structural dynamics (e.g., [11]), this study presents
some analyseswith selected system parameters inwave responses
and stochastic seismic acceleration input at building bottom.

For regular buildings, column/wall properties are not changed
significantly from one floor to the other, and can be assumed the
same without loss of generality. For earthquake-excited building
motion, the largest frequency of interest is typically less than nω1
with n < N . Therefore, for random floor mass with small floor-to-
mass ratio (rmj = mfj/mcj ≪ 1), Eqs. (8)–(9) become

Tjj− = Tj−j ≈ e−iωhej/vj , hej ≈ 0.5rmjhj (18)

which suggests that up-going and down-going waves transmit
through the jth floor without loss of amplitude. As far as
transmission coefficients are concerned, the floor functions like
an extended column portion with extra height hej and zero
damping. Accordingly, transmission coefficients for a building
segment with a column connected to a floor mass are equivalent
to those in a pure column without floor, but with an increased
column length (hj + hej) and reduced damping factor (γej =

γcj/(1 + hej/hj)). Alternatively, they can also be viewed as the
equivalent transmission coefficients in the same column length
but with decreased velocity and reduced damping factor. Based
on Eq. (15), the fundamental modal frequency of the building
with floor masses, denoted as Ω1, is decreased in comparison
with that without floor masses (ω1). This can be seen clearly
Fig. 9. GFRFs (D8b) at the 8th floor of a 11-story building with respect to bottom
motion with vj = 300 m/s, hj = 4.25 m, γcj = γfj = 0.03, rIj = 1 and
rm11 = 0.5rm10 , for j = 1, 2, . . . , 11.

in Fig. 9 with rmj = 0 and 0.1, where rmj = 0 is associated
with the uniform shear–beammodel. The corresponding response
amplitude is increased due to the reduced damping. For high-
order mode motion (j > 1), the modal frequencies Ωj of the
building with floor masses will be reduced proportionally and the
corresponding amplitude will be increased in general. The mean µ

and standard variation σ of modal frequency Ωj can be found as

µΩj = ωj{1 − 0.5µrm}, σ 2
Ωj

= 0.25µ2
Ωj

σ 2
rm (19)

where µrm and σrm are the mean and standard deviation of
random floor-to-column mass ratio. It can be proved that if
rmj (j = 1, 2, . . . ,N) is constant and floor height hj is random,
Eq. (19) remains the same except µrm and σrm replaced by
µh and σh respectively. The other statistical responses such as
mean and standard deviation of frequency response amplitudes at
corresponding modal frequencies can be found numerically based
on Eqs. (14), (16) and (19).

For large floor-to-column mass ratio or other random system
parameters, the statistical analysis for GIRF/GFRF must be carried
out numerically or with Monte Carlo simulation. While not
presented here, this paper shows influences of some system
parameters in frequency responses. In particular, Fig. 9 shows
the influences of large floor-to-column mass ratio (rmj = 1) in
GFRF, revealing similar phenomena observedwith small rmj before.
Fig. 10 indicates that modal frequencies are insensitive to the
change of column impedance ratio rI , while the corresponding
amplitudes are reduced significantly with decreased rI .

For ground motion characterized by stationary stochastic
process [11]

a(z0, t) =

∫
∞

−∞

eiωtdZ(ω) (20)
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Fig. 10. GFRFs (D8b) at the 8th floor of a 11-story building with respect to bottom
motion with vj = 300 m/s, hj = 4.25 m, γcj = γfj = 0.03, rmj = 0.1 and
rm11 = 0.5rm10 , for j = 1, 2, . . . , 11.

where Z is a stochastic process with orthogonal increment
in frequency, the mean square acceleration response with
deterministic building parameters can be found as

E[a2(z, t)] =

∫
∞

−∞

Φ(ω)dω, Φ(ω) = D2
R0(ω)G(ω) (21)

where E denotes ensemble average, and G and Φ are spectral
densities of ground acceleration and response respectively. For
Kanai–Tajimi spectrum selected for the stochastic ground motion
characterization, i.e., G = G0(1 + 4ξ 2ω2/ω2

g)/[(1 − ω2/ω2
g)

2
+

4ξ 2ω2/ω2
g ], Fig. 11(a) shows the spectral densities of acceleration

at the 8th floor with seismic input at alluvium and rock sites. Since
the rock predominant frequency (ωg = 27 rad/s) is closer to the
second modal frequency (ω2 ∼ 22 rad/s) than the alluvium one
(18.4 rad/s), the peak with rock at the second modal frequency is
larger than that with alluvium. This can also be seen with mean
square accelerations 0.0076 and 0.026m2/s4 for rock and alluvium
respectively. Fig. 11(b) shows the response spectral densities with
different floor-to-column mass ratio, with corresponding mean
square as 0.0188, 0.0102 and 0.0076 m2/s4 respectively for rmj =

0, 0.1 and 1.
While the aforementioned approach to calculate statistical

responses to stochastic ground motion is widely used for seismic
design and analysis, it is of interest to note some differences from
the conventional one. First, the response calculated in this study is
absolute acceleration, not the relative displacement in traditional
approach, although they are obtainable fromone to the other.More
important, the traditional approach assumes that the building is
fixed on the ground and subsequently shakes under seismic free-
field ground motion, the latter of which is typically characterized
by Kanai–Tajimi model with predominant frequency (ωg) and
damping (γg) for site amplification. In fact, for a building fixed on
the ground, the seismic input at the fixed bottom of a building
is the response of soil–structure interaction, not simply the free-
field motion. The Fourier spectrum of basement motion in Fig. 8
is a manifest, showing that the motion has no clear predominate
frequency. This suggests that either the seismic input in traditional
approach needsmodified as other type such as band-limitedwhite
noise for this case, or the fixed boundary condition is inappropriate.
By contrast, this model shows that as long as a motion recording
at given location (either at ground or one height) is provided, the
statistical response at other location can be obtained.

4. Conclusions

This study proposes a wave-based approach to model and
analyze seismic building motion. It first derives the generalized
impulse and frequency response functions (GIRF and GFRF) which
are fundamentally important in constructing response to the
motion input to a system, not the traditional force input. The
deterministic and stochastic features of GIRF and GFRF as well as
seismic response are also examined in detail, revealing not only
well-observed vibration features of building structures, but also
some perspective of seismic wave behaviors of structures which
traditional vibration-based approach does not show clearly.

While this study focuses on one-dimensional wave propagation
with specific shear–beam model for columns/walls and lumped
mass for floor, it can be extended to sophisticated modeling such
as bending-moment beam model for columns with one extra
dimensional wavemotion, or another dimension in rocking. While
this extension will make the modeling more robust and useful in
broad-based applications, the analysis and fundamental features of
wave propagation will remain the same as revealed in this study.
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