Now how does having/using an orthonormal basis impact determinants?

Consider a matrix $A = \begin{pmatrix} a_1 & a_2 & \cdots \end{pmatrix}$ where each row is a vector orthogonal to the rest of the rows. So we might call it $A = \begin{pmatrix} a_1 \end{pmatrix}$ where each a_i has a component (as according to book $A = \begin{pmatrix} a_1, a_2, \cdots \end{pmatrix}$)

Clearly $AA^\top = \begin{pmatrix} \sum_j a_j a_j^\top \end{pmatrix} = \begin{pmatrix} a_1 a_1^\top & a_2 a_2^\top & \cdots \end{pmatrix} \begin{pmatrix} a_1^\top & a_2^\top & \cdots \end{pmatrix}$

This just takes each row and forms the inner product with all the others.

So $AA^\top = \begin{pmatrix} \|a_1\|^2 & 0 & 0 \\ 0 & \|a_2\|^2 & 0 \\ 0 & 0 & \|a_3\|^2 \end{pmatrix} \Rightarrow \det(AA^\top) = \|a_1\|^2 \|a_2\|^2 \|a_3\|^2$

Recall that $\det A = (\det A^\top)^* \Rightarrow \det A^* = \det A^\top$ and $\det(AB) = \det A \det B$

Together there gives $\det(AA^\top) = \det A \det A = \det A \det A^\top = \det A^\top \det A \Rightarrow \det A = \sqrt{\det A^\top \det A} = \|a_1\| \|a_2\| \|a_3\|$

Now A in the above was special. Suppose we start with an arbitrary matrix $B = \begin{pmatrix} b_1 & b_2 & \cdots \end{pmatrix}$

This time the rows of the matrix need not be orthogonal. Now let's Gram-Schmidt the shit out of it: $B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \end{pmatrix} \Rightarrow \hat{B} = \begin{pmatrix} b_1 \\ b_2 - \frac{\langle b_2, b_1 \rangle}{\|b_1\|^2} b_1 \\ \vdots \end{pmatrix}$

Now let's form $C = \begin{pmatrix} \|b_1\| b_1' \\ \|b_2\| b_2' \langle b_2, b_1 \rangle \|b_1\| b_1' \\ \vdots \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 - \frac{\langle b_2, b_1 \rangle}{\|b_1\|^2} b_1 \\ \vdots \end{pmatrix}$

This is special, since each row is formed by adding multiples of other rows to it, e.g., $b_2 \rightarrow b_2 - \frac{\langle b_2, b_1 \rangle}{\|b_1\|^2} b_1$

But this means $\det \hat{B} = \det C$!

But since C is comprised of orthonormal vectors $\{c_1, c_2, \cdots, c_n\}$, inner scalar multiples $c_1, b_2, \cdots, b_n \Rightarrow \|b_1\|, \|b_2\| - \frac{\langle b_2, b_1 \rangle}{\|b_1\|^2} \|b_1\|, \cdots$, then $\det C = \|b_1\| \|b_2\| \cdots \|b_n\|$

where each $\|b_i\| \leq \|b_i\|$, therefore we get Hadamard's inequality: $|\det B| \leq \|b_1\| \|b_2\| \cdots \|b_n\|$

And finally we end by stating what can be obvious, but will nonetheless be useful later on:

A linear transformation A on an inner-product space is the zero transformation if and only if $\langle x, Ay \rangle = 0$ for all x and y.

Lecture8-Self-adjoint is Symmetric or Hermitian Page 1
Recall the definition of adjoint matrices: \(A \) with elements \(a_{ij} \) goes to \(A^+ \) with elements \((A^+)^*_{ij} = a_{ji}^* \) or just \(A^+ = A^* \) s.t.
\[
\begin{align*}
(A^+)^* &= A \quad \text{or} \quad (A^*)^* = A \\
(A + B)^* &= A^* + B^* \\
(A^*B^*)^* &= B^*A^*
\end{align*}
\]

Now let us instead define “adjoint” more abstractly in terms of linear operators.

Let \(A \) be a linear transformation on a vector space \(V \).

For every \(A \) the operator \(A^+ \) s.t. \((Ax, y) = (x, A^+y) \) for every \(x, y \in V \) is called the adjoint operator.

or equivalently \((x, A^+y) = (A^*x, y) \) since \((x, A^+y) = (A^*x, y) = (y, A^*x)^* = (y, A^*x) = (x, A^*y) \)

Useful things about adjoints are that given \(A \), \(A^* \) always exists and is unique, and \(A^* \) itself is a linear operator (all provable).

With this operator/inner product definition we also find:

1. \((A + B)^* = A^* + B^* \)
2. \((AB)^* = B^*A^* \)
3. \((\alpha A)^* = \alpha^* A^* \) \(\alpha \) a scalar
4. \((A^*)^* = A \)

Let’s prove (4) just to show that we do not need matrix properties to do so.

Since \((x, C^*y) = (Cx, y) \) where \(C \) is a linear operator.

If \(C = A + B \) then \((x, [A + B]^*y) = (A + B)x, y) = (A + B)^*x, y) \) using linearity of operators

\[
= (A^*x, y) + (B^*x, y) \quad \text{using linearity of inner product}
\]

\[
= (x, A^*y) + (x, B^*y) \quad \text{using definition of adjoint}
\]

\[
= (x, A^*y) + (B^*x, y) \quad \text{using linearity of inner product}
\]

\[
= (x, [A^* + B^*]y) \quad \text{using linearity of operators}
\]

Now does this mean \([A + B]^* = A^* + B^* ? \) We suppose we had \((x, A^*y) = (x, B^*y) \). Does this \(\Rightarrow A = B \)?

The answer seems to be yes, but suppose that \(x \) or \(y \) is 0. Then no!

In fact consider if \(A \) and \(B \) take \(y \) and project them to different subspaces which are orthogonal to \(x \). Then no!

We can save it by saying "if all of this holds for all values of \(x \) and \(y \)" because then we have the theorem: \(\langle x, A^*y \rangle = 0 \) for all \(x \) and \(y \) \(\Rightarrow A^* = 0 \), which applied to \((x, A^*y) = (x, B^*y) = 0 \Rightarrow (y, A^*x) = 0 \) similarly to prove (2):

\[
\langle x, (AB)^*y \rangle = \langle ABx, y \rangle = \langle Bx, A^*y \rangle = \langle x, B^*A^*y \rangle \quad \text{for all} \ x \ and \ y \ (\text{w/ theorem on} \ x, A^*y = 0)
\]
Clearly, due to the isomorphism between matrices and linear operators, there should be a connection between the separate definitions of adjoint. There is!

Let the matrix of A have components a_{ij} w.r.t. an orthogonal basis x. Then the matrix A^\dagger w.r.t. x is $[A^\dagger]_{ij} = a_{ji}$, (which was our matrix definition).

To prove the connection, start the matrix elements of a linear transformation w.r.t. the orthonormal basis $x = \{x_i, y_j \}$, i.e., $a_{ij} = \langle x_i, A y_j \rangle$. Then $a_{ij} = \langle A^\dagger x_i, y_j \rangle = \langle x_i, (A^\dagger)^\dagger y_j \rangle = \langle x_i, A x_j \rangle^* \Rightarrow A^\dagger y_j = a_{ji}^* \langle x_i, \rangle \langle \rangle^*$ of adjoint.

Now with the definition of adjoint in hand, we can specify a special class of linear operators.

- If $A = A^\dagger$, then A is "self-adjoint." (Real inner-product space \Rightarrow adjoint symmetric ($A^\dagger = A$))
- Complex inner-product space \Rightarrow adjoint is Hermitian.

I know you have worked with Hermitian operators/transformations in QM, and we familiar with some of their properties, e.g., real eigenvalues. So let's explore more mathematically.

- If A and B are self-adjoint, so is $A + B$. (Obvious)\[(A + B)^\dagger = A^\dagger + B^\dagger = A + B \]
- If A is self-adjoint so is αA for real α. (Obvious)\[\alpha^* A^\dagger = \alpha^* A = \alpha A \iff \alpha \in \mathbb{R} \]
- If A and B are self-adjoint AB is self-adjoint iff $[A, B] = 0.$

To prove the last one (which is less obvious):

If $[A, B] = 0$, $AB = BA \Rightarrow (AB)^\dagger = B^\dagger A^\dagger = BA = AB$

Only if $[A, B] = 0$, $AB = (AB)^\dagger = B^\dagger A^\dagger = BA$
Recall the theorem:

(i) A linear transformation A on an inner-product space is 0 if and only if $(x,Ay) = 0$ for all x,y.

It turns out that in certain situations this can be strengthened:

(ii) If A is a self-adjoint in a real inner-product space, then $A = 0$ iff $(x,Ax) = 0$ for all x, and $A = \mathbf{I}$ is unitary.

(iii) If A is any linear transformation in a complex inner-product space, then $A = 0$ iff $(x,Ax) = 0$ for all x.

Before proving them, let's consider their "strength." Strength is tied to the condition that must be met. For all x and y, means that x and y are distinct, whereas for all x in the latter two means you pick x to itself, but need not worry about when $x \neq y$.

To prove necessity in all of these, note that if $A = 0 \Rightarrow (x,Ay) = 0$ for all x and y including $x = y$.

To prove sufficiency, start with the first:

If $(x,Ax) = 0$ for all x and y, then if we take $x = Ay$, $(Ax,Ay) = 0 \Rightarrow A = 0$ for all y and therefore $A = 0$.

For the second, we'll show that the condition to be met actually reduces to that of the first.

If $(x,Ax) = 0$ for all x then consider $<x+y,A[x+y]> = 0 = (x,Ax) + (x,Ay) + (y,Ax) + (y,Ay)$ which gives $<x+y,A[x+y]> - <x,Ax> - <y,Ay> = (x,Ay) + (y,Ax) = 0$ for all x and y.

but $(y,Ax) = (Ax,y)^* = (Ax,y) = (x,A^*y) = (x, Ay)$

then $<x, Ay> = 0$ for all x, y, but we have already shown $A = 0$.

For the third we can actually use part of the proof of the second.

If $(x,Ax) = 0$ for all x then following (ii) $(x,Ay) + (y,Ax) = 0$ for all x and y.

This time, since things can be imaginary, let's take $y = iy$, then $(x,Aiy) + (iy,Ax) = 0$ for all x and y.

Then $<x, Ay> = <x,y> A (x,y)$ we have $<x,Ay> = (y,Ax)$ and $(x,Ay) = (x,A^*y) = (x,Ay) = 0$.

Adding this to earlier we have $<x, Ay> = 0$ for all $x \neq y \Rightarrow A = 0$.

Obvioulsy we can combine the last two theorems into the statement:

If A is self-adjoint (on real or complex V) then $A = 0$ iff $(x,Ax) = 0$ for all x.