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Summary

Seismic attenuation and dispersion can be caused by

numerous distinct mechanisms.  Observed or proposed

mechanisms include mineral surface-fluid interaction,

microscopic squirt between pores, macroscopic fluid

motion between heterogeneous regions, and bulk loss

within the fluid phase itself.  The lack of an 

understanding of these various processes renders

interpretation of attenuation-related attributes

problematic at best.  Direct measurement of seismic

attenuation (1/Q) and velocity dispersion in the

laboratory help discriminate among these mechanisms

and ascertain which dominate for particular lithologies

or saturation conditions. Fluid motion is a primary

mechanism in porous, permeable clastics.  In shales,

however, bulk fluid motion is inhibited and clay particle 

interaction with bound water may dominate.  Heavy,

viscous fluids themselves show bulk losses independent

of a rock matrix.  All these loss mechanisms are 

frequency dependent, so observations of 1/Q made at

seismic frequencies usually will not agree with sonic log 

measurements, which, in turn, will not agree with

ultrasonic data.

Introduction

Seismic attenuation measurements have long been

proposed as a method to identify fluids or zones of high

permeability in situ.  Field data is now improving to the 

point where qualitative estimates of 1/Q are possible, based

largely on frequency content. However, interpretation is

still hampered by a lack of understanding of the primary

mechanisms involved in intrinsic 1/Q.  Direct observation

of loss and dispersion within the seismic frequency band in

the laboratory point toward several independent, competing

mechanisms.

Completely dry rocks have almost no attenuation

(Tittmann, et al., 1980). Even small amounts of volatiles

are enough to cause appreciable loss (Clark, et al., 1981; 

Vo-Thant, 1995).  Losses due to fluid motion between

pores will then be added to the overall 1/Q (Murphy, 1982). 

A different mechanism is macroscopic fluid flow between

areas of heterogeneous saturation or rock compliance

(White, 1975; Gist, 1994).  In contrast, shales can show 

substantial 1/Q even though macroscopic flow is prevented.

Such shale losses are likely related to grain-bound fluid

interaction or perhaps motion of fine fluid menisci 

(Brunner and Sptezler, 2001).  However, Ursin and 

Toverud (2002) have pointed out that the various 

mechanisms are difficult to differentiate over the narrow 

seismic band.

Attenuation is a fundamental intrinsic property of rocks 

causing energy loss and is related to velocity dispersion.

One of the most straight-forward descriptions was 

developed by Cole and Cole (1941) and applied to 

attenuation measurements by Spencer (1981).   The result is

coupled attenuation and velocity as functions of frequency

as shown in Figure 1. 
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Figure 1.  Cole-Cole relation couples velocity and

attenuation as functions of frequency.  The frequency range

of our laboratory measurements is indicated.  Also shown is

the effect of high fluid mobility and low fluid mobility.

Measurement Techniques

Several techniques are available to measure 1/Q.  The most

common laboratory method is the spectral ratio technique

which compares the frequency content of ultrasonic waves

passing through a standard to those through a rock sample 

(Toksoz et al. , 1977).

To reach the seismic frequency band, use a forced-

deformation apparatus similar to that used by Spencer

(1981).  As important, strain amplitudes must also match

those characteristic of seismic waves, otherwise different

deformation mechanisms come into play.  Samples are

typically cylinders 5 cm in length and 3.8 cm in diameter.

Frequencies range from about 0.3 Hz to 2,000 Hz.  Strain

amplitudes are kept below 10-7.

Small ‘Micro-valves”  control fluid movement in and out of

the sample.

For low frequencies, a low amplitude sinusoidal stress is 

applied axially to the assembly consisting of the sample
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and aluminum standards.  Relative strain amplitudes of the 

aluminum versus sample yield the moduli of the rock.

Phase angles between the standard and rock permit

attenuation to be calculated. 

Pore Fluid Motion
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attenuations and velocities.  Pore pressure changes slightly 

as a seismic wave passes, causing the rock to be slightly

stiffer and increasing velocity.  This pressure change

depends on the compressibility of the fluid and the

compliance of the pore space.  This process is described by

Gassmann's (1951) Equations. However, these equations

were derived under the assumption that that pore pressure 

has equilibrated throughout the rock.  This assumption then

depends on fluid mobility.  At low mobility, pressure can

not equilibrate and Gassmann's assumptions are violated.

With increasing mobility, 'squirt' flow mechanisms can 

operate over a small distance, and adjacent pores can reach

equilibrium (O’Connell and Budianski, 1977; Mavko and 

Nur, 1975).  With high mobility, a more global or 'Macro'

flow can occur on a scale approaching  to the seismic

wavelength (White, 1975, Pride et al, 2003).

This Macro-flow allows pressure equilibri
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values drop and velocities increase as we increase the

differential pressure. These properties can be used in

monitoring production effects using time lapse surveys.
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different modes of attenuation at open boundary conditions.

For open valve low-frequencies behave as if the rock is 

partially saturated (mode 1 above). This is due to the fluid

movement across the boundary.  At high frequencies (> 

100 Hz), there is insufficient time for fluid to flow and to 

reach pore pressure equilibrium with the external system.

The rock behaves fully saturated, and shear losses are 

highest (mode 3 above).

Figure 2: 100% brine saturation. Open valve allows to simulate

open boundary condition. Saturated 1/Qp is very small and is

nearly equal to dry 1/Qp. At low frequencies, fluid can flow in 

and out of the sample, and 1/Qp and 1/Qk dominate.
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expect losses can be greatly different for different

directions of propagation.  One straight forward way to test 

this is by comparing ultrasonic quality factor (Q) measured

on the same sample but with different orientations.  Figure 

3 shows the ultrasonic compressional quality factor (Qp)

for both vertical and horizontal wave propagation through a 

chalk sample. We see higher losses (lower Q) for the 

vertical direction.  Since the vertical direction is more

compliant, more fluid motion may result from wave 

propagation in this direction. Note that where as velocities

usually have anisotropies of a few percent, attenuations can

vary by factors of two or three in different directions.
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Figure 3.  Quality factor (Qp) anisotropy in a chalk sample

measured ultrasonically.  Horizontal Qp (solid dots) is higher
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measurements must be made in several directions on

samples of at least two orientations. Directions x1 and x2 are

parallel to bedding and x3 is orthogonal to bedding.

Example results can be seen in Figure 4, where the quality

factor in the x3 direction (Q33) is plotted as a function of 

frequency.   Quality factor here is defined as the ratio of the

real modulus component to the imaginary component (i.e. 

Q33 = Re C33/ Im C33). As can be seen in Figure 4, Q33 is 

strongly frequency dependent.  Thus, attenuation measured

in the seismic band will not equal that measured with sonic

logs or ultrasonically. This observed attenuation suggests a 

separate relaxation mechanism.  Because of the low

permeability and fluid mobility, bulk fluid motion is

inhibited.  More likely, interactions among the clay 

particles and between the clays and bound water are

responsible.  Data on shales are sparse, and much more 

work is required to fully define their behavior.  Note that 

since shales and similar rocks form the bulk of the back

ground lithologies, normal seismic “Q” compensation

should be compared to shale values, not sand values.
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Figure 4: Frequency dependence of quality factor Q for a shale 

sample with 28% porosity. Q decreases (attenuation increases)

iquid Phase Attenuationiquid Phase Attenuation

with increasing frequency.
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transitional between liquid-like and solid-like behavior.  An 

example is shown in Figure 5. This oil has an equivalent

API gravity of -5.   It is sufficiently stiff that it can be

mounted and the elastic properties measured as if it were a

true solid.  The attenuation is large and peaks around 50 

Hz.  This type of behavior is similar to polymers and 

glasses.  One intreging development can be seen by

comparing the 1/Q measured in the fluid with that

measured in the rock containing this oil.  Simply

multiplying the fluid losses by the rock porosity give a

reasonable match to the rock values.  In addition, the

frequency dependence of the saturated rock is similar to the

oil.  This kind of seismic attenuation due to intrisic losses

in the fluid itself has largely been overlooked.  This

mechanism may prove a dominant process for the

monitoring of heavy oil sands. 
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