In the previous discussion, I simply wrote down the dual representation. But we could ask if there is a systematic way to construct the dual \(\tilde{r} \) if we are given \(r \). For many cases, this can be done if we are given a metric.

A metric \(g \) maps from an element of a representation \(r \) to a corresponding element of the dual representation \(\tilde{r} \), i.e., \(\tilde{r} = g \cdot r \). The metric will always be represented by a symmetric matrix.

Based on this definition, let's see what \(\tilde{r}^T r \) invariant implies about the metric \(g \).

\[
\tilde{r}^T r = (g r)^T g r = r^T g^T r \quad \rightarrow \quad (A r)^T g Ar = r^T A^T g A r \quad \text{for some} \quad A \in G \\
\text{since} \quad g \text{ is symmetric}
\]

Then \(\tilde{r}^T r \) is invariant if \(A^T g A = g \) for \(A \in G \).

The important lesson here is: If we have some representation \(r \) of a group \(G \), then forming a dual representation \(\tilde{r} \) with the metric \(g \) will give an invariant \(\tilde{r}^T r \) if \(A^T g A = g \) for \(A \in G \).

We can turn this around to say: Given a representation \(r \) and a metric \(g \), we can use the condition \(A^T g A = g \) to find the transformations \(A \) which leave \(\tilde{r}^T r \) invariant.

The latter statement is typically how we encounter symmetries in physics. We start with stuff (particles, fields, dynamical quantities, etc.) all of which form some representation. Then using some metric \(g \), we can find a set of transformations that are symmetries of \(\tilde{r}^T r \).
As an example, consider vectors in 3D, \(\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \) with metric \(g = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \neq I \)

Then we can form dual vectors \(\mathbf{\tilde{v}} = g \mathbf{v} \) and hence invariants \(\mathbf{\tilde{v}}^T \mathbf{v} = \mathbf{v}^T g \mathbf{v} \)

under any transformation \(A \) that satisfies \(A^T g A = g \) or \(A^T A = I \) in this case.

This is the orthogonal condition.

In 3D, the \(A \)'s would be \(3 \times 3 \) real matrices so the full set of transformations would be \(O(3) \).

You might think that the \(A \)'s in this case would be ordinary rotations in 3D, but we have to be careful.
Lecture3-Duals, Metrics and Continuous Groups Page 3

Relations in 3D:

From a compact, continuous, non-abelian group. We will denote rotations by R.

From our previous discussion we knew $R^T R = I$ so $R \in O(3)$, but $O(3)$ contains more than just rotations.

Consider:

$$R \times \theta = \left(\begin{array}{ccc} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array} \right) \Rightarrow R^T R = I$$

$$R' \times \theta = \left(\begin{array}{ccc} -\cos \theta & -\sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array} \right) \Rightarrow R'^T R' = I$$

but this is not a rotation (we'll see what it is soon!)

How can we take $O(3)$ and pick out only rotations? Notes: det $R = +1$, det $R' = -1$

So we can restrict to the elements of $O(3)$ that satisfy det $= +1 \Rightarrow SO(3)$ special orthogonal group.

But does this form a subgroup?

1. Closure $A, B \in SO(3) \Rightarrow \det(AB) = \det A \det B = +1$
2. Identity $(I_{3 \times 3}) \in SO(3)$
3. Invert $R^T R = I \Rightarrow R^T = R^{-1}$, but det$(R^T R) = \det I = +1 \Rightarrow \det(R^T \det R^{-1}) = +1$
4. Associativity (Matrix multiplication is naturally associative)

So what did we throw out? Essentially $P = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right)$ reflection in xy, z

Note: $P^2 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$ is a discrete subgroup of $O(3)$

To get any element of $O(3)$ we can start with some element of $SO(3)$ and combine it with P. Thus $O(3) = SO(3) \times Z_2$

 decomposition of $O(3)$ to subgroups

Note: $O(3)$ with det $= -1$ is not a subgroup!

The identity $\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$ is not part of \pm.

Also det$(AB) = \det A \det B = (-1)(-1) = +1$

Back to 3D:

$$R(\theta) = \left(\begin{array}{ccc} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array} \right) \Rightarrow \det R = +1$$

$$R(\theta) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \Rightarrow \det R = +1$$

Both are in $SO(3)$!

What's the difference between 3D and 2D? In 2D, P which reflects xy is just $R(180^\circ) = SO(2)$

In 3D, P which reflects xy, z is not a rotation

We could consider $R(\theta) = \left(\begin{array}{ccc} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array} \right) \in O(3)$ with det $= -1$. This can be associated with $P' = \left(\begin{array}{ccc} 0 & -1 \\ 1 & 0 \\ 0 & 0 \end{array} \right)$

and used to decompose $O(3) = SO(3) \times Z_2$
Counting continuous free parameters (or generators) of a group

Example: $SO(3)$

9 parameters

$$R^T R = \mathbb{I} \Rightarrow \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$a^2 + b^2 + c^2 = 1$$

$$ad + be + cf = 0$$

Some

$$ag + bh + ci = 0$$

$$da + be + fc = 0$$

$$d^2 + e^2 + f^2 = 1$$

Some

$$dg + eh + fi = 0$$

$$ga + hb + ic = 0$$

$$gd + he + if = 0$$

$$g^2 + h^2 + i^2 = 1$$

6 independent equations $\Rightarrow 9 - 6 = 3$ free parameters

What about $\det R = +1$?

$$\det R^T R = \det \mathbb{I} = +1$$

$$\det R^T \det R = +1$$

$$(\det R)^2 = +1$$

$\det R = \pm 1$ due to $R^T R = \mathbb{I}$

2 real solutions that are not continuously connected (so if we start with R where $\det R = +1$, under continuous changes we cannot get to $\det R = -1$)

Generally: $SO(N)$ has $\frac{1}{2} N(N-1)$ free parameters

$SO(2)$: 1

$SO(3)$: 3 (3 axes x, y, z or planes $x-y, y-z, z-x$ of rotation)

$SO(4)$: 6 (6 planes of rotation $x-y, y-z, z-x, x-w, y-w, z-w$)

You might think this is special relativity but not so fast!
As another example, suppose we have a complex 2D representation \(U = (U_i) \) where \(U \) and \(U^* \) are complex numbers and we take the metric \(g = I \). The \(U^* U \) will be invariant under transformations by 2x2 complex matrices \(A \) provided \(A^* A = (A^*)^* A = I \).

The condition \(A^* A = I \) defines the unitary group \(U(2) \).

Just as for \(O(3) \), in order to restrict to continuous transformations we impose \(\det A = \pm 1 \) and the have \(SU(2) \) or the special unitary group in 2D. Clearly, we can also have \(SU(N) \).

Example: \(SU(2) \)

8 real parameters (4 complex numbers)

\[U^* U = I \]

\[\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a^* & c^* \\ b^* & d^* \end{pmatrix} = I \]

\[a c^* + b d^* = 1 \Rightarrow 1 \text{ equation since every term is real} \]

Some \[a c^* + b d^* = 0 \Rightarrow 2 \text{ real equations since both real and imaginary parts are necessary} \]

\[a c^* + b d^* = 0 \]

\[|a|^2 + |d|^2 = 1 \Rightarrow 1 \text{ equation since every term is real} \]

In total we have \(8 \) real independent equations: \(8 - 4 = 4 \) free parameters

What about \(\det U = \mp 1 ? \)

\(\det U \) = \(\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \mp 1 \)

\(\det U \) = \(\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \mp 1 \)

\(\det U \) = \(\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \mp 1 \)

\(\det U \) = \(\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \mp 1 \)

Has continuous set of complex solutions \(\det U = e^{i \theta} \)

So \(\det U = \mp 1 \) creates another nontrivial relation to be satisfied; \(4 - 1 = 3 \) independent free parameters

**In general: \(SU(N) \) has \(N^2 - 1 \) free parameters \(\left[U(N) \text{ has } N! \right] \)

\(U(1) : 1 \) \(\text{ photon} \)

\(SU(2) : 3 \) \(\text{ \(\frac{1}{2} \)} \) \(\text{ \(\frac{1}{2} \)} \) \{ well... sorta! \}

\(SU(3) : 8 \) \(\text{ gluons} \)
If we take 4D vectors with \(g = \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & -1 \end{pmatrix} \) then the transformations \(\Lambda \) which satisfy
\[
\Lambda^T g \Lambda = g \quad \text{and} \quad \det \Lambda = 1
\]
form \(SO(1,3) \) or the Lorentz group. We will develop this in much more detail in the next lectures.

The number of continuous parameters for the orthogonal and unitary groups can be derived in general:

\[
SO(N) : \frac{1}{2} N(N-1)
\]
\[
SO(N-N_1,N_2) : \frac{1}{2} N(N-1)
\]
\[
U(N) : N^2
\]
\[
SU(N) : N^2 - 1
\]

For the SM, we will primarily focus on \(SO(1,3) : 6 \) space-time rotations + boosts
\[
U(1) : 1
\]
\[
SU(2) : 3 \quad \text{\tiny{弱}}
\]
\[
SU(3) : 8 \quad \text{\tiny{强}}
\]
At the end of the day, the SM Lagrangian itself will be invariant under all 4 groups. That means that every single ingredient of the Lagrangian has to be in some representation of each of these. There is no reason it has to be the same (after all these are very different groups).

For example a quark is a spinor of \(SO(3) \), a vector of \(SU(3) \), a vector of \(U(1) \). Another example the \(W^+ \) is a vector of \(SO(3) \), singlet of \(SU(3) \), adjoint of \(SU(3) \), a vector of \(U(1) \).

\[\text{more on this later!} \]