Introduction

- Kinematics of rigid bodies: relations between time and the positions, velocities, and accelerations of the particles forming a rigid body.

- Classification of rigid body motions:
 - translation:
 - rectilinear translation
 - curvilinear translation - Fig (a)
 - rotation about a fixed axis - Fig (b)
 - general plane motion
• Consider the motion of a rigid body in a plane perpendicular to the axis of rotation.

• Velocity of any point \(P \) of the slab,

\[
\vec{v} = \vec{\omega} \times \vec{r} = \omega \vec{k} \times \vec{r} = r \omega
\]

• Acceleration of any point \(P \) of the slab,

\[
\vec{a} = \vec{\alpha} \times \vec{r} + \vec{\omega} \times \vec{\omega} \times \vec{r} = \alpha \vec{k} \times \vec{r} - \omega^2 \vec{r}
\]

• Resolving the acceleration into tangential and normal components,

\[
\vec{a}_t = \alpha \vec{k} \times \vec{r} \quad \quad a_t = r \alpha
\]

\[
\vec{a}_n = -\omega^2 \vec{r} \quad \quad a_n = r \omega^2
\]
Motion of a rigid body rotating around a fixed axis is often specified by the type of angular acceleration.

Recall \(\omega = \frac{d\theta}{dt} \) or \(dt = \frac{d\theta}{\omega} \)

\(\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2} = \omega \frac{d\omega}{d\theta} \)

Uniform Rotation, \(\alpha = 0 \):

\(\theta = \theta_0 + \omega t \)

Uniformly Accelerated Rotation, \(\alpha = \text{constant} \):

\(\omega = \omega_0 + \alpha t \)

\(\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2 \)

\(\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0) \)
Two Rotating Bodies in Contact
Two Rotating Bodies in Contact - Same Velocities & Tangential Acceleration

\[\text{v}_A, \text{v}_{A'} \]
Two Rotating Bodies in Contact – Different Normal Accelerations
General Plane Motion

- *General plane motion* is neither a translation nor a rotation.

- General plane motion can be considered as the *sum* of a translation and rotation.

- Displacement of particles A and B to A_2 and B_2 can be divided into two parts:
 - translation to A_2 and B'_1
 - rotation of B'_1 about A_2 to B_2
General Plane Motion

Plane motion

\[= \]

Translation with \(A \) + Rotation about \(A \)

\[(a) \]

Plane motion

\[= \]

Translation with \(B \) + Rotation about \(B \)

\[(b) \]
• Any plane motion can be replaced by a translation of an arbitrary reference point A and a simultaneous rotation about A.

\[\vec{v}_B = \vec{v}_A + \vec{v}_{B/A} \]

\[\vec{v}_{B/A} = \omega \vec{k} \times \vec{r}_{AB} \]

\[\vec{v}_B = \vec{v}_A + \omega \vec{k} \times \vec{r}_{AB} \]
• Assuming that the velocity v_A of end A is known, wish to determine the velocity v_B of end B and the angular velocity ω in terms of v_A, l, and θ.

• The direction of v_B and $v_{B/A}$ are known. Complete the velocity diagram.
• Selecting point \(B \) as the reference point and solving for the velocity \(v_A \) of end \(A \) and the angular velocity \(\omega \) leads to an equivalent velocity triangle.

• \(v_{A/B} \) has the same magnitude but opposite sense of \(v_{B/A} \). The sense of the relative velocity is dependent on the choice of reference point.

• Angular velocity \(\omega \) of the rod in its rotation about \(B \) is the same as its rotation about \(A \). Angular velocity is not dependent on the choice of reference point.
• Plane motion of all particles in a slab can always be replaced by the translation of an arbitrary point \(A \) and a rotation about \(A \) with an angular velocity that is independent of the choice of \(A \).

• The same translational and rotational velocities at \(A \) are obtained by allowing the slab to rotate with the same angular velocity about the point \(C \) on a perpendicular to the velocity at \(A \).

• The velocity of all other particles in the slab are the same as originally defined since the angular velocity and translational velocity at \(A \) are equivalent.

• As far as the velocities are concerned, the slab seems to rotate about the *instantaneous center of rotation* \(C \).
Instantaneous Center of Rotation in Plane Motion

- If the velocity at two points A and B are known, the instantaneous center of rotation lies at the intersection of the perpendiculars to the velocity vectors through A and B.

- If the velocity vectors are parallel, the instantaneous center of rotation is at infinity and the angular velocity is zero.

- If the velocity vectors at A and B are perpendicular to the line AB, the instantaneous center of rotation lies at the intersection of the line AB with the line joining the extremities of the velocity vectors at A and B.

- If the velocity magnitudes are equal, the instantaneous center of rotation is at infinity and the angular velocity is zero.
Absolute and Relative Acceleration in Plane Motion

- Absolute acceleration of a particle of the slab,

\[\ddot{a}_B = \ddot{a}_A + \ddot{a}_{B/A} \]

- Relative acceleration \(\ddot{a}_{B/A} \) associated with rotation about \(A \) includes tangential and normal components,

\[
\begin{align*}
(\ddot{a}_{B/A})_t &= \alpha \hat{k} \times \hat{r}_{AB} \\
(\ddot{a}_{B/A})_n &= -\omega^2 \hat{r}_{AB}
\end{align*}
\]

\[
\begin{align*}
(a_{B/A})_t &= r \alpha \\
(a_{B/A})_n &= r \omega^2
\end{align*}
\]