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What is noise?

John A. Scales* and Roel Snieder?

Lest men suspect your tale untrue,
Keep probability in view
—John Gay

The concept of “noise” plays a crucial role in the statisti-
cal analysis of data. As an example of a noisy record consider
Figure 1 that shows the ground motion of the seismological
station NE51 in St. Petersburg after an earthquake in Egypt.
(In earthquake seismology, periods may be orders of magni-
tude larger than in exploration seismology, but the principles
are the same.) This time series shows no distinct arrivals or
other apparent signatures of an organized nature. Given the
proximity of the recording station to a major population cen-
ter and to the coast, such a noisy record does not seem to be
very surprising.

But what is noise exactly? In the context of seismic prospect-
ing, Dobrin and Savit (1988) define noise as “spurious seismic
signals from ground motion not associated with reflections.”
They have in mind such things as surface waves, near-surface
reverberations and so on; coherent but uninteresting signal
in other words. Fair enough. One might dispute the use of
the term noise here, but these authors are certainly within
their rights to identify certain signal as being uninteresting.
But they go on to speak of “incoherent noise, sometimes re-
ferred to as random noise ... usually associated with scattering
from near-surface irregularities.” (Emphasis in the original.)
By identifying random noise with incoherency they have sailed
into rough waters. For although the signal associated with scat-
tering from near-surface irregularities may well be incoherent
(though that is debatable), it is clearly reproducible, so does it
make sense to call it random? And further, there is no law that
says that random processes must be uncorrelated. (Just take an
uncorrelated “white” process and apply a smoothing operator
to it.)

It turns out to be extraordinarily difficult to give a precise
mathematical definition of randomness, so we won’t try. (A
brief perusal of randomness in VVolume 2 of Knuth’s great The
Art of Computer Programming is edifying and frustrating in
equal measures.) In any case, it is more satisfying undoubtedly
to think in terms of observations of physical experiments. Here
is Parzen’s (1960) definition, which is as good as any:

A random (or chance) phenomenon is an empirical
phenomenon characterized by the property that its
observation under a given set of circumstances does
not always lead to the same observed outcomes (so
that there is no deterministic regularity) but rather
to different outcomes in such a way that there is
statistical regularity. By this is meant that numbers
exist between 0 and 1 that represent the relative fre-
quency with which the different possible outcomes
may be observed in a series of observations of in-
dependent occurrences of the phenomenon. ... A
random event is one whose relative frequency of oc-
currence, in avery long sequence of observations of
randomly selected situations in which the event may
occur, approaches a stable limit value as the num-
ber of observations is increased to infinity; the limit
value of the relative frequency is called the pro-
bability of the random event.

It is precisely this lack of deterministic reproducibility that al-
lows us to reduce random noise by averaging over many repeti-
tions of the experiment. Using this definition, the “incoherent
noise” of Dobrin and Savit (1988) is not random.!

But why should we care about the definition of noise? As
geophysicists, the data at our disposal will always contain some
features that we will not bother to explain. If we accepted
our data as being absolutely precise and reproducible, then no
model whose response disagreed with the observations even
to the slightest degree could be correct. But we don’t believe
that our data are exact and exactly reproducible. And further,
because we cannot calculate the exact response of our Earth
models (because we cannot afford to put all the physics on
the computer) and because we have only approximate mod-
els anyway (we cannot use an infinite number of parameters),
there are likely to be deterministic aspects of the data that we

1The term “coherency spectrum” was coined by Wiener to denote the
absolute value of the cross covariance of two signals divided by the
square root of the product of the respective autocovariance functions
(cf. Priestley, 1981, 661). If two stationary processes are uncorrelated,
for example, if they are independent, then the coherency spectrum is
zero at all frequencies.
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cannot or do not want to explain. Keep in mind, however, that
with enough degrees of freedom one can fit any data, eveniifiit’s
not worth fitting. And the resulting model might be excessively
complicated or physically unreasonable.

In fact, in many situations “noise” is highly reproducible be-
tween different experiments and corresponds therefore to a
deterministic process. For example, let us return to the seismo-
gram of Figure 1. In Figure 2 the same seismogram is shown
(on the same scale) but now the signal before the first arriving
P-wave around 400 s is shown as well. The signal before the
P-wave consists purely of ambient noise. It can be seen that
this noise level is negligible compared to the later parts of the
signal. This means that the signal shown in Figure 1 is Earth
response that corresponds to a multitude of different arrivals
rather than random noise. Some of these arrivals can be ex-
plained by a simple 1-D earth model, but as shown by Neele
and Snieder (1991), this part of the signal also contains exotic
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FiG. 1. Vertical ground motion recorded by the NARS sta-
tion NE51 in St. Petersburg after an earthquake in Egypt (22
November 1995). The time series is low-pass filtered with a
corner frequency of 0.1 s.
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FIG. 2. Same series as in Figure 1 but for a larger time interval.

arrivals such as body waves that have been converted to sur-
face waves. It may be that one chooses not to explain this part
of the signal, discarding it as noise.

In doing so, one must have some way of separating those data
we want to explain from those we do not. So a more general
definition of “noise” in the vein of Dobrin and Savit would be:
noise is that part of the data that we choose not to explain.?
Now, this noise may or may not be deterministic. Clearly there
is unwanted deterministic data (neglected physics for instance,
such as ground roll—although we personally find ground roll
rather interesting, e.g., Gabriels et al. (1987)).

It is not clear to what extent deterministic signals such as
unmodeled Earth response can be treated as noise. However
some features in geophysical data can usefully be modeled by
random processes. By this we mean the following. Suppose we
isolate some part of the data that we wish to model stochasti-
cally. And suppose further that we can construct a probability
law with samples that are statistically indistinguishable from
the noise we are modeling. Then we can usefully call this signal
random.

For instance, suppose we use a random number generator on
a computer to approximate samples of a normal distribution.
The algorithms used by such generators are entirely determin-
istic, the output being more properly described as pseudoran-
dom numbers. [See Knuth (1981) for details.] Let us suppose
that this random number generator is very good and its samples
pass any test of Gaussianity that is known. Then, even though
these numbers are clearly deterministic, they can reasonably
be modeled as being Gaussian random numbers. Ultimately
it doesn’t really matter whether nature admits truly random
processes or not, unless you’re doing quantum mechanics.

As a more concrete example, suppose we have a well log
that we have modeled as a Markovian process. In other words,
we have estimated the n-dimensional joint distribution func-
tion of a Markovian process, one realization of which we take
to be the well log. Operationally, we could do this by making
histograms to approximate the 1- and 2-D marginals, which are
sufficient to describe a Markovian process. Then we generate
pseudorandom samples of this model Markovian process. This
works exactly like the pseudorandom number generator de-
scribed above, but the samples come out in accordance with this
Markovian distribution that we have estimated. We pass the
original well log and one of the pseudorandomly simulated logs
to a fancy statistical hypothesis test and it says that at the 99%
confidence level, for instance, the two are drawn from the same
distribution. Then, whether or not we believe the real logisare-
alization of a random process, we can usefully model it as such.

So what does all this have to do with geophysics? There are
three main implications:

1) Stacking of data.—The notion that averaging over re-
peated realizations of an experiment (stacking) reduces
noise (compared to signal) presupposes that the noise in
the different experiments is uncorrelated because only
then do we get the desired noise-suppression. The crite-
rion here is that the correlation in the noise is zero for
different experiments.

2We are purposely using the term “explain” rather than “fit” since
the latter seems to be burdened with certain psychological baggage.
But note that fitting is nothing more than a quantitative attempt at
explanation.
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2)

3)

Scales and Snieder

Prescription of a priori errors in Bayesian inversion.—In
such an inversion we need to prescribe the joint distri-
bution function of the data errors (e.g., the data covari-
ance matrix and mean if the distribution is assumed to be
Gaussian). It is fine to include signal-generated “noise”
in this (although a purist might argue against this). How-
ever, this type of noise will in general be highly correlated
(between different samples, between different shots, and
between different receivers). The correlations are cru-
cial here, but in practice they may be difficult to quantify
(Gouveia and Scales, 1998).

Making the decision how well to fit the data.—In a least-
squares fitting procedure, one must use chi-square or
some other measure of the misfit to determine how well
the model explains the data. Here, one needs to know
which parts of the data are real (or interesting) and which
part should be considered noise. (The latter should not
be fitted.) This is not only an issue of noise levels or corre-
lations (e.g., knowing the mean and variance of Gaussian
noise), butin some applications, itis important to identify
data and noise in a more subtle way. For example, ground
roll may be considered noise that should not be fitted by
weird reflectors.

This means that the issue “what is noise” is of more than aca-
demic interest. If we define noise as being that data we choose
not to fit, then we must have a model that explains the rest of
the data. If not, this could be a sign that the “noise” is carrying
important information. The association of noise with nonde-
terministic processes may be misleading since the concept of
noise is also used as the garbage-can of unexplained determin-
istic phenomena. A treatment of this type of noise on purely
statistical grounds may lead to conceptual as well as practical
problems.
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