

Colorado School of Mines Office for Technology Transfer

Optical Alignment Deformation Spectroscopy

Drs. Keith Neeves, David Marr, Charles Eggleton and Kevin Roth

Department of Engineering

Description: Cell mechanical properties are a useful measure of phenotype that can be quantified by cell deformability. There is a lack of high-throughput methods to investigate the mechanical properties of large populations of individual cells. To address this need, Mines has developed optical alignment deformation spectroscopy (OADS), a technique where hydrodynamic interactions between individual cells are used to create deformation. In OADS, a linear optical trap is used to align two incoming cells in a microfluidic cross-flow geometry, allowing hydrodynamic forces to induce a collision between cells at the stagnation point. After the interaction, the cells leave the stagnation point and a new pair of cells enters the trap. A convenient model cell to characterize OADS is the human erythrocyte because of its well-known mechanical properties. Deformation data of erythrocytes is fit to a linear viscoelastic constitutive model (Voigt). The results show OADS has potential as an accurate high-throughput individual cell mechanical cytometer.

Potential Areas of Application

- Disease screening
- High through-put blood testing method

Main Advantages of this Invention

- High through-put assay measuring individual cells instead of population average
- Reagent and label free
- More accurate than current methods

Intellectual Property Status: Provisional patent filed December 17, 2011

Opportunity: We are seeking an exclusive or non-exclusive licensee for marketing, manufacturing, and sale of this technology.

Contact

William Vaughan Director, Technology Transfer Colorado School of Mines 1500 Illinois Street Guggenheim Hall, Suite 314 Golden, CO 80401 Phone: 303.384.2555 Fax: 303.273.3244 Email: wvaughan@mines.edu