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Multiple-scattered waves usually are not useful for creating deterministic images of the interior of elastic
media. However, in many applications, one is not so much interested in making a deterministic image as in
detecting changes in the medium. Cases in point are volcano monitoring and measuring the change in hydro-
carbon reservoirs during enhanced recovery operations. Coda wave interferometry is a technique wherein
changes in multiple-scattered waves are used as a diagnostic for minute changes in the medium. This technique
was developed previously for scalar waves; however, the application of this technique in geophysics, nonde-
structive testing, and other applications where elastic waves are used, requires the extension of the existing
formulation of coda wave interferometry to include conversions betweamnd Swaves. Here, a simple model
for the equilibration betweeR andSwaves incorporates into the theory of coda wave interferometry the mode
conversions that are inherent to multiply scattered elastic waves.
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[. INTRODUCTION pattern of the multiple-scattered waves is the primary tool to
detect changes in the medium.
Imaging techniques, as used in seismic imadihlg non- Because for these applications the medium is elastic, the

destructive testing2], radar applications, and medical imag- theory developed for coda wave interferometry of scalar
ing [3], usually rely on a single-scattering approximation. Inwaves[11] is not applicable. A number of seismological
many practical applications waves are strongly scattered, argtudies have been carried out to infer a change in the seismic
deterministic imaging is not feasible. Often, however, thevelocity from coda wave$12—16. In an elastic medium
primary goal is not to form an image of the interior of a there is not a single wave velocity because such a medium
medium, but to detect changes in the medium instead.  supports bothP andSwaves, each with a distinct velocity. In
Speckle pattern interferometiyi—7] uses the change in strongly scattering elastic media, conversions betwand
the spatial speckle pattern of interfering multiply scattereds waves are in general as strong as the scattering of these
waves to retrieve the average change in the scatterer locgaves. Since a multiply scattered wave has traveled over part
tiOI’IS as a I‘esult of Changes in the medium. ThIS teChniquf its trajectory as & wave and part of its trajectory as &
has been used to monitor Brownian motion in colloidal suswave, it is not obvious how often an elastic wave at a given
pensions[8], the passage of ultrasound through a strongltime has been scattered and what the effective velocity of
scattering mediun9], and the properties of Taylor-Couette propagation is. Aki and Choudt.7] assume that the coda
flow [10]. Speckle pattern interferometry requires the meaywayes are dominated B waves.
surement of the intensity of the wave field over a certain Here, | extend the theory of coda wave interferometry
region of space. Although this is straightforward when light[11] for scalar waves to the more complex application of
waves are used, spatial sampling is a problem in situationg|astic waves. Section Il treats multiple scattering of vector
where the wave field or its intensity can be measured only afaves, and the influence of changes in the medium on these
a limited number of locations. waves. To account for the partitioning of propagation be-
When Only a limited number of detectors of the wave fieldtween P and S waves, | introduce a Simp|e model for the
are in place, one can use the temporal fluctuations of thgropagation of elastic waves in Secs. Il and IV. The infor-
transient multiple-scattered waves. The idea is to exploit thgnation on the spatial distribution and directionality of the
change in the multiple-scattered waves generated by a trayaves is discarded in this model, which results in a simple
sient incident wave as a diagnostic of the change in the Me&jescription of the partitioning oP- and Swave energies.
dium. The term “coda” is used to denote the relatively late-\yjth this model, | infer the change in the coda waves due to

arriVing mUIUply scattered waves; this term comes froma Change in the scatterer |Ocatic(®c_ \J and the propaga-
music where it denotes the closing passage of the piece. Thgyn velocity (Sec. V).

technique to extract the change in the medium from the
change in the multiple scattered waves is called “coda wave
interferometry [11] because the multiple-scattering medium |, bepTURBATION OF THE MULTIPLE-SCATTERED
acts as an interferometer.
. . . WAVES

Coda wave interferometry can potentially be used in non-
destructive testing of materials to detect the formation of Let us assume that discrete scatterers in the medium
cracks, but it also has applications for monitoring changes istrongly scatter elastic waves. When the separation between
hydrocarbon and hydrological reservoirs, and for the monithe scatterers is much larger than a wavelength, the total
toring of dams and volcanoes. In such applications, the numwave field can be written as the sum of waves that propagate
ber of receivers is often limited, so that the temporal speckl@long all possible trajectories:
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A trajectory is defined as a sequence of scatterers through _ _
which the wave has traveled over time. At each scattereiyith the dominant frequency defined as
conversions betwedR andSwaves can occur. The sum over it .
trajectories also enumerates all the possible combinations of — Erf AR AR ()Y
modes of propagation &andSwaves between consecutive w’=— S ft“WA e (8
scatterers that are encountered. T -t/ T

The wave field in Eq(1) is the wave field for the unper- ] )
turbed medium; this is called the unperturbed wave field. Let Analogous to Eq(3), the zero-lag time-windowed auto-
us assume that, when the medium is perturbed, the dominaf@rrelation of the unperturbed wave is defined as
action of this perturbation is to change the travel time along ot
each trajectory, and that the change in fhectop amplitude C(t'tw)(O)EJ Wu-“‘)z(t’)dt’, (9)
can be ignored. Denoting the travel time perturbation for the uu '
propagation along trajectoflyby 7, we can therefore write
the perturbed wave field as with a similar definition forCs,‘)tw)(O) for the perturbed
waves. Using a similar reasoning as used in deriving expres-
sion (5) gives

W

uPI() =2 Ag(t—7r). )

Suppose that one has measured ittewmponent of the
unperturbed and perturbed wave fields. We characterize the
change in the wave field using the time-windowed correla- A dimensionless measure of the change of the wave field

trt,
CSJW)(O):CS;W)(O):E f Agn(t’)dt'. (10)
T Jt-t,

tion function, defined as is given by the time-windowed correlation coefficient de-
fined as
= [T et /
up (tS)=th ui (tHu(t" +tedt’, 3 f:f:wui(”)(t’)ufp)(t’+ts)dt’
) R W(tg)= Ty, (u)wz Nyl (T e (P2 11y a7y 12"
wheret denotes the center of a time window of lengtty, 2 (ftftwui (t)dt ftftwui (t")dt’)
andtg the lag time for the correlation. The cross correlation (11)

is given by . . : L .
With the expressions§?) and (10), this function is approxi-

t+t mately given by

Clpt9=3 | "An(t)Am(t' +to-rrdt. (@)
T Jt-ty 1

o _ RUW(t) = 1= S 0X(7=19) %)y, - (12)
The double sum over all trajectories can be writterzas, "
=2q_1 + 2147 . The terms in the first sum add coherently, . .
while the terms in the second sum add incoherently. For thid? thiS expression{---).,) denotes the average over al
reason the contribution of the trajectori€st T’ can be ne- trajectories that arrive in the time windowtt,,,t+t,)
glected; hence with a weight factor that is given bj2,. This means that in

this work averages are taken with a weight factor that is

(tty) thty . , , given by the energy of each multiple-scattered wave.
Cip (ts):Z« 1t Ari(t) At +ts—m)dt’. (5) The time shifted cross correlation attains its maximum
v when
In the following we consider a shift timig that is close to {= (13)
the mean travel time perturbation. For small values tqf ( S_<T><“w>'
- a second order Taylor expansion Af;(t’ +ts— . . : . .
gi\g; y P fil =) and the value of the time shifted cross correlation at its maxi-
mum satisfies
t+t
(t,ty) _ w AY T
C, W(ty)= J Ari(t))4dt 1—
ap” (1) ET: t—ty it RE;’;‘QV)=1— szai, (14
1 tty .
+ EZ (ts— TT)2ft t Ari(t")Ag(t")dt'. with ¢ the variance of the perturbation of the arrival times
“tw

in the employed time window. This means that the time
(6) shifted cross correlation of the unperturbed and the perturbed
waves gives the mean and variance of the travel time pertur-
This expression can be written as bation in the employed time window.
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1-2 PPS The probability that @& ball converts to each of th® states
@ @ is denoted bypps. This means that the probability at each

collision that aP ball continues as & ball is equal to 1
—2pps. The probability that arg ball is converted into &
ball at a scatterer is denoted bpy. There is a probability
pssthat anShball is converted to as ball of the other type.
It follows from Fig. 1 that the probability that aBball is not
converted to a ball of another type is-Psp— pss.
Suppose that in the system there &tg balls in theP
state and\ls1 and Ns, balls in theS; and S, states, respec-

tively. The transition probabilities can be used to derive dif-
ferential equations for the number of balls in each state. As
pSS an exampl id i
ple, consider the number of balls in fPestate.
, , i » .. There areNp balls in this state. In a time intervalt, each
FIG. 1. Diagrammatic representation of the transition probablll-ba” travels a distancepdt and encounterspdt/a scatter-
ties for the conversions of balls among tRestate and the tw® ers. As indicated in Fig. 1, the probability that a ball in fhe

I- Pop”

states. state is converted to each of tBestates upon encountering a
IIl. A SIMPLE EQUILIBRATION MODEL scatterer ispps. This means that in a time intervdt the
FOR P AND S WAVES total reduction of the® balls due to conversion t8 states is

given by —2ppNpvpdt/a. The number oP balls increases
The mean and variance of the arrival times of seismicdue to the conversion o6 balls to P balls. By the same
waves for a given perturbation of the medium is the result ofeasoning the number of balls in tRestate thus increases in
the change in the propagation of b&trandSwaves because  the same interval gssp(Ns, + Ns )vsdt/a. The total change
each trajectory con§ists of a combination of paths betweep, ihe number of balls in th® state is therefore given by
scatterers along which t_hg wave travels & @ Swave. To dN,=psp(Ns, +Ng )vsdt/a—2ppNpvpdtia. The same
make further progress, it is necessary to account for the Par- - sonin caln be ; lied to the balls in each ofSistates:
titioning of elastic wave energy intB and S energy. this qi gth foll pp i f diff tial fi >
The patrtitioning ofP-wave energy t&S-wave energy has IS gives he following system of difierential equations.
been studied by counting the numberfond S modeq 18],
from the evolution equations fd?*- and Swave energy19], : 1
from radiative transfer theor§20,21], and from seismologi- Np=7 (PspsNs, +PsposNs, —2PpsvpNp),
cal observation$22]. The temporal evolution of the- and
Swave energies in an elastic medium can be studied with a
hierarchy of different methods. In radiative transfer theory
[20,23-21, the spatial distributions of the intensity and the
direction of propagation are treated as independent param-
eters. When the transition to diffusive wave propagation is ~(Pspt PsgusNs, I,
made, the direction of energy propagation is related to the
gradient of the intensity21,2§.

. 1
Ns = a[pssIJstz"‘ PrsvpNp

. o i . . 1
As an alternative | use in this section an even simpler stzg[pSSUSNS{" PpsvpNp
model to account for the equilibration ¢f and S waves
where the information regarding the spatial distribution and —(psp+ PsgvsNs, . (15)

direction of the waves is discarded. In this model, the waves
move around as balls. A ball is either ifPsstate, or in thes;
andS, states that represent the two polarization$ efaves. The average distance between scattereas it this dis-
The balls are a metaphor for units of energy. However, théance is not the mean free path. In the following, we take the
balls should not be confused with the quanta of elastic wavémit that a and the transition probabilitiegps, psp, and
propagationphonons; they are nothing but a tool for keep- Pssgo to zero; this limit describes the continuous conversion
ing track of the distribution of energy among the different between different wave types that occurs in a strongly inho-
wave modes. The balls in tHe state travel with thé>-wave  mogeneous elastic medium. It follows from Fig. 1 that, when
velocity vp, while the balls in theS states travel with the a ball in theP state encounters a scatterer, the probability
Swave velocityvg. After each ball has propagated over athat it is not converted to one of tiestates is given by 1
distancea, with a certain probability it can convert to a ball —2pps. Sincepps is assumed to be small, this means that
of another state. The model is similar to a Monte Carlo dethe probability that & ball is not converted to another state
scription of multiple scatterinf29,30, but spatial and direc- when it propagates over a distant¢eis given by (1
tional information about the propagation of the waves is dis— 2ppg)'/®. By definition, this probability is equal to &/
carded. This allows for an analytical solution rather than avhen the ball has propagated over the mean free hath
numerical solution based on a Monte Carlo technique. hence (1 2ppg'P/2=1/e. Taking the natural logarithm
The probabilities of these transitions are shown in Fig. 1gives, for small values ofpg,
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a ergy flux of P waves. In scattering theory the scattering cross

T (16)  section is defined by the change in the energy flux. There-
fore, the ratiopgp/pps is defined by the ratio of the scatter-
For the balls in eacl$ state, the probability that the ball is ing cross sections fdPSscattering an@&Pscattering, respec-
not converted at a scatterer is given by fisp— pss. Using  tively, which is given by{30]
the same reasoning as for the balls in thetate, the mean 5
free path of eacl$ state is given by @_ZE’: (E) _ 22)
Up

|p:

Pps Ops

a
Im- (17 The factor 2 in the middle term is due to the fact that the
transition probability in Eq(15) is defined for eacls-wave
From these expressions, the mean free paths remain finigolarization separately whereas the cross seactignis de-
when the limitsa—0, p;;—0 are taken as long as the ratio fined for the totalSwave energy.
defined in expressiord6) and(17) remains finite. Note that Inserting the ratiq22) in (21) and identifying the number
the system of differential equatiofi$5) depends only on the of balls with energy, the following conditions follow for the

s

ratiosp,;/a. equilibrium value of theP- and Swave energy18—-21:
The systen(15) has three different solutions, each with a 3
characteristic decay time. Adding the three equatit® (E) :1<5 23)
gives Es . 2\vp
q
d _ For a Poisson medium, whevg.=v3v g, this ratio is given
ai (Ne*+Ns;+Ns,)=0. (18 by (Ep/Es)eq~0.096, which indicates that th®wave en-

ergy is much larger than the-wave energy. There are three
This expression states that the number of balls is constant ieasons for this. First, there are tv@states compared to
time; this is a consequence of the fact that the probabilities inly oneP state. Second, the waves propagate faster than
Fig. 1 are chosen in such a way that balls are neither creategh theSwaves, so the probability per unit time thaPavave
nor destroyed when they encounter a scatterer. The identifis converted to ar§ wave is much larger than that of the
cation of balls with units of energy means that for this sys-reverse conversion. Third, the transition probability for the

tem the total energy is conserved. conversion fromP to Sis larger than fromSto P; see ex-
The total number of ballfls in an S state is the sum of pression(22).
the balls in the twdS states: Expressiong20) and(18) provide the time it takes for the

number of balls to equilibrate between tRestate and thé&
states. Equatioril8) implies thatNp+Ng=N, whereN is

. . L s the total number of balls. Using this relation to eliminaig
Using this relation in the first line of the systef®d), and o the first expression of EG20) gives
adding the last two lines of that system, gives the following

system of equations that governs the partition between the . Pss (Psps+2Ppyp)
total numbers of balls in thE and S states: Np= N—

Ns=Ng +Ns . (19)

- - Np. (24)

. 1 . . .
Np==(pspsNs— 2pps pNp), Using Eq§.(16) and(22), this means that the timass for the
a equilibration of P and S energy is given by

2
ZIPUP

Tpszm. (25)

. 1
NS:a(ZpPSUPNP_pSPUSNS)- (20

It follows from this expression that, in equilibrium, the ratio Tregoures and van Tiggelen21] derived the same expres-
of the number of balls in the state to the total number of sjon from the diffusion equation.

balls in theS states is given by The equilibration among the tw8states can be found by
taking the difference of the last two lines of the systd);
(&) _ Pses (21  this gives
Ns eq 2ppsvp 2 )
PsstPsp)vs
The ratio of the number of balls, and hence the ratio ofthe ﬁ(Nsl_ Ns,)=— a (Ns,—Ns)). (26)

and Swave energies depends on the rabige/ppg oOf the

transition probabilities. Aki31] gives a simple derivation Note that the equilibration of th& states depends not only
based on reciprocity that explains why these probabilities aren the transition probabilitypss for the conversion between
different. These transition probabilities are defined in expresthe S states, but also on the probabilipgp for the conver-
sion (15), where they multiply terms such a$Np. When  sion between thé® state and theS states. This is because
Np denotes thé>-wave energy, thenpNp describes the en- conversions such & — P— S, also contribute to the equili-
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bration of theS states. With relation&l6) and(17), it follows
that the equilibration timegsfor the S states is given by

Idp 1 )
TS+ (142) vs' @

The model presented here does not account for the spatial
variations in the ratio of th®- and Swave energies. When
this ratio has significant spatial variations the model cannot
be expected to be accurate. Therefore the model is used in
the following to describe the properties of the wave field
after an equilibrium between tHe- and Swave propagation
has been reached.

IV. PARTITIONING OF P AND S PROPAGATION

The analogy in Sec. Il of balls that are distributed among i-1
different modes serves here as a simple model for the propa-
gation of P andSwaves in an elastic medium by identifying FIG. 2. Definition of the scattering angle and parameters of the
the propagation of balls in tHe andSmodes with thé®- and  incoming and outgoing waves at scatter
Swave energies, respectively. It is shown in Sec. Il that in
coda wave interferometry one measures averages of tHeor a Poisson mediurz~1.064 5, so that the effective
propagation properties of the wave field with the squaredselocity is close to the velocity.
amplitude of the waves, and hence the energy, as weight The number of scatterers encountered is given rby
factor. This means that, according to expresgi®8), once  =Lg/lg+Lp/lp; therefore from Eqs(29) and (30) it fol-
the P and Swaves have equilibrated the ratio of the titpe  lows that
spent traveling as ® wave to the timetg that the wave

. . 2 2
traveled as ars wave is given by vpvs [(2vp Us
n=o—3_—3|7_ Tt (33
3 2U P+US lS |p
tp_ Ug
ts 203 (28) Writing the number of scatterers as
This expression should be interpreted as an energy-weighted B U_efft 34
average after equilibration of tHe- and Swave energies. n= lett (34)
The total travel time is given bip+ts=t. With Eq. (28)
this gives this gives for the effective mean free path
203 v 1 1 203 v
tg=——g——3t, tp=——g——gt. 29 RalE . i 35
s 2vptug P 2vptug 29 o 20,23+v§ Is Ip 39

The meandering distance traveled aB avave is given by
Lp=vptp and the corresponding distance for thavaves is

Ls=vsls, so that In this section, | derive the influence of random perturba-
tions of the scatterer locations on the time-windowed corre-

V. PERTURBING THE SCATTERER LOCATIONS

2vdvg vpvS : : .
L= t, Lp= t. (30) lation functlon: The perturbations of thg components pf the
S 2v p§+v5E P 2v p§+vsE scatterer locations are assumed to be independent with zero
The total length of the wandering path is given byLg
+Lp, so that P S S
2v305+v e
L="F2 T 5¢ (31)
2vptug
This means that after the and S waves have equilibrated P P S S
they propagate on average with an effective velogigythat
is given by
PP PS SP SS
vpvg(205+v3)
Vei=— =733 — (32 FIG. 3. Diagram of the four pairs of incoming and outgoing
2vptug wave types at a scatterer.
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mean and variancé”. Since the resulting mean travel time outgoing waves, using the energy of the waves as weight
perturbation vanishes, the change in the correlation functiofactors. Applying this weighting to the relative occurrence of
is determined by the varian(mf of the arrival times. This P andStrajectories gives a weight 26 /vg)® to anSwave
quantity can be retrieved from the data with expresgioh).  trajectory relative to #-wave trajectory. ArStrajectory thus
The elastic waves that propagate through the medium consibgs a Weighvgl(v§+ 2v3F',) while aP trajectory has a weight

of both P and S waves; therefore, it is necessary to account2v?/(v3+2v3). This gives the following weighting for
for the possibility that the incoming and outgoing waves at goroducts of the relative occurrences of pairs of incoming and
given scatterer are of different type. In the Appendix, | showoutgoing trajectories shown in Fig. 3:

that when the incoming wave at a given scatterer has veloc-

ity v, and the outgoing wave a velocity,;, the variance in PP: v¥(vi+20d)2,
the arrival time due to the perturbation of a single scatterer
location is given by PS 2vdvd(vi+20vd)?
2_ 2 3.3 3 3\2
0.=26 + cosy |, 36 SP. 2 /(vgt2 ,
ngut 2vﬁ1 Uoulin v (36) vpvd (vst2vp)
wherey is the scattering angle of the trajectory as defined in SS  4vp/(vi+2v})% (37
Fig. 2.

This expression is valid for a perturbation of the location These weight factors are used to average (B6) over the
of one scatterer only. As shown in Fig. 3 for a given scattererfour combinations of incoming and outgoing waves. For
there are four possibilities for the incoming and outgoingscatterers along a trajectory, the variabﬁeis multiplied by
wave types because both the incoming and outgoing waves because the perturbations of the scatterer location are as-
can be either & or Swave. This means that expressi@®) sumed to be independent. This gives for the variance in the
must be averaged, over these four types of incoming andrrival time

2y s vl 1 . 1 . 20303 1 . 1 1 . 2vivd 1
=2n6 —35——3>| ==+ =%— —(cos —5——35| =%+ %— ——(cos —a 35| =%
77 (vi+2v3)?| 208 203 v,2;< Ver) (vai+2v3)?| 208 203 USUP< Yse) (vi+2v3)?| 203
NEN. 4 1 1 -
—— ——(Ccos +—3—3>5| >3+ —(cos .
2v§ vpvs< Vse) (vg-i- 21)‘:’,)2 20% 2v§ v§< V9 (38)
|
In this expressiorcosysp is the average of the cosine of 5 25%
the scattering angle foB to P scattering over all scattering o= (39
angles because the multitude of paths that visit a given scat- i
terer sample all possible scattering angles. From reciprocitXN- . :
ith the velocit iven b
(cosiis)=(cosp9). Yo G
Expression(33) relates the average number of scatterers 1 2,2 412 7 7
encountered to the travel time along the trajectory, taking _E% 5+20gv%+ 2U2vg+4U_P) (40)
conversions betweeR and S waves into account. Using this vy  (2uptvd)®lup S Us
result to eliminaten from Eq.(38), the variance of the travel
time is given by and the transport mean free path given by

1 1 1 (03/v)(COSYpp) +4vEvE(COSYps) +4(vRIVE)(COSPsS 1)
I, o vYvE+2vpva+ 20305+ 40 5/0E '
|
with the effective mean free paths given by Eq.(35). in scatterer locations has the same functional form for both

Equation(39) is identical to the expression for the travel elastic and scalar waves, despite the recurrent conversions
time variance for scalar wavé41,32. This means that the betweenP and S waves. Note that these expressions are
change in the arrival timéor phas¢ caused by perturbations based on the presence of tw®polarizations. For a two-
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dimensional elastic medium the expressionsdgrand |, The relative change in the effective velocity is related to
are different. the mean travel time perturbation by
For a Poisson medium,, andl, are given by
B <T>(t,tw) B v% Svp 20,3; ovg
v,~1.00%g, (42 LC —ZUeF,)JFUgK mv—s

and (49
Coda wave interferometry thus constrains the weighted av-
erage of theP- and S-velocity perturbation given by expres-

1 1
=~ Ef(l_ 0.003 cosypp) —0.098 cosyps) sion (49). For a Poisson medium

L«
—0.883cosys9). (43 ov Sv

° Ye~0.09—F +0.912 (50)

Note that the velocity, is close to theS velocity, and that ve Us

the transport mean free path depends most strongly on thg, that coda wave interferometry for elastic waves depends

scattering angle foBwaves because when tReandSwaves  much more strongly on the relative perturbation of the

have equilibrated th8 waves are much more prolific. In fact, swave velocity than on that of the-wave velocity.
the error is not large when one replaeggsby the Svelocity

anq ignores in expressigd3) the contributions of the scat- VII. CONCLUSION
tering anglesypp and ¢pg that involve theP wave.

By inserting Eq.(39) in Eq. (14) we can relate the vari- The treatment of coda wave interferometry as formulated
ance in the scatterer displacement to the time-windowed cofor scalar waves extends to that of elastic waves, which are
relation function: subject to the conversion betweBrandSwaves. The result-

ing expressions for the time-windowed correlation function
vyly of the multiple-scattered waves due to changes of the me-
8=(1—- RET:;;V)) — (44) dium are identical to those previous derived for scalar waves.
w? Coda wave interferometry for elastic waves differs from that
for scalar waves only in that it depends on a weighted aver-
VI. A VELOCITY PERTURBATION age of the propagation a}nd scattering propertieE’ ahd'S
waves. In practice, elastic coda wave interferometry is pre-
The change in the coda waves can be caused by a pertutominantly influenced by the propagation and scattering of
bation in the average velocity of the medium. Here, | derivewaves because these waves dominate ovePtivaves after
the effect of constant perturbations of tReandS velocities  multiple scattering. Therefore this technique is most sensitive
on the time-windowed correlation of the coda waves. Thewo changes in the propagation characteristicS whves[17].
relative perturbations of thB and S velocities are denoted
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along each trajectory, the wave spends on average atjme
as anSwave and a timdép as aP wave. The unperturbed

travel time is given by APPENDIX: THE EFFECT OF THE PERTURBATION

OF ONE SCATTERER LOCATION ON THE TRAVEL TIME

= E L_S Consider the situation shown in Fig. 2 wherein the loca-
+—. 46) > : .
Up Us tion of scatterer is perturbed, while the locations of the
) ) ) scatterers— 1 andi + 1 that the wave encounters before and
If we assume that the relative velocity perturbations areter meeting scatterer respectively, are unperturbed. The
much smaller than unity, the average change in the arrivahcoming wave travels from scatterier 1 to scatterer with
time, to first order inyp and ys, is given by velocity v, in the directiond™ and the outgoing wave from
scattereri to i +1 travels with velocityv,, in the direction

t

(D=~ ypﬁ_ 78"_3_ 47y A" The location of scattereris denoted by (). The three
o Up Us components of this vector are perturbed independently with
) ) _ zero mean and variancg ' ‘ .
Using expressiori30) gives It follows by differentiation thatd|r(*)—r®|/ox" =
1 —(x('+1)—>§('))/|r('+l)—r(')|= —.ﬁ)‘f“‘. 'Using this, and the
(Diay)=— ﬁ(vgmﬁ 20yt (48  corresponding result for the incoming wave, gives for the
VptUg travel timet
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at 1 1 . perturbations in the three components of the location of scat-
> v—ﬁ;)m*' v—_ﬁl?, (A1)  tereri are assumed to be independent, the associated variance
' out n in the travel time is given by (7%);=(dt/dx;)?5°
+ (atl 9y;)% 8%+ (atl 9z;)? 8%, With expressiortAl) this gives
with similar expressions for the other derivatives. Since theexpression36).
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