General Relativity HW4 Problems

1. Imagine a particle following a path through spacetime given by \(x^\mu(\tau) = \left(\tau^2 + \tau, \tau^2, \frac{4}{3} \tau^3, -10 \right) \).
 a) Compute the four-velocity of the particle as it passes through the point
 \(x^\mu = (20, 16, \frac{32}{3}, -10) \).
 b) For the function \(f(t, x, y, z) = -t^2 + x^2 + y^2 - yz \), calculate the rate of change of this
 function along the path from part (a), i.e. \(\frac{df}{d\tau} \), at the point \(x^\mu = (20, 16, \frac{32}{3}, -10) \).
 Hint: You will need to break up the derivative into two terms using \(\partial x^\mu \) in various places so
 that can use your result for the four-velocity.

2. Consider the example in class where I found the vector which defined the area of a two-sphere
 in 3D. In this case, I want you to do the same but this time for a cube of side length 1 which is
 centered on the origin with edges along the coordinates. You will need an equation which
 defines the surface, then proceed as I did in class. The answer should be obvious once you get it.

To be continued....