EBGN552 - Nonlinear Programming

Spring 2013

Lectures	Monday, Wednesday	9:30am - 10:45am	211 Engineering Hall
Instructor	A. M. Newman		
	Office:	319 Engineering Hall	
	Office Hours:	Monday	10:45am-11:15am
		Tuesday	8:00am-9:00am; 5:00pm-8:00pm
		Wednesday	10:45am-11:15am
	email:	newman@mines.edu	
Teaching	Timo Lohmann		
$\mathbf{Assistant}$	Office:	126 Engineering Hall	
(TA)	Office Hour:	Monday	3:00pm-4:00pm

GENERAL INFORMATION

- Textbooks: (recommended)
 - * Optimization of Chemical Processes, Edgar, Himmelblau, Lasdon. (second edition)
 - \star Optimization in Operations Research, Rardin.
 - * <u>Nonlinear Programming: Theory and Algorithms</u>, Bazaraa, Sherali, Shetty. (third edition)
 - * <u>AMPL: A Modeling Language For Mathematical Programming</u>, Fourer, Gay, Kernighan. (second edition)
- Assignments: There will be a weekly assignment due Wednesday (the following week). The TA will grade the homework, so direct homework grading questions to him. *Do not send email to the TA!!*
- **Project:** There will be a project involving formulating, solving and analyzing a challenging problem, writing code, and/or performing a literature review. The project group may consist of between one and four students. The project will be due during finals week.

- **Exams:** There will be a midterm and a final examination. Both are open book. You must wait 48 hours after the exam has been handed back to ask (me) any grading questions.
- Grading:
 - \star Class Participation: 5%
 - \star Homework Assignments: 20%
 - \star Project: 25%
 - \star Midterm: 20%
 - \star Final: 30%

Grading is done on a curve where 90% is sufficient but not necessarily necessary for an A-, 80% is sufficient but not necessarily necessary for a B-, etc.

COURSE OUTLINE

***** I. Nonlinear Programming Formulations

- \cdot Unconstrained problems
- \cdot Constrained problems

\star II. Mathematical Structure of Nonlinear Programs

- $\cdot\,$ Review of linear programming
- $\cdot\,$ Difficulty of finding solutions for nonlinear programs
- · Well-behaved nonlinear programs (convex sets, convex functions, convex regions)

\star III. Solution Techniques for Unconstrained Problems

- \cdot Optimality conditions
- $\cdot\,$ Rate of convergence
- $\cdot\,$ Steepest Descent and Line search
- $\cdot\,$ Newton's method

\star IV. Solution Techniques for Constrained Problems

- $\cdot\,$ Karush-Kuhn-Tucker optimality conditions
- · Lagrangian methods
- \cdot Penalty and Barrier methods
- $\cdot\,$ Methods of feasible directions, e.g., reduced gradient

\star (V. Mixed Integer Nonlinear Programming)¹

 $^{^{1}}$ Time permitting

- \cdot Formulation
- · Solution techniques

***** Computer Implementation

 Model implementation will be emphasized throughout the course (using AMPL or GAMS as a modeling language – as in EBGN555, 556, and 557). However, as time permits, we will explore how to "fine-tune" state-of-the-art software (e.g., MINOS) to achieve the "best" results (in terms of solution quality or solution time) possible.

• RULES

- * Please do not send email regarding homework problems; come to office hours instead.
- $\star\,$ Statute of limitations for questions about grading is one week from the student's receipt of the graded work.
- * I do not want to see or hear your cell phone. Ever. This includes during office hours.
- \star No rudeness of any kind towards anyone in the class will be tolerated.
- \star Do not talk to your neighbor during class.
- ★ You may confer with others regarding the homework and project, but the work you hand in must be your own. Please ensure it is done neatly.
- \star Attendance in class is required. Be on time.
- \star Any alternate arrangements for exams must be submitted in writing at least one week in advance of the exam. Any additional arrangements regarding disabilities must be *formally* and *legally* documented and approved.

A minor infraction of the above rules will result in a warning. A major infraction will result in expulsion from the class.