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The liquefaction cycle and the role of drainage

in liquefaction

Roel Snieder, Annemieke van den Beukel

Abstract In this work the liquefaction cycle is introduced
as a framework to describe the coupled processes that take
place in fluid-saturated granular media that lead to lique-
faction. The modular formulation of liquefaction makes
it possible to test the various processes that contribute
to liquefaction separately, and to assemble different for-
mulations of the relevant physics into a numerical model
for liquefaction. This view on liquefaction is used here to
assess the role of drainage in liquefaction. We present a
simple scale analysis of the role of drainage. A numeri-
cal implementation of the liquefaction cycle shows, how-
ever, that the scale analysis is deceptive for the case when
strong spatial variations in the permeability inhibit fluid
migration. As an illustration the numerical model is used
to quantify the imprint of a low-permeability layer on the
liquefaction behavior.

Keywords Liquefaction, Phase transitions, Earthquake
hazard

1
Introduction

Liquefaction is a phase transition in a water-saturated,
loosely packed granular soil that turns the initially solid
soil into a liquid. In this coupled process, the buildup of
excess pore pressure by the compaction of the soil causes
the shear modulus to decrease dramatically. If an earth-
quake strikes an area that is susceptible to liquefaction,
extensive damage to structures and buildings may occur
[1-3]. Testing procedures have been developed to estimate
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the susceptibility of a certain soil to liquefaction [4,5]. A
key issue in the onset and consequences of liquefaction is
played by drainage. Fluid migration suppresses variations
in the excess pore pressure. Therefore, drainage may delay
or prevent the onset of liquefaction. Laboratory experi-
ments to assess the liquefaction potential of soil under
undrained conditions [6] may give a biased assessment of
the liquefaction potential of the soil. For this reason, the
role of drainage on liquefaction is investigated in this
paper.

To reach the goal of better understanding the process
of liquefaction, roughly two types of studies have been
carried out in the past: experiments on soil samples and
modeling of field situations where liquefaction is known to
have occurred. An overview of laboratory test procedures
is given by Das [7]. A shortcoming of many of these experi-
ments is that they deal with the relation between two fac-
tors that influence liquefaction, e.g. number of cycles of
load application and excess pore pressure buildup, with-
out linking these aspects into a physical description of
liquefaction. Although this approach can be useful from
a pragmatic point of view, it is not clear to what extent
such measurements can be generalised to the in situ con-
ditions in the subsurface. The other type of study, field
measurements (e.g. [8,9]), concentrate on a particular soil
and event with the aim to explain how and why lique-
faction has occurred. Such studies often employ empiri-
cal relations between in situ soil engineering tests and the
susceptibility to liquefaction. In some cases these relations
work well and are able to predict the occurrence of lique-
faction given a certain event and soil. The implementation
of parameterized empirical relations has led to numerical
models that simulate liquefaction with great accuracy (e.g.
[10]). However, the complexity of these models makes it
difficult to gain physical insight into the process of lique-
faction.

In this work the concept of the liquefaction cycle is
introduced as a theoretical framework for liquefaction in
which the different processes that contribute to liquefac-
tion can clearly be identified and are amendable to labo-
ratory studies or a theoretical analysis. The liquefaction
cycle translates into a system of coupled partial differen-
tial equations that can be solved numerically. An imple-
mentation is presented for a stratified earth model with
a vertically incident SH-wave [11]. In that case all quan-
tities depend on one space dimension only. This simple
model gives insight into the role of drainage in liquefac-
tion. The formulation employed here can easily be gener-
alised to situations where lateral variations are relevant.
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Fig. 1. The chain of events that form the liquefaction cycle.
The links indicated with solid lines have been taken into ac-
count in this study, while the links indicated with dashed lines
have been ignored

One advantage of the modular approach taken here
is that it may help in obtaining a better understanding
which of the coupled processes that contribute to lique-
faction is understood well, and which processes require
more research.

2
The liquefaction cycle

The liquefaction cycle as shown in Fig. 1 is based on a
reductionists formulation [12] where the complex process
of liquefaction is broken down into sub-processes that are
easier to understand and to verify experimentally. The
process of liquefaction can be described by the following
chain of events. The deformation of the soil leads to a
change in the pore space. During liquefaction the pore
space generally decreases. This process is indicated by link
1 in the liquefaction cycle. A reduction of the pore space
leads to an increased pore pressure (link 2). If the fluid
cannot migrate, the increase in the pore pressure follows
from the compression of the pore fluid due to reduction of
the pore volume as described by the bulk modulus. How-
ever, the fluid migration associated with drainage in gen-
eral reduces the maxima in the pore pressure. An increased
pore pressure reduces the shear stress the grains can sup-
port, and leads in the elastic regime to a reduction of the
shear modulus (link 3). A change in the elastic moduli, in
its turn, leads to a modification of the deformation of the
soil (link 4). The links (1-4) from a continuous positive
feedback loop.

The links (1-4) suggest a circular chain of cause-effect
relations. In reality the situation may be more complex
and other feedback loops may play a role. An example is
shown as link 2’ in the liquefaction cycle that describes
the effect of pore pressure on compaction, and link 4’ that
accounts for the shear weakening or shear hardening that
is caused by the deformation. In the following subsections
the different links in the liquefaction cycle are described
in more detail.

2.1

Link 1, compaction

The compaction associated with liquefaction is induced
dynamically, it should not be confused with the compac-
tion of soils due to a static loading [13]. The compaction

under a static load is governed to a large extent by the
pore pressure [14-16]. In contrast to this, the compac-
tion during liquefaction is induced by dynamic shear [3].
Although the resulting compaction will be influenced by
the pore pressure as well (link 2’ in the liquefaction cycle),
we ignore this effect in this study. The compaction of soil
due to the combined influence of shear and pore pressure
is arguably the link in the liquefaction cycle that is most
poorly understood.

The compaction of soil due to shear has been modelled
on a microscopic scale using the Distinct Element Method
[17]. Here we use the macroscopic formulation of compac-
tion of Knight et al. [18] who measured the compaction of
column of glass beads that was subjected to vertical tap-
ping. They found that the grain fraction ¢ was described
well by the following compaction law
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where ¢ and ¢y are the initial and final grain fraction,
respectively, B and 7 are material-dependent parameters,
and t denotes the duration of the deformation. This is
equivalent to the number of taps delivered to the column.
The grain fraction is defined as the volume of the grains
divided by the total volume, hence ¢ = 1/(1 + e), with e
the void ratio (defined as the ratio of the volume of the
pores divided by the volume of the grains). Liquefaction
is mostly influenced by shear motion rather than longi-
tudinal motion [19]. Nicolas et al. [20] studied the com-
paction of a system of glass beads that was subjected to
a periodic shear motion. They showed that the resulting
compaction was described well by the compaction law (1).
Several theories based on different arguments account for
this compaction law [21-26].

Up to this point, compaction data have been used that
were based on experiments with glass beads. In order to
make the connection with the compaction of a soil we use
the compaction measurements of Youd [27] who subjected
sand to a periodic shear motion with a variable strain.
The resulting grain fraction for a loading of 1, 30 and 1000
cycles is shown in Fig. 2 as a function of the maximum
strain per cycle.
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Fig. 2. The grain fraction of sand as measured by Youd (1972)
for 1, 30 and 1000 shear cycles as a function of the maximum
strain per cycle



The compaction law (1) is unsatisfactory in the sense
that it gives the compaction as a function of time, or equiv-
alently, the number of deformation cycles, but it does not
account explicitly for the strength of the deformation in
each cycle. We make the assumption that the compac-
tion depends on the accumulated deviatoric strain. This
quantity is given by fot |0e/0t'| dt’, where e denotes the
deviatoric strain. For this reason we generalise the com-
paction law (1) in the following way to include the effect
of a varying shear strength

Pf — o
1+ BIn(1+C [ |9e/ot| dt")

p(t) = w5 — (2)

For a sinusoidally varying strain with period 7" and max-
imum ep,,x one finds by direct integration that negp.x =
fg |0e/0¢'| dt’ /4, where the number of shear cycles is given
by n = t/T. With these expressions the data of Youd
[27] can be related to the compaction law (2). A least-
squares fit of the data shown in Fig. 2 to the compaction
law depicted in Fig. 3 shows that the compaction of sand
is well-described by the compaction law (2). This fit is
based on the following parameters: ¢ = 0.8, @9 = 0.646,
B =0.09, and C' = 12.5.

Note that this compaction law connects the measure-
ments for 1 cycle and 30 cycles well. The compaction for 30
cycles and 1000 cycles is not connected equally well. Since
the strong ground motion due to earthquakes lasts usually
for at most a hundred cycles [28], we employ the compac-
tion law (2) in this study. In this law the grain fraction
increases monotonically with the accumulated shear. How-
ever, for large deformation granular media may expand
due to grain sliding. This may result in ‘dilative arrest’ of
liquefaction [3]. In order to incorporate this phenomenon
a more complex compaction law needs to be used.

2.2
Link 2, buildup of excess pore pressure

Rather than using an experimental law for the excess pore
pressure [29] we derive the development of excess pore
pressure from first principles. In the absence of drainage,
the change in the pore pressure is given by the relative
change in the volume of the pore fluid:
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Fig. 3. The grain fraction of sand as measured by Youd (1972)
for 1, 30 and 1000 shear cycles as a function of the maximum
stain per cycle times the number of cycles. The compaction
described by expression (2) is shown by a solid line
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where k is the bulk modulus of the fluid and V' the vol-
ume of the pore fluid. When the pore fluid contains air,
the bulk modulus of the fluid-air mixture needs to be used.
When the fluid migrates, the change in the volume of the
pore fluid is affected by the change in the available pore
space as well as by the fluid migration. This means that
the rate of change in the pore fluid volume is given by

p=—r

V .
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In this expression, ¢ is the grain fraction introduced in
section 2.1 and vy is the velocity of the fluid flow. Using
Darcy’s law [30], the fluid flow can be expressed in the
pressure gradient
A\ _£Vp ; (5)
goy

with K the hydraulic conductivity of the soil and py the
mass density of the pore fluid. Combining the expressions
(3)-(5) gives a diffusion equation for the pressure

dp K Oy
5 = " (V gprp) —|—/£at . (6)
The equation is equivalent to expression (4.65) of Wang
[16]. Note that the rate of change of compaction d¢/0t
acts as a source term in this expression.

In the subsurface, the hydraulic conductivity K can
vary with several orders of magnitude over short distances
[30]. It should be noted that the permeability is present
within the divergence in expression (6) and that taking
the permeability outside the divergence [31] can lead to
significant errors.

2.3
Link 3, changing the elastic moduli

Following Terzaghi’s effective stress principle [32], the
increase of excess pore pressure diminishes the effective
stress o', which reduces the shear modulus p. In general,
for saturated granular soils, the change of shear modu-
lus with effective stress follows a power-law relation [33,
34], with exponent between 0 and 1. The exponent for a
pure and dry sand, measured in the laboratory [7,19], is
approximately 0.5:

/0.5

p=Ac"", (7)

where A is a constant and the effective stress is given by
o' = pigz —p. (8)
In this expression pgy is the mass density of the dry matrix
and p is the excess pore pressure. The square root rela-
tion (7) falls in the range of measurements for saturated
sand. The model soil will initially, in the absence of excess
pore pressure (p = 0), have a shear modulus profile that
increases with the square root of depth

to(2) = Ay/pagz . 9)
When the excess pore pressure builds up, the shear mod-
ulus decreases depending on the excess pore pressure, and
the shear modulus is given by
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Fig. 4. The geometry of the model used in the numerical sim-
ulation
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The value of the exponent depends strongly on the char-
acteristics of the soil [34] and that a different value of the
exponent may be appropriate for a particular soil.

The consequence of a power-law relation (9) is a shear
modulus that vanishes at the surface. This poses problems
in numerical modelling the liquefaction cycle. We circum-
vent these problems by assuming that the near-surface
layer is unsaturated (Fig. 4) and has a shear modulus that
is independent of depth and does not vary with time.

(10)

2.4
Link 4, deformation of the soil

The deformation of the soil follows from Newton’s law

pi=V. 1, (11)

where u denotes the displacement and 7 the stress tensor.
When the medium behaves elastically, the stress follows
by Hooke’s law

Tij = CijkiOkuy + CijriOkvr (12)

with ¢;j; the elasticity tensor. The last term is propor-
tional to the particle velocity v, this term is introduced to
include viscous dissipation. This term effectively leads to
complex elastic moduli that account for hysteresis of the
soil. The numerical implementation of section 4 is based
on equations for the first time derivative of the velocity
and the stress, respectively. Newton’s law (11) is written
in component form as

(13)

If the elastic medium is isotropic, and if the viscous dissi-
pation depends on the shear stress only, the time-deriva-
tive of (12) is given by

7Lij = )\&J(v . V) + M(aﬂ)j + 8jvi) + V(aﬂ.)j + 8]”1) s (14)

where v denotes the viscosity.

For a given angular frequency w, the viscosity can be
related to the quality factor @) by considering a plane shear
wave that propagates through a homogeneous medium:
v = Jexpi(kz — wt) into the equations (13) and (14).

pU; = Bjrji .

This solution has a complex wave number k£ and decays
with a damping term exp(—vwz/2uc), with ¢ = /u/p
the shear velocity. This implies that the quality factor is
related to the viscosity by

Q=L
wv

Note that the link described in this section describes
elastic behaviour (with a simple anelastic damping),
whereas the compaction treated in section 2.1 is a com-
plex aneleastic phenomenon. Both processes take place at
a different time scale, the period of the waves and the time
scale of the compaction, respectively. The physics under-
lying these processes is of a different nature. After the
onset of liquefaction, the elastic treatment of this section
is no more applicable and plasticity phenomena need to
be incorporated into the theory.

(15)

3
Scale analysis for drainage

Before embarking on the numerical implementation of the
liquefaction cycle, it is interesting to consider the role of
drainage with a simple scaling argument. The evolution of
the excess pore pressure is governed by equation (6). The
first term on the right hand side accounts for the change
in the pressure due to the fluid flow, while the last term
account for the influence of the compaction. A dimension-
less measure of the relative importance of the drainage is
thus given by the ratio

K
(ko
F=x 9Py .

Op/ ot

When F' > 1 drainage is important.

Let the thickness of the liquefying layer be denoted by
L, the time scale of the liquefaction process by T', then
the ratio (16) is of the order

kKT

gprL?
Using the bulk modulus of water (k = 2.25 x 10%g/ms?)
and assuming the values T =5 s and L = 5 m, it fol-
lows that F' ~ K x 4.5 x 10* s/m. Drainage is significant

when this ratio is larger than unity, this happens when
the hydraulic conductivity is given by.

K >2x10"%m/s

(16)

F

(17)

(18)

For clean sands the hydraulic conductivity varies from
107° — 1072 m/s [30]. This means that the range of
hydraulic condictivity for clean sands is such that drainage
may be important, depending on the spatial and temporal
scales of the liquefaction zone. This implies that it is not
obvious that laboratory tests under undrained conditions
on desktop-size samples give a reasonable impression of
the onset of liquefaction in field conditions where drainage
can play an important role. For this reason more detailed
numerical models are needed to assess the role of drain-
age in liquefaction. A small amount of trapped air may
lower the bulk modulus x. Acording to expression (17)
this reduces the importance of drainage in liquefaction.



4
A numerical model of liquefaction

The numerical modelling presented here is for the sim-
plest case of a soil whose properties depend on depth only,
for the special case of a vertically incident SH-wave that
is polarized in the y-direction [11]. The relevant dynami-
cal parameters for the wave propagation are the particle
velocity v in the y-direction and the stress component 7,
which for brevity is denoted by 7. For this special case all
quantities depend on the space variable z only. For exam-
ple, the only nonzero strain components are €,, = €., =

1/20v/0z. This gives €| = /el +e2, = |0v/0z| /2.
The equations (2), (6), (10), (13), and (14) are for this
special case given by

olt) = of — Lo
1+ Bln(1+C [} |9v/dz| dt' /v/2)
op _ K 99
T —/@(V gprp) —i—mat
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In the last expression the time derivative v has been elim-
inated with Newton’s law (13). Note that the last expres-
sion is a forced diffusion equation similar to the expression
in the second line for the excess pore pressure.

The computational domain runs from the surface z = 0
to a depth z = H, see Fig. 4. The equations (19) need to
be supplemented with boundary conditions at these two
depths. At the free surface, both the excess pore pressure
p and the stress 7 vanish. We assume that the saturated
soil overlays an impermeable layer at the bottom. In that
situation there is no flow at the bottom and dp/9z = 0
at that location. The last boundary condition that needs
to be supplied is for the particle velocity at the bottom
of the domain. We assume that the velocity at that loca-
tion is given by the sum of an upward moving incom-
ing wave vj,., plus waves that are radiated downward:
U = Vine(z + t) + Vgown(z — ct) and 7 = Tipe(z + ct) +
Tdown (7 — ct). The incoming wave v;,. acts as the source
of the motion in the soil. The last term provides a radia-
tion boundary condition [35] for the reflected waves.
Using (19) the down going wave satisfies Qvgown(z — ct)/
Ot = pL0Tdouwn(z — ct) )0z = — (pc) ™" OTaown(z — ct) /L.
Integrating this identity shows that at the bottom of the
domain vgown = — (pc)f1 Tdown- With a similar argument

one finds that v, = + (pc)f1 Tine. Therefore at the bot-
tom of the domain v = Vine+Vdown = Vine—(P€) ™ Taown =
Vine — (p¢) 7T = Tine) = 20ine — (pc)~17. Using these
results the boundary conditions are given by

z=0
X—1
i e —v,0,p
z=H

Fig. 5. The staggered grid used in the numerical modelling.
The various physical properties are evaluated at the indicated
grid points

p(z=0)=0,

7(2z=0)=0,

9, _ (20)
8Z(Z—H)—O, 1
v(z:H):QUMC(Z:H)f&T(z:H).

The equations (19) with the boundary conditions (20)
are solved on the staggered grid shown in Fig. 5 using the
numerical scheme of Virieux [36] where the time-stepping
is carried out with a leapfrog scheme [37]. In all simula-
tions the model depth was H = 30 m, the time step was
At =5 x 107* s, the depth discretization Az = 1m, and
the density of the dry matrix was pg = 2000 kg/m?>. In all
simulations the water table was taken at a depth of z =5
m, the shear modulus in the unsaturated layer above that
depth was set to a constant value independent of depth
and time. The viscosity v was related to the quality factor
(15) where @ was, modified after Das [7], taken to be
Q= Q. (21)

[1= Clogz—p) 21"

with the following values for the parameters: Qg = 1.8567,
and C = 1.6937 x 1076 Pa—!.

5
Simulation for constant permeability

The first numerical simulation shown in this section is for
a constant hydraulic conductivity of K = 5 x 107% m/s.
The incoming wave v;,. is shown in Fig. 6 as a function of
time. This waveform is generated synthetically by band-
pass filtering Gaussian white noise between frequencies of
1 Hz and 20 Hz. The amplitude is normalised in such a
way that the peak ground acceleration is about 0.1g, a
realistic value for earthquake hazard studies. The result-
ing waveform qualitatively resembles the strong motion
generated by earthquakes [28].

The grain fraction ¢ as a function of depth at t = 5.33
s is shown in Fig. 7. Note that the compaction varies with
depth, and that the relative change in the grain fraction
due to the compaction is of the order 1073, so that the soil
does not compact much. However, the associated excess
pore pressure shown in Fig. 8 is comparable to the over-
burden pressure for the dry matrix at a depth of about
12 m. The reason for the large increase in pressure for a



modest amount of compaction is the large numerical value
of the bulk modulus x. A modest amount of air trapped in
the fluid would significantly reduce the value of the bulk
modulus.

At a depth of about 12 m, the excess pore pressure is
comparable to the overburden pressure. This means that
about this depth the soil will liquefy. This can be seen in
Fig. 9 which shows the shear modulus before the shaking,
and at t = 5.33 s. At a depth around 12 m the shear mod-
ulus has decreased dramatically and the shear strength of
the soil is strongly diminished at the depth. The temporal
behavior of the excess pore pressure at a depth of 12 m is
shown in Fig. 10. It can be seen that the excess pore pres-
sure approaches the overburden pressure at t = 5.33s.
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Fig. 6. The incident SH-wave vin. used in the numerical
examples that strikes the bottom of the domain
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Fig. 7. The grain fraction at ¢ = 5.33 s as a function of depth
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Fig. 8. The excess pore pressure at t = 5.33 s as a function of
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The time scale to be used for a scale analysis in sec-
tion 3 is given by the time over which the excess pore
pressure steadily increases, in this case about 5 s. Note
that the excess pore pressure does not increase monoton-
ically. The compaction law (2) prescribes a grain fraction
that increases monotonically with time. In the absence of
flow this would imply a monotonic increase of the excess
pore pressure with time. The fluctuations of the excess
pore pressure with time that lead to short-term reductions
of the excess pore pressure are therefore cause by fluid
migration.

The scale analysis of section 3 shows that a hydrau-
lic conductivity of the order of 2 x 107° m/s separates
the regime where drainage inhibits liquefaction from the
regime where liquefaction will occur. This scale analysis
is relatively crude. Here we investigate this issue in more
detail by showing numerical simulation for the incoming
wave of Fig. 6 for a hydraulic condictivity given by K =
1075,107%,1073 m/s. These values are realistic for clean
sand [30]. The excess pore pressure as a function of time
at a depth of 8 m is shown in Fig. 11. For a hydraulic con-
ductivity of 107° m/s the excess pore pressure steadily
increases as in Fig. 8 and ultimately causes the soil to lig-
uefy. For a hydraulic codictivity of 1072 m/s the excess
pore pressure increases only slightly. In that case the per-
meability is sufficiently high for the drainage to keep up
with the compaction, and the pore fluid migrates before
it can cause a increase in pore pressure that causes lique-
faction.
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Fig. 9. The shear modulus at t = 5.33 s as a function of depth
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Fig. 11. The pore pressure for three values of the hydraulic
conductivity at a depth of 8 m as a function of time

These conclusions can be verified in Fig. 12 in which
the shear modulus as a function of depth is shown at ¢t =
1.9 s. For a hydraulic conductivity of 1075 m /s the soil lig-
uefies, whereas for K = 10~% and 1073 m/s, respectively,
the shear modulus decreases slightly but liquefaction does
not occur.

6

Variations in permeability

The numerical simulations of the previous section confirm
that the permeability is a key factor in controlling lig-
uefaction. When the permeability has spatial variations
it may have an even larger influence on the liquefaction
behavior since an impermeable layer can enhance the in-
crease in excess pore pressure. Field observations of this
phenomenon have been presented by Youd [38].

In the numerical simulation of Fig. 13 the soil has a
hydraulic conductivity of 1072 m/s, except in a layer with
a total thickness of 5 m centered at a depth of 10 m. This
layer is modelled by the following profile of the hydraulic
conductivity:

K(Z) = Kmaac - (Kmaw - Kmin) €xXp <_(Z__L2ZO)> ’
(22)

where Kpap = 1074 m/s, Kpin = 2 x 107% m/s, and
L = 2.8 m. This describes a low-permeability layer with a
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Fig. 12. The shear modulus at ¢ = 1.9 s as a function of depth
for three values of the hydraulic conductivity
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Fig. 13. Excess pore pressure at t = 5 s as a function of depth
for various values of the hydraulic conductivity Kmin in the
layer. For the hydraulic conductivity of K,in = 1073 m/s the
layer has the same permeability as the surrounding material
(no contrast)

hydraulic conductivity of 2 x 1076 m/s at a depth zo = 10
m and an effective width of 5 m. Note that according to
the simulation shown in Fig. 12 the soil does not liquefy
when the hydraulic condictivity is 1072 m/s throughout
the soil.

The excess pore pressure at t = 5 s is shown in Fig. 13
for various values of the permeability in the layer. Note
that the liquefaction is about to set in when the hydrau-
lic conductivity in the layer is about 10=* m/s or less.
The physical reason for this is that the low-permeability
layer prevents pore fluid migration towards the surface.
Since the pore fluid cannot move out of the bottom of the
soil layer, the pore fluid is effectively trapped between the
bottom of the model and the low-permeability layer. This
causes the excess pore pressure to rise beyond levels that
would be found in a homogeneous soil. This confirms that
low-permeability layers can have a significant effect on the
liquefaction properties of soil [38].

7
Concluding remarks

The liquefaction cycle as introduced in section 2 provides
a framework to analyze the complex process of liquefac-
tion into its physical components. This is a reductionists
approach [12] that makes it possible to investigate and
numerically model the different phenomena that contrib-
ute to liquefaction. In this work, the simplest possible
physics has been used in the description of the different
links of the liquefaction cycle. The advantage of a formu-
lation based on the liquefaction cycle is that one can easily
replace the physical description of one of the links in the
liquefaction cycle by another description.

The physics of the links in the liquefaction cycle is
known with a varying degree of accuracy. The liquefac-
tion cycle can be used as a tool for planning research in
the coupled processes that contribute to liquefaction. The
dynamic compaction of granular media and the role of
pore pressure in this process deserves special attention.

The modelling shown here is applicable only for the on-
set of liquefaction. Once liquefaction has developed, the
fluid migration cannot be described by Darcy’s law (5).
Also when the liquefaction occurs the shear velocity of



the soil drops and the particle motion increases. In the
formulation (13) of Newton’s law used here the advec-
tive terms p(v - Vv) in the equation of motion have been
neglected. This is valid only when the particle velocity
is much smaller than the wave velocity [39], hence the
advective terms in the equation of motion need to be in-
cluded after the onset of liquefaction. After liquefaction
has developed, the rheology (14) should be extended to
include plastic flow as well. Dilative arrest may occur once
large shears develop.

The onset of liquefaction also creates numerical prob-
lems. When the shear modulus goes to zero, the wave-
length of the shear waves goes to zero as well. This means
that for a fixed spatial discretization, the wavelength be-
comes smaller than the grid size after the onset of lig-
uefaction, which creates numerical instabilities. There is,
however, no reason why the description of the liquefaction
cycle used here cannot be used to numerically model the
onset of liquefaction in 2 or 3 dimensions.

The numerical experiments presented here show that
the scale analysis as applied in section 3 gives the right
order of magnitude in its estimation for the range of per-
meability for which drainage inhibits liquefaction. How-
ever, a more detailed modelling is needed to assess the
role of drainage in the range of permeability that are rele-
vant for realistic soils. Spatial variations in the permeabil-
ity have a pronounced effect on the onset of liquefaction
when layers with a low permeability inhibits the migra-
tion of pore fluid. The numerical modelling technique pre-
sented here can be used for the assesment of liquefaction
risk [40] as well as for the design of remediation measures
[41].
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